Soluções abreviadas de alguns exercícios

Tamanho: px
Começar a partir da página:

Download "Soluções abreviadas de alguns exercícios"

Transcrição

1 Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 -

2

3 Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico. Superfícies quádricas. Continuidade. Exercícios. Determine o domínio das seguintes funções e represente-o geometricamente: (a) f(x, y) = x y. D = {(x, y) R 2 : y }. ( (b) f(x, y) = ln x y ) x. D = {(x, y) R 2 : ( < x y > ) (x < y < )}. (c) f(x, y) = ln(3 x2 y 2 ) x 2 +y 2. D = {(x, y) R 2 : x 2 + y 2 < 3 (x, y) (, )}.

4 .. DOMÍNIO, CURVA DE NÍVEL E GRÁFICO. SUPERFÍCIES QUÁDRICAS. CONTINUIDADE. (d) f(x, y) = x y. D = {(x, y) R 2 : y }. (e) f(x, y) = x(y x 2 ). D = {(x, y) R 2 : (x y x 2 ) (x y x 2 )}. (f) f(x, y) = xy+. D = {(x, y) R 2 : (x y ) (x y )}. 2. Identifique os conjuntos de nível e esboce o gráfico das seguintes funções: (a) f(x, y) = 3. R 2, k = 3 C k =, k 3; G f = {(x, y, z) R 3 : z = 3} (plano z = 3). (b) f(x, y) = x. C k = {(x, y) R 2 : x = k}, k R; G f = {(x, y, z) R 3 : z = x} (plano z = x). (c) f(x, y) = x 2. {(x, y) R 2 : x = }, k = C k = {(x, y) R 2 : x = k x = k}, k >, k < ; G f = {(x, y, z) R 3 : z = x 2 } (cilindro parabólico, cuja intersecção com qualquer plano y = b é a parábola z = x 2 ). ISA/UTL Análise Matemática 2/ 2

5 CAPÍTULO. TÓPICOS DE CÁLCULO DIFERENCIAL x, x (d) f(x, y) = x = x, x <. {(x, y) R 2 : x = }, k = C k = {(x, y) R 2 : x = k x = k}, k >, k < ; G f = {(x, y, z) R 3 : (z = x x ) (z = x x < )} (reunião dos dois semi-planos z = x x e z = x x < ). (e) f(x, y) = (x, y) = x 2 + y 2. {(, )}, k = C k = {(x, y) R 2 : x 2 + y 2 = k 2 }, k >, k < ; G f = {(x, y, z) R 3 : z = x 2 + y 2 } (z 2 = x 2 +y 2 z, semi-cone superior com o vértice em (,,) e orientado segundo o eixo dos zz). (f) f(x, y) = x 2 + y 2. {(, )}, k = C k = {(x, y) R 2 : x 2 + y 2 = k}, k >, k < ; G f = {(x, y, z) R 3 : z = x 2 + y 2 } (paraboloide elíptico com o vértice em (,,) e orientado segundo o semi-eixo positivo dos zz). (g) f(x, y) = e x2 2y 2. {(, )}, k = C k = {(x, y) R 2 x : 2 + y2 = }, < k < lnk ( ln k)/2, k k > ; ISA/UTL Análise Matemática 2/ 3

6 .. DOMÍNIO, CURVA DE NÍVEL E GRÁFICO. SUPERFÍCIES QUÁDRICAS. CONTINUIDADE. G f = {(x, y, z) R 3 : z = e x2 2y 2 }. 3. Relativamente a cada uma das funções indicadas nas alíneas (f) e (g) do exercício anterior: (a) Defina a curva de nível que passa no ponto (, ). (f) C 2 = {(x, y) R 2 : x 2 + y 2 = 2}; (g) C e 3 = {(x, y) R 2 : x2 3 + y2 3/2 = }. (b) Diga, justificando, se o ponto (,, ) pertence ao respectivo gráfico. Não, pois f(, ) em ambos os casos. (c) Determine o respectivo contradomínio. (f) CD = [, + [; (g) CD =], ]. 4. Defina analitica e geometricamente as curvas de nível para as seguintes funções, indicando em cada caso o respectivo domínio: x (a) f(x, y) = x + y. D = {(x, y) R 2 : (x y > x) (x y < x)}; {(x, y) R 2 : x = } \ {(, )}, k = C k = {(x, y) R 2 : y = k2 x} \ {(, )}, k > k 2, k ; C é o eixo dos yy excepto o ponto (,). Quando k >, C k é a recta y = k2 k 2 excepto o ponto (,). (b) f(x, y) = x2 y. ISA/UTL Análise Matemática 2/ 4 x

7 CAPÍTULO. TÓPICOS DE CÁLCULO DIFERENCIAL D = {(x, y) R 2 : y }; {(x, y) R 2 : x = y }, k = C k = {(x, y) R 2 : y = k x2 y }, k ; C é o eixo dos yy excepto o ponto (,). Quando k, C k é a parábola y = k x2 excepto o ponto (,). 5. Identifique analitica e geometricamente os conjuntos de nível das seguintes funções: (a) f(x, y, z) = x 2 + y 2 + z 2. {(,, )}, k = C k = {(x, y, z) R 3 : x 2 + y 2 + z 2 = k}, k >, k < ; Quando k >, C k é a esfera centrada em (,, ) e de raio k. (b) f(x, y, z) = x 2 + y 2. {(x, y, z) R 3 : x = y = }, k = C k = {(x, y, z) R 3 : x 2 + y 2 = k}, k >, k < ; C é o eixo dos zz. Quando k >, C k é o cilindro elíptico cuja intersecção com qualquer plano z = c é a circunferência centrada em (,, c) e de raio k. (c) f(x, y, z) = x 2 + y 2 z. C k = {(x, y, z) R 3 : x 2 + y 2 = z + k}, k R, é um paraboloide elíptico com o vértice em (,, k) e orientado segundo o semi-eixo positivo dos zz. 6. Determine uma função para a qual: ISA/UTL Análise Matemática 2/ 5

8 .2. DERIVADAS PARCIAIS. PLANO TANGENTE. (a) y = 3x + 4 é uma curva de nível. y = 3x + 4 é, por exemplo, a curva de nível 4 de f(x, y) = y 3x. (b) x 2 y = é uma curva de nível. x 2 y = é, por exemplo, a curva de nível de f(x, y) = x 2 y. (c) x 2 y = é uma superfície de nível. x 2 y = é, por exemplo, a superfície de nível de f(x, y, z) = x 2 y. (d) x 2 + y 2 = 4 é uma superfície de nível. x 2 + y 2 = 4 é, por exemplo, a superfície de nível 4 de f(x, y, z) = x 2 + y 2..2 Derivadas parciais. Plano tangente. Exercícios 2. Determine as derivadas parciais de a ordem das seguintes funções: (a) f(x, y) = x 3 y 2xy 2 + x 4. f x(x, y) = 3x 2 y 2y 2 + 4x 3 ; f y(x, y) = x 3 4xy. (b) f(x, y) = 2x x 2 + y 2 +. f x (x, y) = 2 x 2 + y x 2 x 2 +y 2 + ; f y (x, y) = 2xy x 2 +y 2 +. ISA/UTL Análise Matemática 2/ 6

9 CAPÍTULO. TÓPICOS DE CÁLCULO DIFERENCIAL (c) f(x, y) = x 3 + cos(x + 3y). f x (x, y) = 3x2 sin(x + 3y); f y (x, y) = 3 sin(x + 3y). x (d) f(x, y) = e 2 +y 2 +. f x(x, y) = e x 2 +y 2 + x x ; f y(x, y) = e 2 +y 2 + x 2 +y 2 + y x. 2 +y 2 + (e) f(x, y) = e y2 cos(x 2 + y 2 ). f x (x, y) = 2xe y2 sin(x 2 + y 2 ); f y (x, y) = 2ye y2 (cos(x 2 + y 2 ) + sin(x 2 + y 2 ). (f) f(x, y) = ln( x y 2 ). f x (x, y) = x ; f y (x, y) = 2 y. (g) f(x, y, z) = (2x y + z)e x y. f x (x, y, z) = ex y (2 + 2x y + z); f y (x, y, z) = ex y ( + 2x y + z); f z(x, y, z) = e x y. 2. Considere a função f(x, y) = x y. Calcule f f (, 2) e (, 2). x y f x (, 2) = 2 ; f y (, 2) = Seja f : R 2 R tal que f(x, ) = x 2 para todo o x R e f(, y) = y + e y para todo o y R. Calcule f f (, ) e (, ). x y ISA/UTL Análise Matemática 2/ 7

10 .2. DERIVADAS PARCIAIS. PLANO TANGENTE. f f (, ) = 2; (, ) =. x y 4. Indique uma equação do plano tangente ao gráfico de: (a) f(x, y) = x y x 2 + y 2 + em (, 3, f(, 3)). 5 (x ) + (y 3) (z + 2 ) =. 2 2 (b) f(x, y) = x 3 xy + e y em (,, ). 3(x + ) + 2y z =. (c) f(x, y) = sin(3x + ye x ) em (,, f(, )). 3x + y z =. 5. Calcule as derivadas parciais até à 2 a ordem e indique as matrizes Jacobiana e Hessiana de: (a) f(x, y) = x. [ J(x, y) = ] ; H(x, y) =. (b) f(x, y) = x 2 + y ln x. [ J(x, y) = 2x + y x ln x ] ; H(x, y) = 2 y x 2 x x. (c) f(x, y, z) = ln(x + y 2 + z 2 ). J(x, y) = x+y 2 +z 2 [ 2y 2z ] ; ISA/UTL Análise Matemática 2/ 8

11 CAPÍTULO. TÓPICOS DE CÁLCULO DIFERENCIAL H(x, y, z) = (x+y 2 +z 2 ) 2 2y 2z 2y 2x 2y 2 + 2z 2 4yz 2z 4yz 2 + 2y 2 2z 2. (d) f(x, y) = (x, y) em R 2 \ {(, )}. J(x, y) = H(x, y) = (x 2 +y 2 ) x 2 +y 2 x 2 +y 2 [ y2 x y ] ; xy xy x 2 (e) f(x, y) = x (x, y) em R 2 \ {(, )}. [ x2 J(x, y) = + y 2 + x2 H(x, y) = 2x3 + 3xy 2 y 3. (x 2 +y 2 ) x 2 +y 2 y 3 x 3. ] xy x 2 +y 2 x 2 +y 2 ;.3 Extremos livres Exercícios 3. Determine os pontos críticos das seguintes funções e estude a sua natureza: (a) f(x, y) = x 4 + y 4 4xy. (,) é um ponto de sela e f(, ) = f(, ) = 2 são mínimos. (b) f(x, y) = x 4 + y 4 + 8x 2 y 2 + 2x 3. (,) é um ponto de sela e f( 9, ) = 287 é um mínimo. (c) f (x, y) = (x ) (3 x) y 3 y. ISA/UTL Análise Matemática 2/ 9

12 .3. EXTREMOS LIVRES (2, 3 ) e (2, 3 ) são pontos de sela. (d) f(x, y) = x + y + /x + 4/y. (,-2) e (-,2) são pontos de sela, f(, 2) = 6 é um mínimo e f(, 2) = 6 é um máximo. (e) f (x, y) = x 4 + y 4 (x y) 2. (,) é um ponto de sela, f(, ) = 2 e f(, ) = 2 são mínimos. 2. Considere f : R 2 R, definida por f(x, y) = x 2 + ay 2, com a. (a) Analise, para os diferentes valores de a, a existência de extremos locais da função f. Para a >, f(, ) = é um mínimo; para a <, (, ) é um ponto de sela; para a =, f(, y) = é um mínimo qualquer que seja y R. (b) Interprete geometricamente o problema. O gráfico de f é: para a >, o parabolóide elíptico z = x 2 + y2 /a com o vértice em (,,) e orientado segundo o semi-eixo positivo dos zz; para a <, o parabolóide hiperbólico z = x 2 y2 / a ; para a =, o cilindro parabólico z = x2. 3. Seja f(x, y) = x 2 + kxy + y 2, em que k é uma constante. (a) Mostre que f admite um ponto crítico em (, ) independente do valor de k. f x (, ) = f y (, ) = qualquer que seja k R. ISA/UTL Análise Matemática 2/

13 CAPÍTULO. TÓPICOS DE CÁLCULO DIFERENCIAL (b) Para que valores de k o ponto (, ) é um ponto de sela? Justifique a resposta. Para k < 2 k > 2, porque det H f (, ) < (f(, ) é mínimo para os restantes valores de k). 4. Calcule, justificando convenientemente, os valores de a, b e c para que f(x, y) = a (x 2 + bx + y 2 + cy) tenha um máximo de valor 5 no ponto ( 2, ). f x( 2, ) = A solução do sistema f y ( 2, ) = f( 2, ) = 5 é a =, b = 4, c = Prove que (,, ) é um ponto crítico de f(x, y, z) = x 4 +y 4 +z 4 4xyz e determine a sua natureza. f x (,, ) = f y (,, ) = f z (,, ) = ; f(,, ) é um mínimo. ISA/UTL Análise Matemática 2/

14 .3. EXTREMOS LIVRES ISA/UTL Análise Matemática 2/ 2

15 Capítulo 2 Integrais duplos Exercícios 4. Calcular: y (a) dxdy, D = {(x, y) : x, y 2}. x + D 3 ln 2. 2 (b) 2 (x + y) dydx. 2. (c) 2 ye xy dydx. 2 (e2 e 2 ) 2. (d) D cosxsin y dxdy, D = [, π ] [, π ]

16 2. Calcule os integrais e represente os domínios de integração: (a) x 2 dydx. 3. (b) 2 3x+ 2x xdydx (c) e ln y ye x dxdy. e 3 6 e (d) D xy dxdy, D = {(x, y) : x, x 4 4y 2 }.. (e) D (x 2 + y 2 ) dxdy, D = {(x, y) : x, y, 3x + y 9} Considere o quadrado Q = [, ] [, 2], e a função f(x, y) = y x 2. Calcule f(x, y) dxdy. Q + 2 x 2 y + x 2 dydx + x 2 y x 2 dydx = x 2 y x 2 dydx + x 2 y + x 2 dydx 4. Inverta a ordem de integração e calcule o integral. ISA/UTL Análise Matemática 2/ 4

17 CAPÍTULO 2. INTEGRAIS DUPLOS (a) y (x 2 + y 3 x) dxdy. x 2 (x 2 + y 3 x) dydx = (b) x x e x y dydx. y 2 y e x y dxdy = e 2. (c) (d) 2 y 2 (x + y) 2 dxdy. 2x ( ) y 3 + cos dydx. x 2 y 2 (x + y) 2 dydx = 3 6. ( ) y 3 + cos dxdy = (sin() sin( 2 ) ). 5. Represente a região de integração e inverta a ordem de integração. (a) x 2 f(x, y) dydx. y 2 f(x, y) dxdy. y 2 (b) (c) x / 2 f(x, y) dydx + ( x 2 y x 2 y f(x, y) dy 2 2 x f(x, y) dxdy. ) dx + f(x, y) dydx. 2 ( x ) f(x, y) dy dx+ ISA/UTL Análise Matemática 2/ 5

18 ( 2 ) 4 x 2 + f(x, y) dy dx. 2 / 2 4 y 2 y 2 f(x, y) dxdy + 2 / 2 y 4 y 2 f(x, y) dxdy. 6. Calcular volume de V = {(x, y, z) : y, z, x 2 + z 2, x + y 2}. 7. Calcule o volume do sólido limitado pelos parabolóides 4 z = x 2 + y 2 e 9 3z = x 2 + y Calcular o volume limitado pelo parabolóide z = 2x 2 + y 2 e a superfície cilíndrica z = 4 y Calcule a área de D = {(x, y) : x 2 + y 2 9}. ISA/UTL Análise Matemática 2/ 6

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta.

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta. UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta Lista de Exercícios de Cálculo II - MTM13 Prof. Júlio César do Espírito Santo (com colaboraçao

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

MAT2454 - Cálculo Diferencial e Integral para Engenharia II

MAT2454 - Cálculo Diferencial e Integral para Engenharia II MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre

Leia mais

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima Cálculo Diferencial e Integral III - EAD Professor Paulo Cupertino de Lima Sumário Sumário i 0.1 Apresentação do livro............................. v 1 Revisão: retas, planos, superfícies cilíndricas

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323.

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo B (Informática) Turmas 18 e 138 Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada:

Leia mais

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3 1 Lista 2 de Cálculo Diferencial e Integral II Funções de Várias Variáveis e Diferenciação Parcial 1. Determine, descreva e represente geometricamente o domínio das funções abaixo: (a) f(x, y) = xy 5 x

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01

CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 1) Seja f = 36 9x 2 4y 2. Então : (a) Calcule f, f(2, 0) e

Leia mais

II Cálculo Integral em R n

II Cálculo Integral em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

1 Transformada de Laplace

1 Transformada de Laplace Dep. de Matemática da F..T.U.. - Análise Matemática IV - 5/6. Transformada de Laplace. Usando a definição de Transformada de Lapace, mostre que a) L{} = s, s>; b) L{e kt } = s k, s>k; c) L{t n } = n!,

Leia mais

Lições de Análise Matemática 2. Maria do Carmo Coimbra Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto

Lições de Análise Matemática 2. Maria do Carmo Coimbra Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto Maria do Carmo Coimbra Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto Julho de 008 Conteúdo Prefácio vii 1 Breves Noções de Topologia em R n 1 Funções Diferenciáveis

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

Cálculo Diferencial e Integral IV

Cálculo Diferencial e Integral IV Sandra Regina Leme Forster Cálculo Diferencial e Integral IV Revisada por Sandra Regina Leme Forster (janeiro/013) APRESENTAÇÃO É com satisfação que a Unisa Digital oferece a você, aluno(a), esta apostila

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na Cálculo Multivariado Lista numero integração múltipla tarcisio.praciano@gmail.com T. Praciano-Pereira Dep. de Computação alun@: de março de 13 Univ. Estadual Vale do Aca Documento escrito com L A TEX -

Leia mais

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Esboço de Curvas Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para esboçar uma curva A. Verifique o domínio da função Exemplo: f(x) = 1 x {x x = 0} Roteiro para esboçar

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais PARTE 3 FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS 3. Funções Reais de Várias Variáveis Reais Vamos agora tratar do segundo caso particular de funções vetoriais de várias variáveis reais, F : Dom(F) R n R

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam Lista 1 Curvas 1. Desenhe as imagens das seguintes curvas: (a) γ(t) = (1, t) (b) γ(t) = (cos

Leia mais

Professor Bruno Alves

Professor Bruno Alves Professor Bruno Alves Engenharia maecânica Engenharia de produção Engenharia de controle e automação Poços de Caldas Segundo semestre de 1 Notas de aula da disciplina Cálculo III ministrada no segundo

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005 MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),

Leia mais

FICHA DE TRABALHO 6 - RESOLUÇÃO

FICHA DE TRABALHO 6 - RESOLUÇÃO ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Capítulo 2. Funções complexas. 2.1. Introdução

Capítulo 2. Funções complexas. 2.1. Introdução Capítulo Funções complexas 1 Introdução Neste capítulo consideram-se vários exemplos de funções complexas e ilustram-se formas de representação geométrica destas funções que contribuem para a apreensão

Leia mais

Aulas Práticas de Matemática II

Aulas Práticas de Matemática II Aulas Práticas de Matemática II Curso de Arquitectura Resumo da Matéria com exercícios propostos e resolvidos Henrique Oliveira e João Ferreira Alves Conteúdo 1 Derivadas parciais 4 Polinómios de Taylor

Leia mais

Notas para um curso de Cálculo 1 Duilio T. da Conceição

Notas para um curso de Cálculo 1 Duilio T. da Conceição Notas para um curso de Cálculo 1 Duilio T. da Conceição 1 2 Sumário 1 WOLFRAM ALPHA 5 1.1 Digitando Fórmulas e Expressões Matemáticas......... 6 1.1.1 Expoentes......................... 6 1.1.2 Multiplicação.......................

Leia mais

Introdução às Equações Diferenciais

Introdução às Equações Diferenciais Introdução às Equações Diferenciais Prof. Eduardo Nobre Lages - EES/CTEC/UFAL enl@ctec.ufal.br Contatos: enlages@hotmail.com edunol UFAL Promoção: PEC/Engenharia Civil/UFAL Maceió/AL Novembro-Dezembro/2004

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

4.1 Funções de varias variáveis - Definição e exemplos

4.1 Funções de varias variáveis - Definição e exemplos Capítulo 4 Funções de duas variáveis 4.1 Funções de varias variáveis - Definição e eemplos Definição 1: Chamamos de função real com n variáveis a uma função do tipo f : D R com D R n = R R. Ou seja, uma

Leia mais

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015 MA2 - Lista 9 Coordenadas sféricas e Mudança de Variáveis 7 de outubro de 25. Marque o ponto cujas coordenadas esféricas é (,, ) e encontre as coordenadas retangulares do ponto. 2. Mude o ponto (, 3, 2

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos: Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

Aula 16 Mudança de Variável em Integrais Múltiplas

Aula 16 Mudança de Variável em Integrais Múltiplas Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II 1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.

Leia mais

FUNÇÕES AULA 2 DO PLANO DE

FUNÇÕES AULA 2 DO PLANO DE Matemática Tema 2 Professora: Rosa Canelas FUNÇÕES AULA 2 DO PLANO DE TRABALHO Nº1 FUNÇÃO - DEFINIÇÃO Uma função é uma relação entre duas variáveis em que a cada valor da primeira, a variável independente,

Leia mais

DÉCIMA SEGUNDA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net.

DÉCIMA SEGUNDA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net. DÉCIMA SEGUNDA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net A regra da cadeia (Entregar os exercícios [16] e [18] até o dia 06/08/2003) [01]

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide)

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide) A figura da Terra Da esfera ao Geóide (passando pelo elipsóide) Uma primeira aproximação: a Terra esférica Esfera: Superfície curva fechada cujos pontos se encontram todos a igual distância, R, de um ponto

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

PSAEN 2007/08 Primeira Fase - Matemática

PSAEN 2007/08 Primeira Fase - Matemática PSAEN 007/08 Primeira Fase - Matemática : Caio Guimarães, Rodolpho Castro, Victor Faria, Paulo Soares, Iuri Lima Digitação: Caio Guimarães, Júlio Sousa. Comentário da Prova: A prova de matemática desse

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Cálculo Diferencial e Integral II Claudio Aguinaldo Buzzi Departamento de Matemática UNESP - Campus de São José do Rio Preto Índice 1 Superfícies especiais 4 1.1 Planos........................................

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

11.7 Valores Extremos e Ponto de Sela

11.7 Valores Extremos e Ponto de Sela 11.7 Valores Extremos e Ponto de Sela Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Valores Extremos Locais Definição: Seja f(x,

Leia mais

Cálculo diferencial em IR n

Cálculo diferencial em IR n Cálculo diferencial em IR n (Eercícios) DMAT Abril 2003 1 Eercícios propostos 1.1 Funções de IR n em IR m Eercício 1 Determine os domínios das funções seguintes e represente-os graficamente. 2 + 2 9 ;

Leia mais

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007 EXAME DO ENSINO SECUNDÁRIO DE RESUMOS.TK Prova Escrita de Matemática A 10.ºAno de Escolaridade Prova MAT10 14 páginas Duração da Prova: 120 minutos. Tolerância: 30 minutos. Autor: Francisco Cubal, como

Leia mais

MATEMÁTICA A VERSÃO 1

MATEMÁTICA A VERSÃO 1 gabinete de avaliação educacional T E S T E I N T E R M É D I O 11.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 10/Maio/2007 MATEMÁTICA A VERSÃO 1 Na sua

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

SENSITOMETRIA - 2º Ano - FOTOGRAFIA. Capitulo 1 - CONCEITOS FUNDAMENTAIS

SENSITOMETRIA - 2º Ano - FOTOGRAFIA. Capitulo 1 - CONCEITOS FUNDAMENTAIS SENSITOMETRIA - 2º Ano - FOTOGRAFIA 2010-2011 Capitulo 1 - CONCEITOS FUNDAMENTAIS 1.A Conceitos Matemáticos Fundamentais Coordenadas Cartesianas e representação gráfica de uma função Função Seno e Co-seno

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

CAMPOS CONSERVATIVOS NO PLANO

CAMPOS CONSERVATIVOS NO PLANO CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Grupo I... 70 Cada resposta certa...10 Grupo II...130 1...35 3...30 1.1...15 3.1...10 1.2...10 3.2...20 1.3...10 4...35 2...30 4.1...5 2.1...

Grupo I... 70 Cada resposta certa...10 Grupo II...130 1...35 3...30 1.1...15 3.1...10 1.2...10 3.2...20 1.3...10 4...35 2...30 4.1...5 2.1... Material necessário: Material de escrita. Máquina de calcular científica (não gráfica). A prova é constituída por dois grupos, I e II. O grupo I inclui 7 questões de escolha múltipla. Para cada uma delas,

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Um Pequeno Manual. Adelmo Ribeiro de Jesus

Um Pequeno Manual. Adelmo Ribeiro de Jesus Um Pequeno Manual do Winplot Adelmo Ribeiro de Jesus O WINPLOT é um programa de domínio público, produzido por Richard Parris, da Phillips Exeter Academy, em New Hampshire. Recentemente traduzido para

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/12 Págs. Duração da prova: 150

Leia mais

Curvas e superfícies

Curvas e superfícies Curvas e superfícies Yolanda K. S. Furuya de agosto de 7 Antes de introduzirmos as curvas e superfícies, lembremos que funções trabalhadas em Cálculo, definidas num subconjunto de R e com valores em R

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 2 11.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Versão 2 11.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 07.05.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus Investigação e Modelação na aula de Matemática Círculo de Estudos ccpfc/acc 19941/00 Eduardo Cunha www.educunha.net Escola Secundária de Barcelos 2000/2001 Módulo 2: Estudo de Funções - calculadora gráfica.

Leia mais

Soluções com softwares geométricos de problemas apresentados por Gabriel Lamé no início do século 19

Soluções com softwares geométricos de problemas apresentados por Gabriel Lamé no início do século 19 Soluções com softwares geométricos de problemas apresentados por Gabriel Lamé no início do século 19 Eduardo Sebastiani Ferreira- esebastiani@uol.com.br Maria Zoraide M C Soares- mzsoares@uol.com.br Miriam

Leia mais

Cálculo Algébrico Simbólico nas nossas escolas: alguns axiomas e exemplos

Cálculo Algébrico Simbólico nas nossas escolas: alguns axiomas e exemplos Cálculo Algébrico Simbólico nas nossas escolas: alguns axiomas e exemplos John F. Mahoney A crescente divulgação dos sistemas de computação algébrica, que actualmente já se encontram disponíveis em alguns

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder

Leia mais

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Anderson Luiz B. de Souza Livro texto - Capítulo 14 - Seção 14.7 Encontrando extremos absolutos Determine o máximo e mínimo absolutos das funções

Leia mais

Relatório da Disciplina de Matemática I

Relatório da Disciplina de Matemática I Relatório da Disciplina de 2004-2005 Docentes Fernando Carapau, flc@uevora.pt Departamento de Matemática, Universidade de Évora. Fátima Correia, mfac@uevora.pt Departamento de Matemática, Universidade

Leia mais