1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente."

Transcrição

1 TESTES NÃO - PARAMÉTRICOS As técnicas da Estatística Não-Paramétrica são, particularmente, adaptáveis aos dados das ciências do comportamento. A aplicação dessas técnicas não exige suposições quanto à distribuição da variável populacional. Os testes não-paramétricos são extremamente interessantes para análises de dados qualitativos. Na Estatística Paramétrica, para aplicação de teste como o t de Student, a variável em análise precisa ser numérica. Como o próprio nome sugere, a Estatística Não-Paramétrica independe dos parâmetros populacionais e de suas respectivas estimativas. Assim, se a variável populacional analisada não segue uma distribuição normal e/ou as amostras forem pequenas, pode-se aplicar um teste Não- Paramétrico. Vantagens dos Métodos Não-Paramétricos. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente.. Ao contrário dos métodos Paramétricos, os métodos Não-Paramétricos podem freqüentemente ser aplicados a dados não-numéricos. 3. Os métodos Não-Paramétricos em geral envolvem cálculos mais simples do que seus correspondentes Paramétricos, sendo, assim, mais fáceis de entender. Desvantagens dos Métodos Não-Paramétricos. Os métodos Não-Paramétricos tendem a perder informação, porque os dados numéricos são freqüentemente reduzidos a uma forma qualitativa.. Os testes Não-Paramétricos não são tão eficientes quanto os testes Paramétricos; assim, com um teste Não-Paramétrico, em geral necessitamos de uma amostra maior ou maiores diferenças para então rejeitarmos uma hipótese nula.

2 Teste para Amostras Dependentes (Pareadas) Teste dos Sinais É utilizado para análise de amostras dependentes. Logo, esse teste é uma alternativa para o teste t para amostras dependentes. É aplicado em situações em que o pesquisador deseja determinar se duas condições são diferentes. O teste do sinal tem pouco poder, pois usa como informação apenas o sinal das diferenças entre pares. A única pressuposição exigida pelo teste do sinal é a de que a distribuição da variável seja contínua. Esse teste não faz qualquer suposição sobre a forma da distribuição das diferenças de médias. É útil nos trabalhos de pesquisa em que é impossível ou inviável a obtenção de uma mensuração quantitativa, mas é possível estabelecer postos em relação a cada um dos dois membros de cada par. A lógica do teste é que as condições podem ser consideradas iguais quando as quantidades de "+" e "-" forem aproximadamente iguais. Procedimento: a) Formular as hipóteses: a hipótese em teste é a de que as medidas feitas no par são iguais; b) Comparar o valor da primeira medida com o valor da segunda medida, feita no mesmo par de pessoas, animais ou objetos; atribuir o símbolo + para todo par de observações em que a primeira medida for maior do que a segunda e - quando acontecer o contrário; c) Contar o número de + e de - ; d) Para pequenas amostras utilize: Distribuição amostral. A probabilidade associada de ocorrência é dada pela distribuição binomial com p = q =. d) Para grandes amostras utilize: Aproximação da distribuição binomial pela normal. Do mesmo modos: p = q =

3 z = (x ± 0,5) - n n N ( 0, ) (x + 0,5) é utilizado quando x < n e (x 0,5) é utilizado quando x > n x - número de vezes que o sinal menos freqüente ocorre; n - tamanho da amostra descontando os empates. Obs.: Diferenças iguais a zero devem ser ignoradas. Essa solução, porém, só é satisfeita se houver poucos zeros. O teste dos sinais é fácil de aplicar e praticamente não exige pressuposições. Mas possui pouco poder. Siegel (977) apresenta um estudo referente ao efeito da ausência do pai no desenvolvimento das crianças. Dezessete casais foram entrevistados, pais e mães separadamente, e foi verificado o grau de discernimento quanto à disciplina paterna após o retorno dos pais ao lar, após uma grande ausência. Buscou-se então verificar se havia ou não diferença entre os cônjuges. Apesar de serem esperadas diferenças favoráveis à mãe, tendo em vista a ausência prolongada dos pais, considerou-se como hipótese inicial (nula) a de não diferença entre os pais. Além disso, três casais foram eliminados do estudo, tendo em vista que o pai e a mãe apresentaram graus de discernimento considerados iguais. Assim, os resultados referentes aos 4 casais restantes, as diferenças no grau de discernimento (Di) e o sinal destas diferenças, representados por se é positivo e por 0 se este sinal é negativo, são mostrados na tabela. Verifica-se que para casais o grau de discernimento da mãe é superior ao do pai, ou seja, existe uma forte evidência de que a suspeita dos psicólogos era correta em relação ao discernimento da autoridade paterna após o retorno ao lar. º Passo: Definição das hipóteses. 3

4 H H 0 : Não existe diferença : Existe diferença º Passo: Definição da estatística de teste. Supondo H 0 como verdadeira: X ~ Binomial n; 3º Passo: Introdução dos dados do problema. Os dados mostram que apenas 4 casais apresentam diferenças então X ~ Binomial 4;. p = P( X 3) = P( X = 0) + P( X = ) + P( X = ) + P( X = 3) = = 0 = C + C4 + C4 + C 0,09 4º Passo: Definição do nível de significância e construção da região crítica. α = 5% Rejeite H 0 se p 0, 05 5º Passo: Conclusão. Rejeitamos H 0 utilizando 5% de significância. O exemplo a seguir é apresentado por Siegel (977). Suponha que um pesquisador esteja interessado em avaliar se determinado filme sobre delinqüência juvenil contribui para modificar a opinião de uma comunidade sobre quão severa deve ser a punição para tais casos. Para isso extrai-se uma amostra de tamanho 00 e realiza-se um estudo do tipo antes e depois. O resultado encontra-se resumido no quadro abaixo: 4

5 º Passo: Definição das hipóteses. H H 0 : O filme não produz efeito sistemático : O filme produz efeito sistemático º Passo: Definição da estatística de teste. Supondo 0 n (x ± 0,5) - n H como verdadeira: z = N ( 0, ) 3º Passo: Introdução dos dados do problema. Os dados mostram que = 5 adultos não modificaram sua opinião. Logo a hipótese em estudo se aplica somente aos 85 adultos restantes. Desses 85 adultos 6 modificaram a sua opinião de mais para menos enquanto 59 modificaram de menos para mais. 85 (6 + 0,5) - = Z Calculado = 3,47 pois x < n, isto é, 6 < 85 = 4, 5 85 Ou, do mesmo modo: 85 (59 0,5) - = Z Calculado = 3,47 pois x > n, isto é, 59 > 85 = 4,

6 4º Passo: Definição do nível de significância e construção da região crítica. α = 5% Rejeite H 0 se Z Calculado, 96 ou Z Calculado, 96 5º Passo: Conclusão. Como Z Calculado = 3,47 >, 96 então rejeitamos H 0 utilizando 5% de significância, ou seja, rejeitamos a hipótese de que o filme não produz um efeito sistemático. Teste de Wilcoxon Trata-se de uma extensão do teste dos sinais. É mais interessante pois leva em consideração a magnitude da diferença para cada par. O teste de Wilcoxon exige que a variável em análise seja medida em escala ordinal ou numérica, e a diferença entre duas observações, feitas no mesmo par, também possa ser ordenada. Procedimento: a) Formular as hipóteses: a hipótese em teste é a de que as medidas feitas no par são iguais; b) Preparação: Calcular a diferença entre a primeira e a segunda medida, feitas no mesmo par, para todos os pares da amostra. Excluir as diferenças iguais a zero. Isso significa reduzir a amostra se houver diferenças iguais a zero; Independentemente do sinal, atribuir um posto a cada diferença; em caso de empates, atribuir a média dos postos empatados; Atribuir sinais nos postos, respeitando os sinais das diferenças; Obter o valor T que representa a menor das somas de postos de mesmo sinal; Determinar N que é o total das diferenças com sinal. c) Cálculo da estatística de teste: Se N 5, obter valor crítico através da tabela apropriada. Valores críticos da T Prova de Wilcoxon Exemplo da construção da Tabela de valores críticos para N = 8. Casos possíveis: 8 = 56 6

7 Distribuição de freqüência. 7

8 Se N > 5, determinar a média e o desvio-padrão aproximado da soma dos postos. Em seguida, obter o valor de z calculado e o valor de z tabelado. Significa 8

9 portanto, a utilização da aproximação da distribuição binomial pela distribuição Normal z calculado = T - µ σ N( N + ) sendo: µ T = e 4 T T σ T = N( N + )(N + ) 4 d) Critério de decisão: Se N 5, Rejeite H 0 se um Tcalculado Ttabela. Ou seja, rejeite H 0 para todos os valores de T tão pequenos que a probabilidade associada à sua ocorrência sob H 0 não seja superior a α %. Se N > 5, Para um teste bilateral: Rejeite H 0 se Z claculado < Para um teste unilateral superior: Rejeite H 0 se Para um teste unilateral inferior: Rejeite H 0 se Z α ou Z calculado Z calculado < Z calculado Exemplo: Foram ministrados dois testes similares para verificar o aprendizado. O objetivo é verificar se os dois testes apresentados são equivalentes. Os testes foram aplicados ao mesmo grupo de alunos; um no início do período letivo e outro no fim do período. Os resultados dos testes estão no quadro abaixo. > Z Z α α > Z α º Passo: Definição das hipóteses. H H 0 : Não existe diferença : Existe diferença 9

10 º Passo: Preparação e cálculo da estatística de teste. O valor T representa a menor das somas de postos de mesmo sinal e o valor de N que é o total das diferenças com sinal. 3º Passo: Critério de decisão. N = 8 T = 4 Como a amostra apresenta N 5, o valor crítico é obtido na tabela dos valores críticos de Wilcoxon. Como T calculado = 4 > Ttabela = 3 nesse caso não se rejeita-se a hipótese das médias serem iguais utilizando α = 5%. Repare que o p valor = 0,073 = 0,0547 > 5%. a probabilidade associada à sua ocorrência sob H 0 é superior a α %, logo não podemos rejeitar H 0. Obs.: Um ou outro empate não atrapalha o resultado, principalmente se a amostra é grande. Mas se os empates são muitos, não se pode aplicar a estatística de teste como definida acima. É preciso usar a fórmula com uma correção para os empates. Os programas computacionais fazem essa correção automaticamente. 0

11 Testes Não-Paramétricos para Amostras Independentes Teste de Mann-Whitney É usado para testar se duas amostras independentes foram retiradas de populações com médias iguais. Esse teste é, portanto, uma alternativa para o teste t para amostras independentes quando a amostra for pequena e/ou as pressuposições, exigidas pelo teste t, estiverem seriamente comprometidas. A única exigência do teste de Mann-Whitney é a de que as observações sejam medidas em escala ordinal ou numérica. Procedimento a) Formular as hipóteses: a hipótese em teste é a de que as medidas feitas no par são iguais b) Coloque os dados dos dois grupos em uma única ordenação crescente. Às observações empatadas atribuir a média dos postos correspondentes; c) Considerar n = número de casos do grupo ; n = número de casos do grupo ; d) Calcular R = soma dos postos do grupo ; R = soma dos postos do grupo ; e) Calcular a estatística de Mann-Whitney ( U ) U U n ( n + ) = nn + R, ou o que é equivalente: = n n + n n ( + ) R f) Escolher o menor valor de U, se n < 0 utilizar a tabela de valores críticos de Mann-Whitney ( U ), caso contrário para ser utilizado no cálculo de z. z = U - µ R σ R µ R = n n σ R = n ( n + n ) n +

12 A eficácia da publicidade dos dois produtos concorrentes (Marca X e Marca Y) foi comparado. Uma pesquisa de mercado realizada em um centro comercial local ofereceu a cada participante uma xícara de café e depois de degustar cada participante deu uma nota. º Passo: Ordenar as notas: º Passo: Calcular R e R 3º Passo: Calcular Calcular a estatística de Mann-Whitney ( U )

13 ( n + ) n 6 7 U = n n + R = = 34, n ( n + ) 6 7 U = n n + R = = Menor valor de U = 4º Passo: Decisão O valor calculado U = é menos ou igual aos valores da tabela. Para α = 5%, U = 5 e para α = %, = Tabela U Tabela Nesse caso rejeita-se a hipótese nula de igualdade entre as médias populacionais. Teste Kruskal-Wallis Trata-se de teste extremamente útil para decidir se k amostras (k > ) independentes provêm de populações com médias iguais. Esse teste só deve ser aplicado se a amostra for pequena e/ou as pressuposições, exigidas para proceder à Análise de Variância, estiverem seriamente comprometidas. Como o teste de Mann-Whitney, esse teste também condiciona que a variável em análise seja medida em escala ordinal ou numérica. Procedimento a) Dispor, em ordem crescente, as observações de todos os k grupos, atribuindolhes postos de a n. Caso haja empates, atribuir o posto médio; b) Determinar o valor da soma dos postos para cada um dos k grupos: R i, i =,,..., k; c) Escolher uma variável Qui-quadrado com ν = k (cada amostra deve conter pelo menos 5 observações); d) Realizar o teste: H = N(N + ) K i= ( R ) i n i ( + ) 3 N Obs.: Esse teste exige variâncias iguais, por isso não deve ser usado se as diferentes amostras têm variâncias muito diferentes. O teste de Kruskal-Wallis é um teste unilateral à direita. 3

14 Obs.: Quando ocorrem muitos empates, não se deve utilizar a estatística H. É preciso aplicar uma correção na fórmula. Os aplicativos fazem essa correção automaticamente. Assim, se mais de um terço dos dados está envolvido em empates, use um software de estatística. 4

15 Valores críticos - Teste de Wilcoxon Fonte: 5

16 Valores críticos - Teste de Mann-Whitney Fonte: 6

O teste de McNemar. A tabela 2x2. Depois

O teste de McNemar. A tabela 2x2. Depois Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br O teste de McNemar O teste de McNemar para a significância de mudanças é particularmente aplicável aos experimentos do tipo "antes

Leia mais

UMA ABORDAGEM DOS TESTES NÃO-PARAMÉTRICOS COM UTILIZAÇÃO DO EXCEL

UMA ABORDAGEM DOS TESTES NÃO-PARAMÉTRICOS COM UTILIZAÇÃO DO EXCEL UMA ABORDAGEM DOS TESTES NÃO-PARAMÉTRICOS COM UTILIZAÇÃO DO EXCEL Arthur Alexandre Hackbarth Neto, Esp. FURB Universidade Regional de Blumenau Carlos Efrain Stein, Ms. FURB Universidade Regional de Blumenau

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 11 - Teste Qhi-quadrado C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 11 - Teste Qhi-quadrado C A S A Exercício 1. (2,0 pontos). Em um estudo que está sendo realizado por uma pesquisadora da Escola de Educação Física da USP, deseja-se avaliar características das lutas de judô em diferentes categorias.

Leia mais

Testes (Não) Paramétricos

Testes (Não) Paramétricos Armando B. Mendes, DM, UAç 09--006 ANOVA: Objectivos Verificar as condições de aplicabilidade de testes de comparação de médias; Utilizar ANOVA a um factor, a dois factores e mais de dois factores e interpretar

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

IV TESTES PARA DUAS AMOSTRAS INDEPENDENTES

IV TESTES PARA DUAS AMOSTRAS INDEPENDENTES IV TESTES PARA DUAS AMOSTRAS INDEPENDENTES Estes testes se aplicam a planos amostrais onde se deseja comparar dois grupos independentes. Esses grupos podem ter sido formados de duas maneiras diferentes:

Leia mais

Teste de Hipóteses e Intervalos de Confiança

Teste de Hipóteses e Intervalos de Confiança Teste de Hipóteses e Intervalos de Confiança Teste de Hipótese e Intervalo de Confiança para a média Monitor Adan Marcel 1) Deseja-se estudar se uma moléstia que ataca o rim altera o consumo de oxigênio

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

Cap. 12 Testes Qui- Quadrados e Testes Não-Paramétricos. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc.

Cap. 12 Testes Qui- Quadrados e Testes Não-Paramétricos. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Cap. 1 Testes Qui- Quadrados e Testes Não-Paramétricos Statistics for Managers Using Microsoft Excel, 5e 008 Prentice-Hall, Inc. Chap 1-1 Final de curso... tempo de recordar : ) Cap. 9 Fundamentos de testes

Leia mais

Capítulo 4 Testes de Hipóteses

Capítulo 4 Testes de Hipóteses L E I T u R A C R í T I C A D E A R T I G O S C I E N T í F I CO S 61 Capítulo 4 Testes de Hipóteses Inferência estatística pode ser definida como um conjunto de procedimentos que nos permite tirar conclusões

Leia mais

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

XVIII CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 19 a 23 de outubro de 2009

XVIII CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 19 a 23 de outubro de 2009 REGRESSÃO MÚLTIPLA APLICADA AOS DADOS DE VENDAS DE UMA REDE DE LOJAS DE ELETRODOMÉSTICOS VANESSA SIQUEIRA PERES 1 RESUMO: Esse trabalho foi realizado com o objetivo de ajustar os dados de vendas de uma

Leia mais

PLANEJAMENTO OPERACIONAL - MARKETING E PRODUÇÃO MÓDULO 11 PESQUISA DE MERCADO

PLANEJAMENTO OPERACIONAL - MARKETING E PRODUÇÃO MÓDULO 11 PESQUISA DE MERCADO PLANEJAMENTO OPERACIONAL - MARKETING E PRODUÇÃO MÓDULO 11 PESQUISA DE MERCADO Índice 1. Pesquisa de mercado...3 1.1. Diferenças entre a pesquisa de mercado e a análise de mercado... 3 1.2. Técnicas de

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES Monitora Juliana Dubinski LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES EXERCÍCIO 1 (INTERVALO DE CONFIANÇA PARA MÉDIA) Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

Técnicas Multivariadas em Saúde. Comparações de Médias Multivariadas. Métodos Multivariados em Saúde - 2015. Roteiro. Testes de Significância

Técnicas Multivariadas em Saúde. Comparações de Médias Multivariadas. Métodos Multivariados em Saúde - 2015. Roteiro. Testes de Significância Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

Desvendando a Estatística com o R Commander

Desvendando a Estatística com o R Commander UTFPR - Universidade Tecnológica Federal do Paraná Desvendando a Estatística com o R Commander Prof. MSc. Jonas Joacir Radtke Sumário 1 Introdução p. 3 1.1 Instalação do R Commander..........................

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

ESTATÍSTICA BÁSICA COM ANÁLISE E TRATAMENTO ESTATÍSTICO DE DADOS EM SPSS

ESTATÍSTICA BÁSICA COM ANÁLISE E TRATAMENTO ESTATÍSTICO DE DADOS EM SPSS ESTATÍSTICA BÁSICA COM ANÁLISE E TRATAMENTO ESTATÍSTICO DE DADOS EM SPSS Escola de Enfermagem UFRGS Julho/2007 Juscelino Zemiacki Estatístico Programa Básico: AULA 1 Noções Básicas de Estatística AULA

Leia mais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais 1 AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais Ernesto F. L. Amaral 20 e 22 de abril e 04 de maio de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte:

Leia mais

TÉCNICAS DE ANÁLISE DE ORÇAMENTO DE CAPITAL

TÉCNICAS DE ANÁLISE DE ORÇAMENTO DE CAPITAL Adm. Financeira II Aula 05 - Técnicas Orç. Capital - Pg. 1/8 TÉCNICAS DE ANÁLISE DE ORÇAMENTO DE CAPITAL 1. Introdução 1.1. Considerar fatores importantes fora do controle da empresa 1.2. Fatores qualitativos

Leia mais

A UTILlZAÇlo DA COTAÇlo DO DÓLAR PARA ELIMINAR EFEITOS DA INFLAÇlo

A UTILlZAÇlo DA COTAÇlo DO DÓLAR PARA ELIMINAR EFEITOS DA INFLAÇlo A UTILlZAÇlo DA COTAÇlo DO DÓLAR PARA ELIMINAR EFEITOS DA INFLAÇlo Roberto Carvalho Cardoso* 1. Objetivo do trabalho. 2. Dados c01!-sidfrados. 3. Variações de 1952/53/54. 4. Vanaçoes de 1955/56/57. 5.

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

2. São grupos, respectivamente, de crédito na Conta 1 (PIB) e débito na Conta 2 (RNDB) das Contas Nacionais:

2. São grupos, respectivamente, de crédito na Conta 1 (PIB) e débito na Conta 2 (RNDB) das Contas Nacionais: UNIVERSIDADE FEDERAL DE SERGIPE Pró-Reitoria de Pós-Graduação e Pesquisa Núcleo de Pós-Graduação e Pesquisa em Economia Mestrado Profissional em Desenvolvimento Regional e Gestão de Empreendimentos Locais

Leia mais

As técnicas mais difundidas para avaliar propostas de investimentos são:

As técnicas mais difundidas para avaliar propostas de investimentos são: 18 CAPÍTULO 1 INVESTIMENTO A LONGO PRAZO (continuação) 2. Técnicas de Orçamento de Capital 2.1 Técnicas de análise de Orçamento de Capital As técnicas de análise de orçamentos de capital são utilizadas

Leia mais

FAQ: Parametrização para Contabilização

FAQ: Parametrização para Contabilização TDN > Softwares de Gestão > RM > Recursos Humanos > Administração de Pessoal > FAQ FAQ: Parametrização para Contabilização Produto: Ambiente: RM Unspecified Versão: 11.0 Avaliação A principal finalidade

Leia mais

Métodos Estatísticos sticos Aplicados à Engenharia de Software Experimental

Métodos Estatísticos sticos Aplicados à Engenharia de Software Experimental A Utilização de Métodos M Estatísticos sticos no Planejamento e Análise de Estudos Experimentais em Engenharia de Software Marco Antônio P. Araújo CES/JF e Faculdade Metodista Granbery maraujo@acessa.com

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

Risco de projeto é um evento ou condição incerta que, se ocorrer, tem um efeito positivo ou um negativo no objetivo de um projeto.

Risco de projeto é um evento ou condição incerta que, se ocorrer, tem um efeito positivo ou um negativo no objetivo de um projeto. Risco de projeto é um evento ou condição incerta que, se ocorrer, tem um efeito positivo ou um negativo no objetivo de um projeto. Um risco tem uma causa e, se ocorre, uma conseqüência. Se um ou outro

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais

Microeconomia Teoria do Consumidor Oferta - Equilíbrio

Microeconomia Teoria do Consumidor Oferta - Equilíbrio Aula 6 Abordagens da Teoria do Consumidor Microeconomia Teoria do Consumidor Oferta - Equilíbrio Prof. Dr. Daniel Bertoli Gonçalves UNESP Sorocaba -SP Historicamente, ao observar-se o desenvolvimento da

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

Gráfico de Controle por Atributos

Gráfico de Controle por Atributos Roteiro Gráfico de Controle por Atributos 1. Gráfico de np 2. Gráfico de p 3. Gráfico de C 4. Gráfico de u 5. Referências Gráficos de Controle por Atributos São usados em processos que: Produz itens defeituosos

Leia mais

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 7 Prof. Patricia Maria Bortolon, D. Sc. Análise da Variância Objetivos do Aprendizado Nesta aula você aprenderá: A utilizar a análise de variância de fator único para testar diferenças

Leia mais

Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir.

Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir. Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir. Resolução Lembre-se das fórmulas: coeficiente de variação (x) = coeficiente de correlação (x, y) = desvio padrão (x) média (x) covariância

Leia mais

Gerência de Risco. Plácido A. Souza Neto. March 4, 2013. Diretoria Acadêmica de Gestão de Tecnologia da Informação - DIATINF

Gerência de Risco. Plácido A. Souza Neto. March 4, 2013. Diretoria Acadêmica de Gestão de Tecnologia da Informação - DIATINF Gerência de Risco Plácido A. Souza Neto 1 1 Instituto Federal do Rio Grande do Norte - IFRN Diretoria Acadêmica de Gestão de Tecnologia da Informação - DIATINF March 4, 2013 Plácido A. Souza Neto Gerência

Leia mais

PMBoK Comentários das Provas TRE-PR 2009

PMBoK Comentários das Provas TRE-PR 2009 PMBoK Comentários das Provas TRE-PR 2009 Comentário geral: As provas apresentaram grau de dificuldade médio. Não houve uma preocupação da banca em aprofundar os conceitos ou dificultar a interpretação

Leia mais

Contabilidade Gerencial PROFESSOR: Salomão Soares VPL E TIR

Contabilidade Gerencial PROFESSOR: Salomão Soares VPL E TIR Contabilidade Gerencial PROFESSOR: Salomão Soares VPL E TIR Data: VPL(VAL) Valor Presente Líquido ou Valor Atual Líquido O valor presente líquido (VPL), também conhecido como valor atual líquido (VAL)

Leia mais

Regressão Logística. Propriedades

Regressão Logística. Propriedades Regressão Logística Propriedades Geralmente a grande questão a ser respondida nos estudos epidemiológicos é saber qual a relação entre uma ou mais variáveis que refletem a exposição e a doença (efeito).

Leia mais

Epidemiologia. Profa. Heloisa Nascimento

Epidemiologia. Profa. Heloisa Nascimento Epidemiologia Profa. Heloisa Nascimento Medidas de efeito e medidas de associação -Um dos objetivos da pesquisa epidemiológica é o reconhecimento de uma relação causal entre uma particular exposição (fator

Leia mais

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora 7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,

Leia mais

BREVE ANOTAÇÕES SOBRE O PAYBACK

BREVE ANOTAÇÕES SOBRE O PAYBACK BREVE ANOTAÇÕES SOBRE O PAYBACK! O Payback na análise de investimentos! Quais as limitações do Payback! Quais as vantagens do Payback! Possíveis soluções para utilização adequada do Payback Paulo Dragaud

Leia mais

4. Metodologia. Capítulo 4 - Metodologia

4. Metodologia. Capítulo 4 - Metodologia Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente

Leia mais

Datas Importantes 2013/01

Datas Importantes 2013/01 INSTRUMENTAÇÃO CARACTERÍSTICAS DE UM SISTEMA DE MEDIÇÃO PROBABILIDADE PROPAGAÇÃO DE INCERTEZA MÍNIMOS QUADRADOS Instrumentação - Profs. Isaac Silva - Filipi Vianna - Felipe Dalla Vecchia 2013 Datas Importantes

Leia mais

Conceitos Básicos de Estatística Aula 2

Conceitos Básicos de Estatística Aula 2 Conceitos Básicos de Estatística Aula 2 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 13 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Estatística 13 de Setembro

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 11 Probabilidade Elementar: Novos Conceitos

Probabilidade e Estatística I Antonio Roque Aula 11 Probabilidade Elementar: Novos Conceitos Probabilidade Elementar: Novos Conceitos Vamos começar com algumas definições: Experimento: Qualquer processo ou ação bem definida que tenha um conjunto de resultados possíveis 1) Lançamento de um dado;

Leia mais

Pós-Graduação em Economia e Gestão em Saúde Módulo de Estatística Aplicada

Pós-Graduação em Economia e Gestão em Saúde Módulo de Estatística Aplicada ÍNDICE 1. CONCEITOS BÁSICOS 2 1.1 FASES DE UMA ANÁLISE ESTATÍSTICA 2 2. ANÁLISE EXPLORATÓRIA DOS DADOS 3 2.1 TABELAS E GRÁFICOS 3 2.2 ESTATÍSTICA DESCRITIVA 9 2.2.1 Medidas de Tendência Central 10 2.2.2

Leia mais

7. Estrutura de Decisão

7. Estrutura de Decisão 7. Estrutura de Decisão Neste tipo de estrutura o fluxo de instruções a ser seguido é escolhido em função do resultado da avaliação de uma ou mais condições. Uma condição é uma expressão lógica. A classificação

Leia mais

DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA

DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA INTRODUÇÃO O pesquisador social procura tirar conclusões a respeito de um grande número de sujeitos. Por exemplo, ele poderia desejar estudar: os 170.000.000 de cidadãos

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

3 Metodologia 3.1. Tipo de pesquisa

3 Metodologia 3.1. Tipo de pesquisa 3 Metodologia 3.1. Tipo de pesquisa A definição do tipo de pesquisa é fundamental para a escolha da metodologia adequada, só assim será possível atingir os objetivos propostos. Esta pesquisa usará a classificação

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida

Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida Ivan Bezerra Allaman Considerando variância conhecida Introdução Nestes casos utiliza-se a seguinte estatística

Leia mais

INVESTIMENTO A LONGO PRAZO 1. Princípios de Fluxo de Caixa para Orçamento de Capital

INVESTIMENTO A LONGO PRAZO 1. Princípios de Fluxo de Caixa para Orçamento de Capital 5 INVESTIMENTO A LONGO PRAZO 1. Princípios de Fluxo de Caixa para Orçamento de Capital 1.1 Processo de decisão de orçamento de capital A decisão de investimento de longo prazo é a decisão financeira mais

Leia mais

3 Estratégias de Análise Técnica

3 Estratégias de Análise Técnica 3 Estratégias de Análise Técnica Como foi visto no Capítulo 2, as estratégias dos investidores do mercado são compostas por dois fatores, a saber: o mecanismo de ativação σ i (t) (Eq. 2-10) e o mecanismo

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

3 Previsão da demanda

3 Previsão da demanda 42 3 Previsão da demanda Este capítulo estuda o processo de previsão da demanda através de métodos quantitativos, assim como estuda algumas medidas de erro de previsão. Num processo de previsão de demanda,

Leia mais

Estatística Descritiva I

Estatística Descritiva I Estatística Descritiva I Bacharelado em Economia - FEA - Noturno 1 o Semestre 2016 Profs. Fábio P. Machado e Gilberto A. Paula MAE0219 (Economia-FEA-Noturno) Estatística Descritiva I 1 o Semestre 2016

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Assunto: Softwares reconhecimento, mensuração, avaliação e evidenciação.

Assunto: Softwares reconhecimento, mensuração, avaliação e evidenciação. Nota Técnica n 010/2011/GECON Vitória, 28 de dezembro de 2011. Assunto: Softwares reconhecimento, mensuração, avaliação e evidenciação. Prezados (as) Senhores (as), A presente Nota Técnica foi desenvolvida

Leia mais

Estatística Aplicada para Engenharia Inferência para Duas Populações

Estatística Aplicada para Engenharia Inferência para Duas Populações Universidade Federal Fluminense Instituto de Matemática e Estatística Estatística Aplicada para Engenharia Inferência para Duas Populações Ana Maria Lima de Farias Departamento de Estatística Conteúdo

Leia mais

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados Estatística descritiva Também designada Análise exploratória de dados ou Análise preliminar de dados 1 Estatística descritiva vs inferencial Estatística Descritiva: conjunto de métodos estatísticos que

Leia mais

Testes de Hipóteses para Diferença entre duas Médias - Amostras relacionadas

Testes de Hipóteses para Diferença entre duas Médias - Amostras relacionadas Testes de Hipóteses para Diferença entre duas Médias - Amostras relacionadas Introdução Ivan Bezerra Allaman Entende-se por amostras relacionadas ou emparelhadas quando a medida tomada na primeira amostra

Leia mais

cadeira Modelação dos Sistemas Biológicos Parte 1 - Biometria

cadeira Modelação dos Sistemas Biológicos Parte 1 - Biometria cadeira Modelação dos Sistemas Biológicos, Licenciatura em Biologia, cadeira Modelação dos Sistemas Biológicos Parte 1 - Biometria Análise Estatística stica Análise Exploratória vs. Confirmatória Técnicas

Leia mais

Artigo Número 76 TESTES ESTATÍSTICOS PARA COMPARAÇÃO DE MÉDIAS. Andréia Fróes Galuci Oliveira 1

Artigo Número 76 TESTES ESTATÍSTICOS PARA COMPARAÇÃO DE MÉDIAS. Andréia Fróes Galuci Oliveira 1 Revista Eletrônica Nutritime, v.5, n 6, p.777-788 Novembro/Dezembro 008. Artigo Número 76 TESTES ESTATÍSTICOS PARA COMPARAÇÃO DE MÉDIAS Andréia Fróes Galuci Oliveira 1 INTRODUÇÃO Quando a análise de variância

Leia mais

Correlação. Ivan Bezerra Allaman

Correlação. Ivan Bezerra Allaman Correlação Ivan Bezerra Allaman Introdução Vamos supor que um inspetor de segurança queira determinar se eiste uma relação entre o número de horas de treinamento de um empregado e o número de acidentes

Leia mais

Como foi visto no tópico anterior, existem duas formas básicas para representar uma função lógica qualquer:

Como foi visto no tópico anterior, existem duas formas básicas para representar uma função lógica qualquer: ELETRÔNI IGITl I FUNÇÕES LÓGIS Formas de representação de uma função lógica omo foi visto no tópico anterior, existem duas formas básicas para representar uma função lógica qualquer: Soma de Produtos Produtos

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização

Leia mais

Realimentação. Engº Sun Hsien Ming

Realimentação. Engº Sun Hsien Ming NT 204/98 Realimentação Engº Sun Hsien Ming 1. Introdução Dando continuidade à divulgação dos conceitos e recursos do sistema SCOOT, o presente trabalho pretende abordar o processo de realimentação. A

Leia mais

Escola Secundária de Jácome Ratton

Escola Secundária de Jácome Ratton Escola Secundária de Jácome Ratton Ano Lectivo 2010/2011 Matemática Aplicada às Ciências Sociais Amostragem Sondagem Uma sondagem pressupõe a escolha de uma amostra. A selecção da amostra é uma das fases

Leia mais

Proposta de atividade para a disciplina Cálculo Diferencial e Integral com uso software Winplot

Proposta de atividade para a disciplina Cálculo Diferencial e Integral com uso software Winplot Proposta de atividade para a disciplina Cálculo Diferencial e Integral com uso software Winplot para os conteúdos: gráficos de equações e área de uma região em coordenadas polares Egídio Rodrigues Martins

Leia mais

Agência Nacional de Energia Elétrica ANEEL

Agência Nacional de Energia Elétrica ANEEL Agência Nacional de Energia Elétrica ANEEL Superintendência de Gestão Técnica da Informação SGI Superintendência de Fiscalização Econômica e Financeira SFF MANUAL DE INSTRUÇÃO PARA ELABORAÇÃO E ENVIO DE

Leia mais

OBJETIVO VISÃO GERAL SUAS ANOTAÇÕES

OBJETIVO VISÃO GERAL SUAS ANOTAÇÕES OBJETIVO Assegurar a satisfação do cliente no pós-venda, desenvolvendo um relacionamento duradouro entre o vendedor e o cliente, além de conseguir indicações através de um sistema de follow-up (acompanhamento).

Leia mais

ESTUDO DA INFLUÊNCIA DO TREINAMENTO NA MOTIVAÇÃO DE SERVIDORES PÚBLICOS FEDERAIS

ESTUDO DA INFLUÊNCIA DO TREINAMENTO NA MOTIVAÇÃO DE SERVIDORES PÚBLICOS FEDERAIS ESTUDO DA INFLUÊNCIA DO TREINAMENTO NA MOTIVAÇÃO DE SERVIDORES PÚBLICOS FEDERAIS YARA DE MATOS MENDES 1, WEMERTON LUÍS EVANGELISTA 2, MYRIAM ANGÉLICA DORNELAS 3, RITA DE CÁSSIA DA SILVA COSTA 4 RESUMO

Leia mais

Avaliação da transferência passiva de informações para mudança de comportamento de médicos

Avaliação da transferência passiva de informações para mudança de comportamento de médicos Avaliação da transferência passiva de informações para mudança de comportamento de médicos Jorge de Azevedo Paul Douglas Fisher Ronaldo Bordin Universidade Federal do Rio Grande do Sul Faculdade de Medicina

Leia mais

EXCEL NA ANÁLISE DE REGRESSÃO

EXCEL NA ANÁLISE DE REGRESSÃO EXCEL NA ANÁLISE DE REGRESSÃO _2010_03_Exercicio _Regressão_exemplo O gerente de uma loja de artigos escolares, cada semana, deve decidir quanto gastar com propaganda e que atrativo (por exemplo preços

Leia mais

NBC TA 500 - DISPOSIÇÕES. RESOLUÇÃO CFC Nº. 1.217, de 03.12.2009

NBC TA 500 - DISPOSIÇÕES. RESOLUÇÃO CFC Nº. 1.217, de 03.12.2009 NBC TA 500 - DISPOSIÇÕES RESOLUÇÃO CFC Nº. 1.217, de 03.12.2009 Aprova a NBC TA 500 Evidência de Auditoria. O CONSELHO FEDERAL DE CONTABILIDADE, no exercício de suas atribuições legais e regimentais, CONSIDERANDO

Leia mais

3 Metodologia 3.1. Tipo de pesquisa

3 Metodologia 3.1. Tipo de pesquisa 3 Metodologia 3.1. Tipo de pesquisa Escolher o tipo de pesquisa a ser utilizado é um passo fundamental para se chegar a conclusões claras e responder os objetivos do trabalho. Como existem vários tipos

Leia mais

REDUÇÃO E OXIDAÇÃO EM SISTEMAS INORGÂNICOS

REDUÇÃO E OXIDAÇÃO EM SISTEMAS INORGÂNICOS REDUÇÃO E OXIDAÇÃO EM SISTEMAS INORGÂNICOS EXTRAÇÃO DE ELEMENTOS A definição original de oxidação foi a da reação que um elemento reage com oxigênio e é convertido em seu óxido. Comparativamente, redução

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.

Leia mais

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação Regressão Logística Daniel Araújo Melo - dam2@cin.ufpe.br Graduação 1 Introdução Objetivo Encontrar o melhor modelo para descrever a relação entre variável de saída (variável dependente) e variáveis independentes

Leia mais