Jogos vs. Problemas de Procura

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Jogos vs. Problemas de Procura"

Transcrição

1 Jogos Capítulo 6

2 Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas os movimentos que podem ser tomados pelo adversário Pontuação com sinais opostos O que é bom para um jogador (vitória=+1) é mau para o outro (derrota=-1) Limitação temporal tipicamente não é encontrado um objectivo mas antes uma aproximação

3 Sumário Decisões óptimas em jogos Conceitos básicos Estratégias óptimas e o Minimax Estratégias óptimas com múltiplos jogadores Cortes α-β Decisões imperfeitas em tempo real Jogos que incluem o factor sorte Estado da arte em jogos

4 Ingredientes Vamos considerar que: existem dois jogadores, o MAX e o MIN o MAX joga primeiro no fim do jogo o vencedor ganha pontos e o adversário é penalizado

5 Caracterização de um Jogo Estado inicial Configuração inicial + ordem de jogada Função sucessores Para cada estado devolve uma lista de pares <acção,estado>, indicando uma jogada possível (legal) e o estado resultante Teste terminal Identifica os estados de fim de jogo (ditos terminais) Função de utilidade (ou função objectivo) Atribui um valor numérico aos estados terminais

6 Árvore do jogo O estado inicial e as jogadas legais para cada jogador definem a árvore do jogo.

7 Árvore para o jogo do galo (2 jogadores, determinístico, alternado)

8 Sumário Decisões óptimas em jogos Conceitos básicos Estratégias óptimas e o Minimax Estratégias óptimas com múltiplos jogadores Cortes α-β Decisões imperfeitas em tempo real Jogos que incluem o factor sorte Estado da arte em jogos

9 Minimax Estratégia mais adequada para jogos determinísticos Ideia: escolher jogada para o estado com o maior valor minimax melhor valor para a função de utilidade contra as melhores jogadas do adversário Valor-minimax(n) = {Função-utilidade(n) se n é terminal max s sucessores(n) Valor-minimax(s) se n é nó MAX min s sucessores(n) Valor-minimax(s) se n é nó MIN

10 Minimax: 2 jogadores Observações: Formato dos nós em função do tipo de nó (MIN/MAX) Valores dos estados terminais correspondem à função de utilidade para MAX (quanto vale cada um dos estados terminais) Valores para os restantes estados obtidos a partir dos valores para os nós terminais através do cálculo do valor-minimax Resultado do algoritmo: próxima jogada!

11 Algoritmo Minimax Função Minimax (estado) devolve acção v ValorMax(estado) devolve acção em sucessores(estado) com valor v Função ValorMax(estado) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v - para a,e em sucessores(estado) v MAX(v,ValorMin(e)) devolve v Função ValorMin(estado) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v + para a,e em sucessores(estado) v MIN(v,ValorMax(e)) devolve v

12 Minimax: 2 jogadores Portanto: Começa na raiz e a recursão conduz os cálculos até às folhas. Os valores minimax são depois usados quando termina a fase de expansão da recursão; Quando é o Min a jogar, escolhe a jogada que dá menos pontos ao MAX; Quando é o Max a jogar, escolhe a jogada que lhe dá mais pontos; A seta indica a escolha de MAX no fim da aplicação do algoritmo.

13 Propriedades do algoritmo minimax O algoritmo faz uma procura em profundidade, explorando toda a árvore de jogo. É completo? Sim (se a árvore de procura é finita) É óptimo? Sim (contra um adversário óptimo) Considerando: m = profundidade máxima da árvore r = nº de movimentos legais em cada ponto Complexidade temporal? O(r m ) Complexidade espacial? O(rm) para um algoritmo que gera todos os sucessores de uma vez O(m) para um algoritmo que gera os sucessores um a um Para xadrez, r 35, m 100 para um jogo padrão impossível determinar a solução exacta

14 Sumário Decisões óptimas em jogos Conceitos básicos Estratégias óptimas e o Minimax Estratégias óptimas com múltiplos jogadores Cortes α-β Decisões imperfeitas em tempo real Jogos que incluem o factor sorte Estado da arte em jogos

15 Minimax: mais de 2 jogadores Função de utilidade devolve vector de valores com utilidade do estado do ponto de vista de cada jogador Cada jogador procura maximizar a sua utilidade (ex: C em X, escolhe a jogada que lhe dá mais pontos - 6)

16 Minimax: mais de 2 jogadores Tipicamente levam a alianças, formais ou informais, entre os jogadores (também podem existir alianças em jogos com 2 jogadores). Estas alianças podem ser uma consequência natural de estratégias óptimas para cada jogador num jogo multijogadores.

17 Sumário Decisões óptimas em jogos Conceitos básicos Estratégias óptimas e o Minimax Estratégias óptimas com múltiplos jogadores Cortes α-β Decisões imperfeitas em tempo real Jogos que incluem o factor sorte Estado da arte em jogos

18 Procura com Cortes Jogos são muito mais difíceis do que os problemas de procura Factor de ramificação muito elevado - e.g. xadrez factor de ramificação jogadas/jogador nós (destes apenas são nós distintos) Cortes permitem eliminar partes da árvore de procura que são irrelevantes para o resultado final. De seguida vamos falar de um tipo de corte, os cortes α-β.

19 Cortes α-β Motivação: Minimax: número de estados examinados é exponencial em função do número de jogadas Não é possível eliminar o factor exponencial, mas podemos reduzir o número de estados analisados para metade! É possível calcular exactamente a mesma decisão resultante do algoritmo Minimax sem ter de analisar todos os estados

20 Cortes α-β Considere-se um nó n algures na árvore, tal que um jogador tem a hipótese de se mover para esse nó. Se o jogador tem uma hipótese melhor num nó qualquer acima do nó n, então esse n nunca vai ser atingido. Assim que soubermos alguma coisa sobre este n através dos seus descendentes, podemos cortá-lo (podá-lo).

21 Cortes α-β: exemplo

22 Cortes α-β: exemplo

23 Cortes α-β: exemplo

24 Cortes α-β: exemplo

25 Cortes α-β: exemplo Os nós sucessores do primeiro nó a ser expandido em cada nível de profundidade nunca podem ser cortados

26 Porquê o nome α-β? α é o valor da melhor escolha (i.e., valor mais elevado) encontrada até ao momento em qualquer ponto de procura ao longo do caminho para max Se v é pior do que α, max irá evitar escolher v ramo com v é cortado β define-se para min de forma análoga

27 Algoritmo α-β Função AlfaBeta (estado) devolve acção v ValorMax(estado, -, + ) devolve acção em sucessores(estado) com valor v Função ValorMax(estado,α,β) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v - para a,e em sucessores(estado) v MAX(v,ValorMin(s,α,β)) se v β então devolve v α MAX(α,v) devolve v

28 Algoritmo α-β Função ValorMin(estado,α,β) devolve valor de utilidade se TesteTerminal(estado) então devolve Utilidade(estado) v + para a,e em sucessores(estado) v MIN(v,ValorMax(s,α,β)) se v α então devolve v β MIN(β,v) devolve v

29 Propriedades de α-β Cortes não afectam resultado final (= MINIMAX) Eficiência dos cortes depende da ordenação dos sucessores Por exemplo, no caso anterior, se em vez do nó com valor 14 tivesse aparecido o nó com valor 2, não havia necessidade de gerar os outros nós Com uma ordenação perfeita" a complexidade temporal fica reduzida a O(r m/2 ) Ver applet em launch.php?agent=2

30 Exercício Qual a melhor ordenação de modo a optimizar os cortes α-β?

31 Estados repetidos Em jogos, ocorrem muitas vezes estados repetidos (devido a permutações) Pode valer a pena guardar estados numa hash table (chamada transposition table) na primeira vez que ocorrem Pode duplicar a profundidade alcançada no mesmo período de tempo! Se são avaliados milhões de nós por segundo não é viável guardar tantos nós numa tabela Assim, existem muitas estratégias para determinar quais os estados a guardar

32 Sumário Decisões óptimas em jogos Conceitos básicos Estratégias óptimas e o Minimax Estratégias óptimas com múltiplos jogadores Cortes α-β Decisões imperfeitas em tempo real Jogos que incluem o factor sorte Estado da arte em jogos

33 Decisões imperfeitas em tempo real Decisões têm que ser tomadas em tempo real não é possível analisar toda a árvore de procura Função de avaliação (Eval) devolve uma estimativa da utilidade do estado Idealmente a ordenação resultante da função de avaliação é igual à da função de utilidade Teste terminal é substituído por um teste de limite (cutoff) Devolve também verdadeiro para estados terminais

34 Funções de Avaliação O desempenho de um jogo depende da qualidade da função de avaliação! E como escolher uma boa função de avaliação? Esta deve ser capaz de ordenar os estados terminais do mesmo modo que a função de utilidade A função de avaliação deve estar fortemente correlacionada com as hipóteses reais de ganhar O seu cálculo não pode ser demorado

35 Funções de Avaliação Tipicamente são uma soma linear de características do jogo (f), associadas a diferentes pesos (w) Eval(s) = w 1 f 1 (s) + w 2 f 2 (s) + + w n f n (s) Ex: Xadrez rainha vale 9, bispo e cavaleiro 3, etc.. w 1 = 9 e f 1 (s) = nº de rainhas brancas w 2 =3 e f 2 (s) = nº de bispos...

36 Teste Limite Problema da aquiescência Função de avaliação deve aplicar-se apenas a estados cujo valor não possa ser radicalmente alterado num futuro próximo (por exemplo, se estamos só a contar peças no Xadrez, não estamos a ter em conta jogadas em que se façam capturas de peças favoráveis) Estados não aquiescentes devem ser expandidos até que sejam gerados estados sem este problema (por exemplo, passando a ter em conta movimentos de captura)

37 Teste Limite Problema do efeito de horizonte Procura com limite coloca eventuais problemas futuros para além do horizonte (ex: um movimento qualquer do adversário que vai ter consequências desastrosas, mas que não foi previsto dado o limite de procura imposto). Com as melhorias actuais, conseguem-se limites cada vez maiores Extensões singulares são outra solução: num caso de uma jogada ser muito boa, aumenta-se o limite de pesquisa para os seus sucessores.

38 Sumário Decisões óptimas em jogos Conceitos básicos Estratégias óptimas e o Minimax Estratégias óptimas com múltiplos jogadores Cortes α-β Decisões imperfeitas em tempo real Jogos que incluem o factor sorte Estado da arte em jogos

39 Elemento Sorte Árvore com nós sorte MIN e MAX para além dos nós A cada ramo da árvore está associada uma probabilidade Se for possível estabelecer limites para a função de avaliação então podem aplicar-se cortes Expectiminimax(n) = {Função-utilidade(n) se n é terminal max s sucessores(n) Expectiminimax(s) se n é nó MAX min s sucessores(n) Expectiminimax(s) se n é nó MIN Σ s sucessores(n) P(s) Expectiminimax(s) se n é nó SORTE

40 Elemento Sorte: exemplo 2.1 = 0.9* *3 1.3 = 0.9* *4

41 Elemento Sorte: exemplo Atenção: alteração de valores das folhas mantendo a mesma ordem relativa de valores resulta em decisões diferentes. Pelo que há que ter cuidados adicionais na escolha da função de avaliação.

42 Sumário Decisões óptimas em jogos Conceitos básicos Estratégias óptimas e o Minimax Estratégias óptimas com múltiplos jogadores Cortes α-β Decisões imperfeitas em tempo real Jogos que incluem o factor sorte Estado da arte em jogos

43 Estado da Arte Damas: Chinook derrotou o campeão do mundo (durante 40 anos) Marion Tinsley in Uso de uma base de dados pré-processada que define uma jogada perfeita para todas as posições envolvendo no máximo 8 peças, num total de 444 biliões de posições. Xadrez: Deep Blue derrotou campeão do mundo Garry Kasparov em O Deep Blue procura 200 milhões de nós por segundo, usa uma função de avaliação muito sofisticada. Othello: campeões humanos recusam-se a competir com computadores, que são muito bons. Go: campeões humanos recusam-se a competir com computadores, que são muito fracos. Neste jogo, r > 300. Logo, a maioria dos programas existentes usa padrões de conhecimento para sugerir jogadas hipotéticas.

Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real

Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real Jogos Capítulo 6 Sumário Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas

Leia mais

Algoritmo MiniMax. Minimax

Algoritmo MiniMax. Minimax Algoritmo MiniMax Luís Carlos Calado 050509043 João Carlos Sousa 050509027 José Carlos Campos 060509007 Rodolfo Sousa Silva 050509069 1 Minimax Minimax (ou minmax) é um método usado na Teoria da Decisão,

Leia mais

Jogos de Tabuleiro e Busca Competitiva

Jogos de Tabuleiro e Busca Competitiva Jogos de Tabuleiro e Busca Competitiva Fabrício Jailson Barth Curso de Ciência da Computação Centro Universitário SENAC Maio de 2008 Sumário Características e Exemplos Histórico Árvore de busca Avaliação

Leia mais

Jogos de Tabuleiro e Busca Competitiva

Jogos de Tabuleiro e Busca Competitiva Jogos de Tabuleiro e Busca Competitiva Fabrício Jailson Barth BandTec Março de 2012 Sumário Características e Exemplos Histórico Árvore de busca Avaliação Estática Algoritmo Min Max Poda Alpha Beta Questões

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

Trabalho de Implementação Jogo Reversi

Trabalho de Implementação Jogo Reversi Trabalho de Implementação Jogo Reversi Paulo Afonso Parreira Júnior {paulojr@comp.ufla.br} Rilson Machado de Olivera {rilson@comp.ufla.br} Universidade Federal de Lavras UFLA Departamento de Ciência da

Leia mais

Inteligência Artificial (SI 214) Aula 6 Busca com Adversário. Prof. Josenildo Silva

Inteligência Artificial (SI 214) Aula 6 Busca com Adversário. Prof. Josenildo Silva Inteligência Artificial (SI 214) Aula 6 Busca com Adversário Prof. Josenildo Silva jcsilva@ifma.edu.br 2015 2012-2015 Josenildo Silva (jcsilva@ifma.edu.br) Este material é derivado dos slides de Hwee Tou

Leia mais

Inteligência Artificial. Minimax. Xadrez chinês. Xadrez chinês. Exemplos de Jogos. Exemplo de função de avaliação: Prof. Paulo Martins Engel

Inteligência Artificial. Minimax. Xadrez chinês. Xadrez chinês. Exemplos de Jogos. Exemplo de função de avaliação: Prof. Paulo Martins Engel Xadrez chinês Inteligência Artificial Exemplos de Jogos O objetivo de cada jogador é passar todas as suas peças para o quadrado oposto. Movimenta-se uma peça a cada jogada. O movimento é sempre para uma

Leia mais

Resolução de Problemas Com Procura. Capítulo 3

Resolução de Problemas Com Procura. Capítulo 3 Resolução de Problemas Com Procura Capítulo 3 Sumário Agentes que resolvem problemas Tipos de problemas Formulação de problemas Exemplos de problemas Algoritmos de procura básicos Eliminação de estados

Leia mais

Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010

Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010 Inteligência Artificial Busca Competitiva Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia-pos Capítulo 6 Russell & Norvig Seção 6.1 a 6.5 2 Até aqui... Problemas sem interação com outro agente.

Leia mais

Departamento de Informática. Análise de Decisão. Métodos Quantitativos LEI 2006/2007. Susana Nascimento snt@di.fct.unl.pt.

Departamento de Informática. Análise de Decisão. Métodos Quantitativos LEI 2006/2007. Susana Nascimento snt@di.fct.unl.pt. Departamento de Informática Análise de Decisão Métodos Quantitativos LEI 26/27 Susana Nascimento snt@di.fct.unl.pt Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) Susana Nascimento (snt@di.fct.unl.pt)

Leia mais

Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com

Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com Python e AI (Re)-introdução ao Python. Problemas de busca e principais abordagens. Exemplos em Python Por que

Leia mais

Sistemas de Apoio à Decisão

Sistemas de Apoio à Decisão Sistemas de Apoio à Decisão Processo de tomada de decisões baseia-se em informação toma em consideração objectivos toma em consideração conhecimento sobre o domínio. Modelar o processo de tomada de decisões

Leia mais

Jogos - aula 2. Xadrez chinês. Exemplo de função de avaliação:

Jogos - aula 2. Xadrez chinês. Exemplo de função de avaliação: Exemplo de jogo: Xadrez chinês Jogos - aula 2 Função de avaliação? Prof. Luis Otavio Alvares 1 2 Xadrez chinês Ligue 4 Exemplo de função de avaliação: o valor das peças é de acordo com a sua posição: 12

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos

Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos José Rogado jose.rogado@ulusofona.pt Universidade Lusófona Mestrado Eng.ª Informática e Sistemas de Informação 2013/14 Resumo

Leia mais

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF No capítulo anterior... Estratégias de busca auxiliadas por heurísticas (A*, BRPM)

Leia mais

Técnicas para Implementação de Jogos

Técnicas para Implementação de Jogos Técnicas para Implementação de Jogos Solange O. Rezende Thiago A. S. Pardo Considerações gerais Aplicações atrativas para métodos de IA Formulação simples do problema (ações bem definidas) Ambiente acessível

Leia mais

CAPÍTULO III TOMADA DE DECISÃO COM INCERTEZA E RISCO

CAPÍTULO III TOMADA DE DECISÃO COM INCERTEZA E RISCO CAPÍTULO III TOMADA DE DECISÃO COM INCERTEZA E RISCO TOMADA DE DECISÃO 36 Tomada de Decisões Primeiro Passo i. Identificar decisões alternativas. ii. Identificar consequências possíveis. iii. Identificar

Leia mais

Jogos e Busca. Silvio Lago

Jogos e Busca. Silvio Lago 1 Jogos e Busca Silvio Lago slago@ime.usp.br 2 Sumário Jogos adversariais Algoritmo MINIMAX Algoritmo de poda α-β Função de avaliação e corte Jogos de sorte 3 Jogos Ambientes competitivos, em que as metas

Leia mais

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.)

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.) Introdução à Inteligência Artificial Procura em contextos competitivos jogos (cont.) Sumário n Vimos Jogos de 2 jogadores n Determinísticos, soma nula, informação perfeita Estratégia óptima minimax Algoritmos

Leia mais

TEORIA DOS JOGOS E APRENDIZADO

TEORIA DOS JOGOS E APRENDIZADO TEORIA DOS JOGOS E APRENDIZADO DE MÁQUINA Estudos Iniciais André Filipe de Moraes Batista Disciplina de Aprendizagem de Máquina UFABC 2010 TEORIA DOS JOGOS Ramo da matemática aplicada estuda situações

Leia mais

Jogos - aula 2. Prof. Luis Otavio Alvares II / UFRGS

Jogos - aula 2. Prof. Luis Otavio Alvares II / UFRGS Jogos - aula 2 Prof. Luis Otavio Alvares II / UFRGS 1 Função de avaliação: Xadrez chines 2 Xadrez chinês Exemplo de função de avaliação: o valor das peças é de acordo com a sua posição: 12 para a última

Leia mais

Introdução à Inteligência Artificial 2007/08

Introdução à Inteligência Artificial 2007/08 Introdução à Inteligência rtificial 2007/08 Procura em contextos competitivos jogos Contexto Um agente vs multiagente mbiente cooperativo vs competitivo Teoria dos jogos (ramo da Economia) Sistema multiagente

Leia mais

Exemplo de aprendizagem máquina

Exemplo de aprendizagem máquina (Primeiro exemplo) Jogo de damas c/ aprendizagem Tom Mitchell, Machine Learning, McGraw-Hill, 1997 chapter 1 17-Jul-13 http://w3.ualg.pt/~jvo/ml 12 1 Exemplo de aprendizagem máquina 1. Descrição do problema

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

8 O Método de Alocação de Shapley

8 O Método de Alocação de Shapley 8 O Método de Alocação de Shapley Este capítulo é dividido em duas partes. A primeira apresenta o método de benefícios incrementais à medida que os agentes vão entrando na coalizão, ou seja, atribui a

Leia mais

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível.

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível. Inteligência Artificial Algoritmo i com cortes Alfa-Beta Ana Saraiva 050509087 Ana Barbosa 050509089 Marco Cunha 050509048 Tiago Fernandes 050509081 FEUP - MIEIC 3ºAno/ºSemestre 1 Introdução O algoritmo

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

O Manual do Konquest. Nicholas Robbins Tradução: José Pires

O Manual do Konquest. Nicholas Robbins Tradução: José Pires Nicholas Robbins Tradução: José Pires 2 Conteúdo 1 Introdução 5 2 Como Jogar 6 3 Regras do Jogo, Estratégias e Sugestões 9 3.1 Regras............................................ 9 3.2 Estratégias e Dicas.....................................

Leia mais

Datas Importantes 2013/01

Datas Importantes 2013/01 INSTRUMENTAÇÃO CARACTERÍSTICAS DE UM SISTEMA DE MEDIÇÃO PROBABILIDADE PROPAGAÇÃO DE INCERTEZA MÍNIMOS QUADRADOS Instrumentação - Profs. Isaac Silva - Filipi Vianna - Felipe Dalla Vecchia 2013 Datas Importantes

Leia mais

PROJETO DE REGULAMENTO N.º ---/SRIJ/2015 REGRAS DO JOGO BLACKJACK/21

PROJETO DE REGULAMENTO N.º ---/SRIJ/2015 REGRAS DO JOGO BLACKJACK/21 PROJETO DE REGULAMENTO N.º ---/SRIJ/2015 REGRAS DO JOGO BLACKJACK/21 O Regime Jurídico dos Jogos e Apostas Online (RJO), aprovado pelo Decreto-Lei n.º 66/2015, de 28 de abril, determina, no n.º 3 do seu

Leia mais

Análise de complexidade

Análise de complexidade Introdução Algoritmo: sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador) Estratégia: especificar (definir propriedades) arquitectura

Leia mais

Gráficos de funções em calculadoras e com lápis e papel (*)

Gráficos de funções em calculadoras e com lápis e papel (*) Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado

Leia mais

Satisfação de Restrições. Capítulo 5 (disponível online)

Satisfação de Restrições. Capítulo 5 (disponível online) Satisfação de Restrições Capítulo 5 (disponível online) Sumário Problemas de Satisfação de Restrições (CSPs) Procura com Retrocesso para CSPs Procura Local para CSPs Estrutura dos CSPs Problemas de Satisfação

Leia mais

ENTREVISTA "Não se ganha com. a caça ao dividendo"

ENTREVISTA Não se ganha com. a caça ao dividendo ENTREVISTA "Não se ganha com a caça ao dividendo" JORGE BENTO FARINHA, VICE-PRESIDENTE DA PORTO BUSINESS SCHOOL Em Portugal não se ganha dinheiro com a caça ao dividendo Co-autor do livro "Dividendos e

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos Aula 10 Distâncias Mínimas Edirlei Soares de Lima Distâncias Mínimas Dado um grafo ponderado G = (V, E), um vértice s e um vértice g, obter o caminho

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

XXV OLIMPÍADA ECC 2014

XXV OLIMPÍADA ECC 2014 XXV OLIMPÍADA ECC 2014 CALENDÁRIO De 30/09 a 03/10 2014 Horário: de 30/09 até 02/10-7h10 às18h30 03/10-7h10 às 17h00 MODALIDADES VÔLEI BASQUETE HANDEBOL FUTEBOL DE SALÃO (FUTSAL) FUTEBOL DE CAMPO (FUTCAMPO)

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009

Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009 : Aspectos Práticos Estéfane G. M. de Lacerda DCA/UFRN Junho/2009 Principais Tópicos População Inicial Funções Objetivo de Alto Custo Critérios de Parada Convergência Prematura Diversidade Tipos de Substituição

Leia mais

Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema

Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema Projecto de Programação por Objectos 2007/08 Escalonamento em Multi-processador por Programação Evolutiva MEBiom/MEEC 1 Problema Considere-se um sistema com um conjunto finito de processadores P = {p1,...,

Leia mais

Testes (Não) Paramétricos

Testes (Não) Paramétricos Armando B. Mendes, DM, UAç 09--006 ANOVA: Objectivos Verificar as condições de aplicabilidade de testes de comparação de médias; Utilizar ANOVA a um factor, a dois factores e mais de dois factores e interpretar

Leia mais

Casamento de Cadeias. Introdução. Introdução. Estrutura de Dados. Cadeia de caracteres: sequência de elementos denominados caracteres.

Casamento de Cadeias. Introdução. Introdução. Estrutura de Dados. Cadeia de caracteres: sequência de elementos denominados caracteres. Introdução de Cadeias Estrutura de Dados II Prof. Guilherme Tavares de Assis Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM 1 Cadeia

Leia mais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais 1 AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais Ernesto F. L. Amaral 20 e 22 de abril e 04 de maio de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte:

Leia mais

IBM SmartCloud para Social Business. Manual do Utilizador do IBM SmartCloud Engage e IBM SmartCloud Connections

IBM SmartCloud para Social Business. Manual do Utilizador do IBM SmartCloud Engage e IBM SmartCloud Connections IBM SmartCloud para Social Business Manual do Utilizador do IBM SmartCloud Engage e IBM SmartCloud Connections IBM SmartCloud para Social Business Manual do Utilizador do IBM SmartCloud Engage e IBM SmartCloud

Leia mais

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões Classificação de imagens Autor: Gil Gonçalves Disciplinas: Detecção Remota/Detecção Remota Aplicada Cursos: MEG/MTIG Ano Lectivo: 11/12 Sumário Classificação da imagem (ou reconhecimento de padrões): objectivos

Leia mais

6. Programação Inteira

6. Programação Inteira Pesquisa Operacional II 6. Programação Inteira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção Programação Inteira São problemas de programação matemática em que a função objetivo, bem

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

Árvore de Jogos Minimax e Poda Alfa-Beta

Árvore de Jogos Minimax e Poda Alfa-Beta Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Árvore de Jogos Minimax e Poda Alfa-Beta Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

Introdução à Programação. João Manuel R. S. Tavares

Introdução à Programação. João Manuel R. S. Tavares Introdução à Programação João Manuel R. S. Tavares Sumário 1. Ciclo de desenvolvimento de um programa; 2. Descrição de algoritmos; 3. Desenvolvimento modular de programas; 4. Estruturas de controlo de

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Bateria de Raciocínio Crítico. (Testes de Aptidões) > Folheto de Preparação

Bateria de Raciocínio Crítico. (Testes de Aptidões) > Folheto de Preparação ateria de Raciocínio rítico (Testes de ptidões) > Folheto de Preparação Uma Introdução aos Testes de ptidões (ateria de Raciocínio rítico) Porque são utilizados os testes de aptidões? Os testes de aptidões

Leia mais

1. Introdução. Avaliação de Usabilidade Página 1

1. Introdução. Avaliação de Usabilidade Página 1 1. Introdução Avaliação de Usabilidade Página 1 Os procedimentos da Avaliação Heurística correspondem às quatro fases abaixo e no final é apresentado como resultado, uma lista de problemas de usabilidade,

Leia mais

Análise de Algoritmos: Melhor caso, pior caso, caso médio

Análise de Algoritmos: Melhor caso, pior caso, caso médio Análise de Algoritmos: Melhor caso, pior caso, caso médio Fernando Lobo Algoritmos e Estrutura de Dados II 1 / 25 Sumário Rever um problema e um algoritmo que já conhecem. Descrevê-lo em pseudo-código

Leia mais

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende Profª. Solange O. Rezende 1 O que vimos até agora... Busca não informada Baseada somente na organização de estados e a sucessão entre eles Busca informada Utiliza, também, informações a respeito do domínio

Leia mais

Sistema de ponto flutuante

Sistema de ponto flutuante Exemplo: FP(,4,,A) e FP(,4,,T) Sistema de ponto flutuante FP( b, p, q,_) = FP(, 4,, _ ) base 4 dígitos na mantissa dígitos no expoente A=Arredondamento T=Truncatura x ± =± m b t x =± d 1d d d 4 dígitos

Leia mais

Espectrometria de massa As moléculas são ionizadas por acção de electrões de alta energia (normalmente). A relação massa/carga (m/e) dos iões

Espectrometria de massa As moléculas são ionizadas por acção de electrões de alta energia (normalmente). A relação massa/carga (m/e) dos iões Espectrometria de massa As moléculas são ionizadas por acção de electrões de alta energia (normalmente). A relação massa/carga (m/e) dos iões produzidos é medida de um modo muito preciso pela combinação

Leia mais

Pedro Ribeiro 2014/2015

Pedro Ribeiro 2014/2015 Programação Dinâmica Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Programação Dinâmica 2014/2015 1 / 56 Números de Fibonacci Sequência de números muito famosa definida por Leonardo Fibonacci

Leia mais

Jogo de Tabuleiro - Mancala Relatório Final

Jogo de Tabuleiro - Mancala Relatório Final Jogo de Tabuleiro - Mancala Relatório Final Inteligência Artificial 3º ano do Mestrado Integrado em Engenharia Informática e Computação Elementos do Grupo: Bruno Lima 080509068 bruno.lima@fe.up.pt Pedro

Leia mais

Gestor de Processos Núcleo do Sistema Operativo

Gestor de Processos Núcleo do Sistema Operativo Alínea do 1º teste 2015/16: Considere a linha: for (i=0;i

Leia mais

O Manual do ssc. Peter H. Grasch

O Manual do ssc. Peter H. Grasch Peter H. Grasch 2 Conteúdo 1 Introdução 6 2 Usar o ssc 7 2.1 Gerir os utilizadores.................................... 7 2.1.1 Adicionar um utilizador.............................. 8 2.1.1.1 Associar-se

Leia mais

MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO

MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO Curso Científico-Humanístico de Artes Visuais 1 Cursos Tecnológicos de Construção Civil e Edificações, de Electrotecnia e Electrónica,

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Sistemas de Tempo Real: Conceitos Básicos

Sistemas de Tempo Real: Conceitos Básicos Escola de Computação 2000 - IME-USP Sistemas de Tempo Real: Conceitos Básicos Jean-Marie Farines Joni da Silva Fraga Rômulo Silva de Oliveira LCMI - Laboratório de Controle e Microinformática DAS - Departamento

Leia mais

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS

MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS MEDIÇÃO EM QUÍMICA ERROS E ALGARISMOS SIGNIFICATIVOS 2 O que são e Por que se usam algarismos significativos? O valor 1,00 não é igual a 1? Do ponto de vista matemático, sim. Mas sempre que se façam medições

Leia mais

Programação Dinâmica

Programação Dinâmica fib(5) fib(4) fib(3) fib(3) fib(2) fib(2) fib(1) fib(2) fib(1) fib(1) fib(0) fib(1) fib(0) fib(1) fib(0) Uma metodologia de resolução de problemas Center for Research in Advanced Computing Systems (CRACS

Leia mais

OS LEILÕES COMO INSTRUMENTOS DE REGULAÇÃO ECONÓMICA * Novembro, 2004.

OS LEILÕES COMO INSTRUMENTOS DE REGULAÇÃO ECONÓMICA * Novembro, 2004. OS LEILÕES COMO INSTRUMENTOS DE REGULAÇÃO ECONÓMICA * POR: RUTE MARTINS SANTOS Novembro, 2004. Este documento está protegido pelo direito de autor nos termos da lei portuguesa, do direito comunitário e

Leia mais

Sessão 2: Gestão da Asma Sintomática. Melhorar o controlo da asma na comunidade.]

Sessão 2: Gestão da Asma Sintomática. Melhorar o controlo da asma na comunidade.] Sessão 2: Gestão da Asma Sintomática Melhorar o controlo da asma na comunidade.] PROFESSOR VAN DER MOLEN: Que importância tem para os seus doentes que a sua asma esteja controlada? DR RUSSELL: É muito

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Laboratório de Pesquisa e Desenvolvimento Universidade Federal de Alfenas versão

Leia mais

Jogos Olímpicos de Verão - Londres 2012

Jogos Olímpicos de Verão - Londres 2012 Mestrado Integrado em Engenharia Eletrotécnica e de Computadores Investigação Operacional 2011.10.19 1 o Mini-teste Prova com consulta Duração: 1h30min Jogos Olímpicos de Verão - Londres 2012 Os Jogos

Leia mais

Sociedade União 1º.Dezembro. Das teorias generalistas. à ESPECIFICIDADE do treino em Futebol. Programação e. Periodização do.

Sociedade União 1º.Dezembro. Das teorias generalistas. à ESPECIFICIDADE do treino em Futebol. Programação e. Periodização do. Sociedade União 1º.Dezembro Das teorias generalistas à ESPECIFICIDADE do treino em Futebol Programação e Periodização do Treino em Futebol 1 Programação e Periodização do Treino em Futebol Ter a convicção

Leia mais

B D. Árvores Ordenadas

B D. Árvores Ordenadas ÈUYRUHV 'HILQLomR Uma árvore 7 é um conjunto finito contendo um ou mais nós (vértices), onde existe um nó especial denominado UDL] e os demais estão organizados em 1 conjuntos disjuntos (T 1, T 2,...,

Leia mais

3 Estratégias de Análise Técnica

3 Estratégias de Análise Técnica 3 Estratégias de Análise Técnica Como foi visto no Capítulo 2, as estratégias dos investidores do mercado são compostas por dois fatores, a saber: o mecanismo de ativação σ i (t) (Eq. 2-10) e o mecanismo

Leia mais

Especificação Operacional.

Especificação Operacional. Especificação Operacional. Para muitos sistemas, a incerteza acerca dos requisitos leva a mudanças e problemas mais tarde no desenvolvimento de software. Zave (1984) sugere um modelo de processo que permite

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. genda nálise e Técnicas de lgoritmos Jorge Figueiredo onceitos ásicos O Problema das Rainhas Template Genérico Mochila inária acktracking and ranch-and-ound Jogo da Troca de olas Jogo da Troca de olas

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Modos de entrada/saída

Modos de entrada/saída Arquitectura de Computadores II Engenharia Informática (11545) Tecnologias e Sistemas de Informação (6621) Modos de entrada/saída Fonte: Arquitectura de Computadores, José Delgado, IST, 2004 Nuno Pombo

Leia mais

TAÇA DE PORTUGAL POR EQUIPAS REGULAMENTO

TAÇA DE PORTUGAL POR EQUIPAS REGULAMENTO REGULAMENTO Época 2015 / 2016 Informação de 1 de outubro de 2015 A Taça de Portugal por Equipas (Taça), organizado pela Federação Portuguesa de Xadrez (FPX) com o apoio do Instituto Português do Desporto

Leia mais

3 Previsão da demanda

3 Previsão da demanda 42 3 Previsão da demanda Este capítulo estuda o processo de previsão da demanda através de métodos quantitativos, assim como estuda algumas medidas de erro de previsão. Num processo de previsão de demanda,

Leia mais

Programação Recursiva versão 1.02

Programação Recursiva versão 1.02 Programação Recursiva versão 1.0 4 de Maio de 009 Este guião deve ser entregue, no mooshak e no moodle, até às 3h55 de 4 de Maio. AVISO: O mooshak é um sistema de avaliação e não deve ser utilizado como

Leia mais

Transcrição Automática de Música

Transcrição Automática de Música Transcrição Automática de Música Ricardo Rosa e Miguel Eliseu Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria Departamento de Engenharia Informática A transcrição automática de

Leia mais

Reconhecimento de Padrões. Reconhecimento de Padrões

Reconhecimento de Padrões. Reconhecimento de Padrões Reconhecimento de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superior de Tecnologia Engenharia Informática Reconhecimento de Padrões Prof. João Ascenso e Prof.

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear.

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear. CAPÍTULO 7 7 ANÁLISE DE REDES 7.1 Conceitos Básicos em Teoria dos Grafos Diversos problemas de programação linear, inclusive os problemas de transporte, podem ser modelados como problemas de fluxo de redes.

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 19 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

Instituto Superior Técnico Licenciatura em Engenharia Informática e de Computadores. Projecto de. Arquitectura de Computadores.

Instituto Superior Técnico Licenciatura em Engenharia Informática e de Computadores. Projecto de. Arquitectura de Computadores. Instituto Superior Técnico Licenciatura em Engenharia Informática e de Computadores Projecto de Arquitectura de Computadores Jogo dos Blocos (variante do Arkanoid) (Versão 1.0) 2008/2009 Índice 1 Objectivo...

Leia mais

Lista de Exercícios Tratamento de Incerteza baseado em Probabilidade

Lista de Exercícios Tratamento de Incerteza baseado em Probabilidade Lista de Exercícios Tratamento de Incerteza baseado em Probabilidade 1) Explique o termo probabilidade subjetiva no contexto de um agente que raciocina sobre incerteza baseando em probabilidade. 2) Explique

Leia mais

INVESTIMENTO A LONGO PRAZO 1. Princípios de Fluxo de Caixa para Orçamento de Capital

INVESTIMENTO A LONGO PRAZO 1. Princípios de Fluxo de Caixa para Orçamento de Capital 5 INVESTIMENTO A LONGO PRAZO 1. Princípios de Fluxo de Caixa para Orçamento de Capital 1.1 Processo de decisão de orçamento de capital A decisão de investimento de longo prazo é a decisão financeira mais

Leia mais

LOGÍSTICA. Capítulo - 9 Movimentação de Materiais, Automatização e Questões Relacionadas com Embalagem

LOGÍSTICA. Capítulo - 9 Movimentação de Materiais, Automatização e Questões Relacionadas com Embalagem LOGÍSTICA Capítulo - 9 Movimentação de Materiais, Automatização e Questões Relacionadas com Embalagem Objectivos do Capítulo Mostrar de uma maneira geral os principais tipos de sistemas de movimentação,

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

FILOSOFIA SEM FILÓSOFOS: ANÁLISE DE CONCEITOS COMO MÉTODO E CONTEÚDO PARA O ENSINO MÉDIO 1. Introdução. Daniel+Durante+Pereira+Alves+

FILOSOFIA SEM FILÓSOFOS: ANÁLISE DE CONCEITOS COMO MÉTODO E CONTEÚDO PARA O ENSINO MÉDIO 1. Introdução. Daniel+Durante+Pereira+Alves+ I - A filosofia no currículo escolar FILOSOFIA SEM FILÓSOFOS: ANÁLISE DE CONCEITOS COMO MÉTODO E CONTEÚDO PARA O ENSINO MÉDIO 1 Daniel+Durante+Pereira+Alves+ Introdução O+ ensino+ médio+ não+ profissionalizante,+

Leia mais

Facturação Guia do Utilizador

Facturação Guia do Utilizador Facturação Guia do Utilizador Facturação Como se utiliza 2 1 Como se utiliza Todas as opções do sistema estão acessíveis através do menu: ou do menu: O Menu caracteriza-se pelas seguintes funcionalidades:

Leia mais

COS767 - Modelagem e Análise Aula 2 - Simulação. Algoritmo para simular uma fila Medidas de interesse

COS767 - Modelagem e Análise Aula 2 - Simulação. Algoritmo para simular uma fila Medidas de interesse COS767 - Modelagem e Análise Aula 2 - Simulação Algoritmo para simular uma fila Medidas de interesse Simulação O que é uma simulação? realização da evolução de um sistema estocástico no tempo Como caracterizar

Leia mais

Medições e suas incertezas

Medições e suas incertezas Medições e suas incertezas Ação no âmbito do PEC 115 UTAD, 6 de setembro de 2013 Joaquim Anacleto Programa da ação Apresentação dos conceitos(1 h) Pausa para café (15 min) Medições e discussão (1 h) Massa

Leia mais