PROBABILIDADES E ESTATÍSTICA

Tamanho: px
Começar a partir da página:

Download "PROBABILIDADES E ESTATÍSTICA"

Transcrição

1 PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto do espaço amostral. A sair 6 {6} B sair fica par {2,4,6} C sair ficar impar {,3,5} Aos acontecimentos constituídos por um único resultado chamam-se acontecimentos elementares. O espaço amostral e os acontecimentos nele contidos podem ser representados por diagramas de Venn. Dado o paralelismo entre acontecimentos e subconjuntos, podemos a partir das operações sobre conjuntos obter novos acontecimentos. - A união dos acontecimentos A e B, representa-se A B e é o acontecimento que se realiza se e só se A ou B se realizam. - A intersecção dos acontecimentos, representa-se A B e é o acontecimento que se realiza se só A e B se realizam mutuamente. - O acontecimento complementar de A, representa-se por A e é acontecimento constituído por todos os resultados de S, que não estão em S. A B B C A {,2,3,4,5} A Β (A B) C Resultados adicionais sobre acontecimentos A A (lei do complementar) (A B) C (A C) (B C) lei distributiva (A B) C (A C) (B C)

2 cara cara cara coroa coroa cara coroa coroa A B A B Leis de De Morgan A B A B A BB A Lei comutativa A BB A Os espaços amostrais também podem ser representados por diagramas de árvore. E: lançamento de 2 moedas S {cara coroa, coroa coroa, cara cara, coroa cara} Dois acontecimentos A e B são mutuamente eclusivos ou disjuntos que não podem ocorrer conjuntamente então A B. Noção de probabilidade um espaço amostral é disjunto se e só se consiste num conjunto finito (ou infinitamente numerável) de resultados situados no intervalo [0,] (0 e 00%). Definição subjectiva a probabilidade de um resultado é interpretado pelo grau de acreditar que o resultado vai ocorrer. Definição clássica ou De Laplace sempre que o espaço amostral é constituído por N resultados (acontecimentos elementares), todos eles igualmente possíveis, então a probabilidade de cada resultado ou acontecimento elementar é N. Para um espaço amostral discreto, a probabilidade de um acontecimento A, representa-se por P(A) como sendo a soma das probabilidades de resultados que compõem A. P(A) Nº de casos favoráveis Nº de casos possíveis

3 P(A) 6 P(B) A definição frequencista é baseada na repetição da eperiência aleatória. A probabilidade de um acontecimento A é definida, como sendo o limite da sua frequência relativa, com que se verificou A em n provas ou repetições. P(A) nlim > + n A n onde n A, representa o número de vezes que se verificou A em n provas. Aiomas de Probabilidade (Kolmogorov) A probabilidade é um número que é atribuído a cada elemento duma colecção de acontecimentos de uma eperiência aleatória que satisfaz as seguintes propriedades. Se S é um espaço amostral e A é qualquer acontecimento de uma eperiência aleatória. (i) P(s) (ii) 0< P(A) < (iii) Para um acontecimento A e B com A B, P(A B)P(A)+P(B) Os aiomas implicam os seguintes resultados: i) P( )0 ii) iii) P(A A )P(A)+P(A ) P(B)P(A)+P(B A ) >0 P(A )-P Se A B então P(A)<P(B) Regra de adição Se A e B forem dois acontecimentos quaisquer então: P(A B)P(A)+P(B)-P(A B) A B A (B A ) B(A B) (B A )

4 P(A B) P(A)+P(B A ) P(B)P(A B)+P ( B A) Se A, B e C forem três acontecimentos quasiquer acontecimentos então: P(A B C)P(A)+P(B)+P(C)-P(A B)-P(B C)+P(A B C) P(A B C)P((A B) C)P(A B)+P(C)-P((A B) C) P(A)+P(B)- P(A B)+P(C)-P((A C) (B C)) P(A)+P(B)+P(C)-P(A B)-P(A C)-P(B C)+P(A B C) Uma colecção de acontecimentos ξ, ξ 2,..., ξ k, são mutuamente eclusivos se para todos os pares: E i E j < i j < k Para uma colecção de acontecimentos mutuamente eclusivos, Suponha que A, B e C são acontecimentos tais que: P(A)P(B)P(C) ¼ P(A B)P(C B)0 P(A C) /8 P(A B C)? Se A, B e C são acontecimentos mutuamente eclusivos, será possível P(A)0,3, P(B)0,4 e P(C)0,5? Justifique. Não. Porque se são mutuamente eclusivos então P(A B C)P(A)+P(B)+P(C) 0,3+0,4+0,5 > Não é possível que estes acontecimentos tenham estes valores de probabilidade. PROBABILIDADE CONDICIONADA A probabilidade condicional do acontecimento B, dado que (ou sabendo que) ou sabendo que o acontecimento A se realizou, representa-se por P(B A) e é dado por: P(B A) P(A B) P(A) com P(A) > 0 B dado A

5 Molécula Molécula 2 Não Sim Total Não Sim Total Escolhendo uma amostra ao acaso, determine a probabilidade da molécula estar presente, sabendo que a molécula 2 está igualmente presente. P(B A) P(A B) P(A) ,(3) 30 P(B) 0,3 260 REGRAS DE MULTIPLICAÇÃO A partir da definição de Probabilidade Condicional podemos obter uma epressão geral para a probabilidade de intersecção de dois acontecimentos. P(A B) P(A B) P(B) P(B A)P(A) P(A B) P(A B) P(B) simétrica! P(B A) P(B A) P(A) A fórmula é A generalização da equação anterior é dado por: P(E E E) P(E )P(E E)P(E E E) P(E E E E ) 2 n n 2 n Eerc. lote 50 defeituosas 800 boas Seleccionou-se duas peças aleatoriamente sem reposição. Qual a probabilidade das duas peças serem defeituosas? P(A B) P(A) P(B A) 0,

6 REGRA DE PROBABILIDADE TOTAL Para quaisquer acontecimentos A e B B (A B) (A B) P(B) P(B A) + P(B A) P(B A) P(A) P(B A) P(A) + Aplicando esta fórmula ao eercício anterior obtém-se: ,059 Para múltiplos acontecimentos Uma colecção de acontecimentos E,E 2,...,E n são eaustivos se E E 2... E n S B ( B E ) ( B E 2 ) ( B E 3 ) ( B E 4 ) então: P(B) P( B E ) + P( B E 2 ) + P( B E 3 ) + P( B E 4 ) P(B E ) P(E ) + P(B E 2 ) P(E 2 ) + P(B E 3 ) P(E 3 ) + P(B E 4 ) P(E 4 ) Se E,E2,...,En são n acontecimentos mutuamente eclusivos e eaustivos então P(B) P( B E ) + P( B E 2 ) P( B E n ) P(B E ) P(E ) + P(B E 2 ) P(E 2 ) P(B E n ) P(E n ) ACONTECIMENTOS INDEPENDENTES Dois acontecimentos são independentes se qualquer uma das seguintes afirmações equivalentes é verdadeira: i) P(A B) P(A) ii) P(B A) P(B) iii) P(A B) P(A) P(B) P(B) P(B A) se forem Os acontecimentos E,E 2,...,E n são independentes se para qualquer conjunto E i,e i2,...,e in P(E i E i2... E in ) P(E i ) P(E i2 )... P(E in )

7 Eercício: Sendo P(A)>0 e P(B)>0 será possível A e B serem mutuamente e eclusivos? Resolução: ) Se A e B são mutuamente eclusivos P(A B) 0 2) Se A e B são independentes P(A B) P(A) P(B) 0 >0 Não podem ser as duas coisas ao mesmo tempo. TEOREMA DE BAYES Da definição de Probabilidade Condicional temos que: P(A B) P(A B)P(B) P(B A) P(B A)P(A) A partir do segundo e último termo podemos escrever: P(B A)P(A) P(A B) P(B) com P(B)> 0. Se P(B) no denominador for escrito usando a regra da probabilidade total, obtemos o teorema de Bayes: P(B A)P(A) P(A B) P(B A)P(A)+P(B A)P(A) Generalização do teorema de Bayes Se E, E 2,E 3 são k acontecimentos mutuamente eclusivos e eaustivos, então dado qualquer acontecimento B, tem-se que: P(B E )P(E ) P(E B) P(B E )P(E )+P(B E 2 )P(E 2 )+ +P(B E k )P(E k ) E A O funcionário da loja A 50 P(A) 0,(2) B- «««B 75 P(B)0,(3) C- «««C 00 P( C ) -0,(2)-0,(3)0,(4) a sua união é todo o espaço amostral

8 M Funcionário é mulher sendo: P(M A)0,5 P(M B)0,6 P(M C)0,7 P(C M) P(C)P(M C) P(A)P(M A) + P(B)P(M B) + P(C)P(M C) 0,45 0,7 0,22 0,5 0,33 0,6 0,45 0, ,5 VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DISCRETAS S { cara, coroa } Uma variável aleatória (v.a.) é uma função que atribui um número real a cada resultado do espaço amostral de uma eperiência aleatória. e α lançamento de duas moedas S { cara cara, cara coroa, coroa cara, coroa coroa } X v.a. que representa o nº de vezes que saiu cara. X (cara cara) 2 X (cara coroa) X (coroa cara) X (coroa coroa) 0 Uma v.a. diz-se discreta se só assume um número finito ou infinito numerável de valores discretos. Eemplos: nº de peças defeituosas num lote nº de acidentes no cruzamento de Gambelas por dia nº de chamadas telefónicas numa central por semana Uma v.a. diz-se contínua se assume todos os valores dum intervalo (finito ou infinito) de números reais. e: temperaturas, peso, tempo entre chamadas telefónicas sucessivas A distribuição de probabilidade de um v.a. X é a descrição das probabilidades associadas com os valores possíveis de X.

9 Seja X uma v.a. discreta com valores possíveis U,U 2,...,U n. A distribuição de X é caracterizada pela função massa de probabilidade (fmp) que associa uma probabilidade a cada valores que a v.a. assume. f( i ) P(X i ) V.A. discretas Atendendo à definição de probabilidade: e.: ) f( i ) 0 n i 2) f() i f(2)p(x2)p(coroa coroa)/4 f()p(x)p(cara coroa, coroa cara)/2 f(0)p(x0)p(coroa coroa)/4 0 2 f( i ) ¼ ½ ¼ diagrama de barras Função de distribuição Um processo alternativo de descrever as probabilidades associadas a uma v.a. X é utilizando a função distribuição. Seja X uma v.a. discreta com valores possíveis, 2,..., n. A função distribuição f() i da v.a. X representa-se por F()P(X ) i F() satisfaz as seguintes propriedades: lim F() 0 ) lim F() 2) + 3) Se 2, então F( ) F( 2 ) não decrescente 4) F() é contínua e discreta Dada a função distribuição da v.a. discreta X, podemos obter a respectiva função massa de probabilidade (f.m.p.). f()f()-f( - )

10 Para qualquer função de distribuição F(), dados dois números reais e 2 com < 2, tem-se P( X 2 )F( 2 )-F( ) P(X<)P(X )-P(X) F()-(F()- F( - )) F( - ) P(X>)-P(X )-F() P(X )-P(X<)- F( - ) 2 P( <X< 2 )P( <X 2 )-P(X 2 ) F( 2 )-F( )-(F( 2 )- F( 2 - )) F( 2 - )- F( - ) P( X 2 )P( X< 2 )+P(X ) F( 2 - ) - F( - )+F( )- F( - ) F( 2 - )- F( - ) 0 2 f( i ) ¼ ½ ¼ F(0)P(X 0)f(0) ¼ F()P(X )f(0)+f() ¼ + ½ ¾ F(2)P(X 2)f(0)+f()+f(2) ¼ + ½ + ¼ F(,5)P(X,5) ¾ f(,5)0 F() 0 se <0 ¼ se 0 < ¾ se <2 se 2 P(0 X )F()-F(0 - ) ¾ f(0)+f() ¾ P(0 X ) F()-F(0 - ) ¾ F() 2 3 4

11 FUNÇÕES DE UMA VARIÁVEL ALEATÓRIA DISCRETA Se X é uma v.a. e h uma aplicação de R em R, então yh(x) é uma v.a. de distribuição de Yh() é determinada pela transformação h e pela distribuição de X. Seja X uma v.a. discreta com valores possíveis,2,...,n e função massa de probabilidade (f.m.p.) f(). Então a f.m.p. de y é dada por: g(y) P(Y y) P(h() y) P({:h() y}) f() :h() y f( i ) yh() g(y)? g() g(0)f(-2)f(-)+f(0) g(6) f() 0 g(24) f(2) 7 60 VALOR ESPERADO E VARIÂNCIA DE UMA V.A. DISCRETA A média ou valor esperado de uma v.a. discreta X, representa-se por E[X] ou µ e f() E[X] µ

12 De um modo geral, seja h() uma função real de X: E[h(X)] h()f() Com h()(x-e[x]) 2 obtém-se obtém-se a variância de X e representa-se por U[X] ou σ 2 e σ 2 2 µ [(- µ )f()] [( 2 µ+µ )f()] 2 2 f() 2 f() f() U[X] E[(-E[]) ] µ +µ f() 2 f() µ +µ µ E[X ] E[X] 2 2 A raíz quadrada da variância chamamos desvio-padrão e representamos σ U[] 2 µ E[] U[] ( ) Se X é uma v.a. e a, b e c constante então: ) E[c] c 2) E[-µ]0 3) E[cX]cE[X] 4) E[h(X)+h (X)] E[h(X)]+E[h (X)] Demonstrações das propriedades anteriores: ) 2) 3) E[c] cf() c f() c E[- µ ] µ f() f() µ f() µ µ 0 E[cX] cf() c f() ce[x] E[h(X)+h(X)] [h()+h()]f() h()f()+ h()f() 4) 5) E[h(X)] + E[h'(X)] E[aX + b] E[aX] + E[b] ae[] + b (4) (3) ()

13 6) V[aX+b] E[((aX+b)-E[aX+b]) 2 ] E[aX+b ae[x]-b] E[(aX-aE[X]) 2 ] E[a 2 (X-E[X]) 2 ]a 2 E[(X-E[X]) 2 ]a 2 V[X]

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

Texto SII: ELEMENTOS DE PROBABILIDADE 3.1. INTRODUÇÃO...9

Texto SII: ELEMENTOS DE PROBABILIDADE 3.1. INTRODUÇÃO...9 SUMÁRIO 1. INTRODUÇÃO...2 1.1. MODELOS...2 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)...2 1.3. O ESPAÇO AMOSTRAL...3 1.4. EVENTOS...4 1.5. COMBINAÇÃO DE EVENTOS...4 1.6. EVENTOS MUTUAMENTE EXCLUDENTES...5

Leia mais

1 Axiomas de Probabilidade

1 Axiomas de Probabilidade 1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

Conjunto de todos os resultados possíveis de um experimento aleatório.

Conjunto de todos os resultados possíveis de um experimento aleatório. VII Probabilidades Em todos os fenômenos estudados pela Estatística, os resultados, mesmo nas mesmas condições de experimentação, variam de uma observação para outra, dificultando a previsão de um resultado

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Probabilidade Condicional

Probabilidade Condicional PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências

Leia mais

Conceitos Básicos de Estatística Aula 2

Conceitos Básicos de Estatística Aula 2 Conceitos Básicos de Estatística Aula 2 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 13 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Estatística 13 de Setembro

Leia mais

Probabilidade. Definições, Notação, Regra da Adição

Probabilidade. Definições, Notação, Regra da Adição Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

M501 Probabilidade, Estatística e Processos Estocásticos

M501 Probabilidade, Estatística e Processos Estocásticos Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

1 Probabilidade Condicional - continuação

1 Probabilidade Condicional - continuação 1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

Carlos Tenreiro. Apontamentos de Teoria das Probabilidades. tenreiro@mat.uc.pt

Carlos Tenreiro. Apontamentos de Teoria das Probabilidades. tenreiro@mat.uc.pt Carlos Tenreiro Apontamentos de Teoria das Probabilidades Coimbra, 2002 Versão de Dezembro de 2004 Nota prévia Os presentes apontamentos têm por base as notas do curso de Teoria das Probabilidades que

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Fundamentos de Matemática Elementar (MAT133)

Fundamentos de Matemática Elementar (MAT133) Fundamentos de Matemática Elementar (MAT133) Notas de aulas Maria Julieta Ventura Carvalho de Araújo (Colaboração: André Arbex Hallack) Março/2010 i Índice 1 Conjuntos 1 1.1 A noção de conjunto e alguns

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8. Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Departmento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal

Departmento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal PROBABILIDADES E ESTATÍSTICA ISABEL NATÁRIO Departmento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 89-516, Caparica, Portugal Especial agradecimento à Prof a Fátima

Leia mais

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas

Leia mais

Probabilidade 1. José Carlos Fogo

Probabilidade 1. José Carlos Fogo Probabilidade 1 José Carlos Fogo Junho 2014 Sumário Sumário 1 Conceitos Básicos e Definições 3 1.1 Relações entre conjuntos............................. 3 1.2 Algumas definições em probabilidade:.....................

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL

DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL DISTRIBUIÇÕES DE PROBABILIDADES de variável discreta BERNOULLI E BINOMIAL Introdução Variável aleatória Discreta: assume um número finito ou infinito numerável de valores Contínua: assume todos os valores

Leia mais

Apoio à Decisão. Aulas 1 e 2. Quem sou eu? Mônica Barros, D.Sc. Programa do Curso Ferramentas de Análise do Excel. Mônica Barros

Apoio à Decisão. Aulas 1 e 2. Quem sou eu? Mônica Barros, D.Sc. Programa do Curso Ferramentas de Análise do Excel. Mônica Barros Quem sou eu? Métodos Estatísticos sticos de Apoio à Decisão Aulas 1 e 2 Mônica Barros, D.Sc. Mônica Barros Doutora em Séries Temporais PUC-Rio Mestre em Estatística University of Texas at Austin, EUA Bacharel

Leia mais

Momentos de uma variável aleatória

Momentos de uma variável aleatória Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

MÓDULO 1. I - Estatística Básica

MÓDULO 1. I - Estatística Básica MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 19 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

VI SEMANA DE MATEMÁTICA DA UESC

VI SEMANA DE MATEMÁTICA DA UESC VI SEMANA DE MATEMÁTICA DA UESC Introdução à Cadeias de Markov: Processos Markovianos de parâmetro discreto Autores: Msc. Cláudia Ribeiro Santana Phd. Enio G. Jelihovschi Msc. Pedro Carlos Elias Ribeiro

Leia mais

Inferência Estatística Aula 3

Inferência Estatística Aula 3 Inferência Estatís Aula 3 Agosto de 008 Mônica Barros Conteúdo Revisão de Probabilidade Algumas das principais distribuições discretas Distribuição de Poisson Distribuição Poisson como aproximação da Binomial

Leia mais

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

I NTRODUÇÃO. SÉRIE: Probabilidade

I NTRODUÇÃO. SÉRIE: Probabilidade SUMÁRIO 1. COMBINATÓRIA... 5 1.1. CONJUNTOS... 5 1.2. OPERAÇÕES COM CONJUNTOS... 5 1.3. APLICAÇÕES DOS DIAGRAMAS DE VENN... 6 1.4. FATORIAL... 6 1.5. PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PRINCÍPIO MULTIPLICATIVO)...

Leia mais

MAE0219 Introdução à Probabilidade e Estatística I

MAE0219 Introdução à Probabilidade e Estatística I Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 7 - Probabilidade condicional e independência Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Probabilidade condicional Seja (Ω, A, P) um espaço de probabilidade. Se

Leia mais

Introdução à Probabilidade - parte III

Introdução à Probabilidade - parte III Introdução à Probabilidade - parte III Erica Castilho Rodrigues 02 de Outubro de 2012 Eventos Independentes 3 Eventos Independentes Independência Em alguns casos podemos ter que P(A B) = P(A). O conhecimento

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

Artificial Intelligence, 14-15 1

Artificial Intelligence, 14-15 1 Artificial Intelligence, 14-15 1 Cap. 14: Incerteza Falta de informação suficiente. Conhecimento não completo ou não correto. Planos condicionais podem lidar com incerteza de forma limitada. Ex: Plano

Leia mais

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Revisão de Estatística Aplicada a Finanças

Revisão de Estatística Aplicada a Finanças Revisão de Estatística Aplicada a Finanças INTRODUÇÃO A revisão que apresentaremos destina-se a examinar conceitos importantes de Estatística, que tornem possível a compreensão do conteúdo do livro de

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Princípio da contagem e Probabilidade: conceito

Princípio da contagem e Probabilidade: conceito Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança

Leia mais

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Introdução à análise de dados discretos

Introdução à análise de dados discretos Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:

Leia mais