MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor

Tamanho: px
Começar a partir da página:

Download "MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor"

Transcrição

1 MÉTODOS ESTATÍSTICOS I ª. AVALIAÇÃO PRESENCIAL º Semestre de 00 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor. (,0 pontos) Em uma cidade onde se publicam jornais: A, B e C, constatou-se que entre.000 famílias, assinam: A: 470, B: 40, C: 5, A e B: 0, A e C: 0, B e C: 40 e 75 assinam os três. Escolhendo-se ao acaso uma família, qual a probabilidade de que ela: a) Não assine nenhum dos três jornais? b) Assine apenas um dos três jornais? c) Assine pelo menos dois jornais?. (,0 pontos) Com o diagrama de ramo-e-folhas abaixo, determine: a) Amplitude total, moda e mediana; b) Os quartis e o intervalo interquartil; c) Construa o boxplot (,0 ponto) Numa urna são misturadas 8 bolas numeradas de a 8. Duas bolas (a, b) são retiradas simultaneamente. Qual a probabilidade de a b 0? 4. (,0 pontos) Assuma o experimento lançar dois dados e verificar as faces voltadas para cima onde x representa a face do dado e x representa a face do dado e sejam os eventos: A {( x, x ) x x 8 }; B {( x, x ) x x }; C {( x, x ) x > x }. Determine: a) Pr (A B); b) Pr (A C). 5. (,0 pontos) A probabilidade de um indivíduo de classe A comprar um carro é de /4, de um indivíduo de classe B é / e um indivíduo de classe C é /0. A probabilidade de um indivíduo de classe A comprar um carro da marca D é /0, do indivíduo da classe B comprar um carro da marca D é /5 e de um indivíduo da classe C comprar um carro da marca D é /0. Em certa loja, um carro da marca D foi vendido. Qual a probabilidade de que o comprador tenha sido da classe B?

2 Solução: ) Podemos pensar da seguinte forma: Se 40 assinam B e C e destes, 75 assinam os três, então assinam só os dois. Logo: 5 assinam só os jornais B e C. Se 0 assinam A e C e destes, 75 assinam os três, então 0-75 assinam só os dois: Logo: 45 assinam só os jornais A e C. Se 0 assinam A e B e destes, 75 assinam os três, então 0-75 assinam só os dois: Logo: 5 assinam só os jornais A e B. Se 5 assinam o jornal C, mas destes, 45 assinam juntamente com A e 5 assinam juntamente com B e os 75 com A e B, então: assinam só C. Se 40 assinam o jornal B, mas destes, 5 assinam juntamente com A e 5 assinam juntamente com C e os 75 com A e C, então: assinam só B. Se 470 assinam o jornal A, mas destes, 5 assinam juntamente com B e 45 assinam juntamente com C e os 75 com B e C, então: assinam só A. Assim o total das pessoas que assinam pelo menos um jornal está no diagrama abaixo: B.000 A C Como temos.000 famílias entrevistadas, então o número de famílias que não assinam nenhum dos três jornais é: Logo: 90 famílias não assinam nenhum dos três jornais. a) 90 9 Pr( nenhum ) 0, b) Assinar apenas um dos três pode ser: (só A) ou (só B) ou (só C). Assim: Pr 0,

3 c) Assinar pelo menos dois dos jornais: Pode ser (só A e B) ou (só A e C) ou (só B e C) ou (os três jornais), portanto: Pr 0, ) a) Podemos perceber que o diagrama de ramo-e-folhas inicia em 0 e termina em 09. Portanto, b) Nosso diagrama é formado pelos dados: Q 7. Como vemos no esquema acima, uma vez que é a mediana o ponto central dos dados. Para encontrarmos Q e Q usamos cada uma das duas partes acima, com o valor 7 inclusive. Ou seja: Primeira metade até 7 nos indicará o Q. Logo: Q Segunda metade a partir de 7 nos indicará o Q. Assim, Q O intervalo interquartil será: I Q Q c) Para fazer o boxplot, precisamos dos limites inferior e superior fora dos quais os dados são discrepantes. Lim _ Inf xmin,5 I 0,5 4 0,5 5,5 Lim _ Sup xmax,5 I 09,5 4 09,5 70,5 70, ,5

4 ) O conjunto das possíveis retiradas das bolas é: (,) (,) (,4) (,5) (,) (,7) (,8) (,) (,4) (,5) (,) (,7) (,8) (,4) (,5) (,) (,7) (,8) (4,5) (4,) (4,7) (4,8) (5,) (5,7) (5,8) (,7) (,8) (7,8) Destes, se destacam os pares cuja soma é 0. (,) (,) (,4) (,5) (,) (,7) (,8) (,) (,4) (,5) (,) (,7) (,8) (,4) (,5) (,) (,7) (,8) (4,5) (4,) (4,7) (4,8) (5,) (5,7) (5,8) (,7) (,8) (7,8) Logo, como são possíveis 8 pares, dos quais tem soma igual à 0. Então a probabilidade de a soma ser 0 é: Pr( a b 0) 8 4) Vamos ver o conjunto das possibilidades dos lançamentos dos dois dados. (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (4,) (4,) (4,) (4,4) (4,5) (4,) (5,) (5,) (5,) (5,4) (5,5) (5,) (,) (,) (,) (,4) (,5) (,) O conjunto A está em destaque abaixo: (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (4,) (4,) (4,) (4,4) (4,5) (4,) (5,) (5,) (5,) (5,4) (5,5) (5,) (,) (,) (,) (,4) (,5) (,) O conjunto B está em destaque abaixo: (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (4,) (4,) (4,) (4,4) (4,5) (4,) (5,) (5,) (5,) (5,4) (5,5) (5,) (,) (,) (,) (,4) (,5) (,)

5 O conjunto C está em destaque abaixo: (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (4,) (4,) (4,) (4,4) (4,5) (4,) (5,) (5,) (5,) (5,4) (5,5) (5,) (,) (,) (,) (,4) (,5) (,) a) Pr( A B) Pr( A B) Pr( B) O conjunto A B é o conjunto onde os pares em destaque que aparecem simultaneamente em A e B. (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (4,) (4,) (4,) (4,4) (4,5) (4,) (5,) (5,) (5,) (5,4) (5,5) (5,) (,) (,) (,) (,4) (,5) (,) Observe que o único par que aparece nos dois conjuntos em destaque é o par (4,4). Logo: Pr( A B). Sabemos que P(B) é o número de pares em destaque sobre o total em B. Logo: Pr( B ). Consequentemente: Pr( A B) Pr( A B). Pr( B) Pr( A B) Pr( A C) b) de forma análoga pensamos em Pr( A C). Pr( C) O conjunto A C é o conjunto onde os pares em destaque que aparecem simultaneamente em A e C. (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (,) (,) (,) (,4) (,5) (,) (4,) (4,) (4,) (4,4) (4,5) (4,) (5,) (5,) (5,) (5,4) (5,5) (5,) (,) (,) (,) (,4) (,5) (,) Observe que os únicos pares que aparecem nos dois conjuntos em destaque são os pares (,) e (5,). Logo: Pr( A C). Sabemos que P(C) é o número de pares em destaque sobre o total em C. 5 Logo: Pr( C ).

6 Consequentemente: Pr( A C) Pr( A C) Pr( C) 5. 5 Pr( A C) 5 5) Sejam os eventos: A: o indivíduo da classe A comprou um carro B: o indivíduo da classe B comprou um carro C: o indivíduo da classe C comprou um carro D: o carro comprado foi da marca D Então os dados do nosso problema são: Pr(A)/4 Pr(B)/ Pr(C)/0 Pr(D A)/0 Pr(D B)/5 Pr(D C)/0 Pede-se: Pr(B D). Pelo Teorema de Bayes: Pr( B) Pr( D B) Pr( B D) Pr( A) Pr( D A) Pr( B) Pr( D B) Pr( C) Pr( D C) Pr( B D) 0, ,

Probabilidade Condicional

Probabilidade Condicional PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

Proposta de Resolução da Prova Escrita de MACS Matemática Aplicada Às Ciências Sociais

Proposta de Resolução da Prova Escrita de MACS Matemática Aplicada Às Ciências Sociais Proposta de Resolução da Prova Escrita de MACS Matemática Aplicada Às Ciências Sociais 11.º Ano de Escolaridade Prova 835/2.ª Fase 6 páginas 2015 1. 1.1. Número total de funcionários: 300 560 830 240 1930

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

ARGAMASSAS E CONCRETOS CONCRETOS

ARGAMASSAS E CONCRETOS CONCRETOS ARGAMASSAS E CONCRETOS CONCRETOS CONTROLE ESTATÍSTICO DO CONCRETO Uma das principais formas de avaliar a qualidade de um concreto é através de sua resistência à compressão. Algumas variações nos valores

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

1 Axiomas de Probabilidade

1 Axiomas de Probabilidade 1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

Apresentação Caule e Folha. Exemplo

Apresentação Caule e Folha. Exemplo Análise Exploratória de Dados As técnicas de análise exploratória de dados consistem em gráficos simples de desenhar que podem ser utilizados para resumir rapidamente um conjunto de dados. Uma destas técnicas

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais

MÓDULO 1. I - Estatística Básica

MÓDULO 1. I - Estatística Básica MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um

Leia mais

MATEMÁTICA LISTA 1 - CONJUNTOS PROBLEMAS

MATEMÁTICA LISTA 1 - CONJUNTOS PROBLEMAS MATEMÁTICA Prof. Sabará LISTA 1 - CONJUNTOS PROBLEMAS 1. Numa pesquisa sobre preferência de detergentes realiada numa população de 100 pessoas, constatou-se que 62 consomem o produto A; 47 consomem o produto

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

Instituto Politécnico de Viseu Escola Superior de Tecnologia

Instituto Politécnico de Viseu Escola Superior de Tecnologia Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005

Leia mais

1ª Actividade Formativa

1ª Actividade Formativa 1ª Actividade Formativa 1. Foi feito um inquérito a um grupo de 40 compradores de carros novos, de determinada marca, para determinar quantas reparações ou substituições de peças foram feitas durante o

Leia mais

I.MATEMÁTICA FINANCEIRA

I.MATEMÁTICA FINANCEIRA I.MATEMÁTICA FINANCEIRA 1. CONCEITOS BÁSICOS Aplicações: no atual sistema econômico, como financiamentos de casa e carros, realizações de empréstimos, compras a crediário ou com cartão de crédito, aplicações

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO: PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

Lista de Exercícios 1 - Estatística Descritiva

Lista de Exercícios 1 - Estatística Descritiva 1. O arquivo satisfaçãocomuniversidade.xlsx contém informações de uma amostra de 400 alunos de uma universidade. Deseja-se construir um histograma para a variável desempenho acadêmico, com intervalos de

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

Estatística Básica. Introdução à Análise Exploratória de Dados. Renato Dourado Maia. Instituto de Ciências Agrárias

Estatística Básica. Introdução à Análise Exploratória de Dados. Renato Dourado Maia. Instituto de Ciências Agrárias Estatística Básica Introdução à Análise Exploratória de Dados Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Organização de Dados Hoje, serão discutidos alguns

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

Exemplo Considere novamente os dados sobre a dureza do alumínio. Fonte: Hoaglin, Mosteller e Tukey, 1983, apud Morettin & Bussab,

Exemplo Considere novamente os dados sobre a dureza do alumínio. Fonte: Hoaglin, Mosteller e Tukey, 1983, apud Morettin & Bussab, Gráficos Exemplo Considere novamente os dados sobre a dureza do alumínio. 53,0 70,2 84,3 69,5 77,8 87,5 53,4 82,5 67,3 54,1 70,5 71,4 95,4 51,1 74,4 55,7 63,5 85,8 53,5 64,3 82,7 78,5 55,7 69,1 72,3 59,5

Leia mais

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,

Leia mais

Esmiuçando o Teorema de Bayes e fazendo exercícios

Esmiuçando o Teorema de Bayes e fazendo exercícios PROAILIDADES Esmiuçando o Teorema de ayes e fazendo exercícios ERTOLO Lembrando as Aulas Anteriores Probabilidade Condicional: Teorema do Produto: Se os eventos e E 1 forem INDEPENDENTES: 11/09/2012 ertolo

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 3.

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 3. Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 3.1) Estatística Séries Estatística Uma série estatística define-se como toda

Leia mais

Conjunto de todos os resultados possíveis de um experimento aleatório.

Conjunto de todos os resultados possíveis de um experimento aleatório. VII Probabilidades Em todos os fenômenos estudados pela Estatística, os resultados, mesmo nas mesmas condições de experimentação, variam de uma observação para outra, dificultando a previsão de um resultado

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Exemplo Preferência de Automóveis

Exemplo Preferência de Automóveis Exemplo Preferência de Automóveis Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2013 G. A. Paula (IME-USP) Preferência Automóveis 2 o Semestre 2013 1 /

Leia mais

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma

Leia mais

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações.

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações. Análise descritiva de Dados 4. Medidas resumos para variáveis quantitativas 4.1. Medidas de Posição: Considere uma amostra com n observações: x 1, x,..., x n. a) Média: (ou média aritmética) é representada

Leia mais

Construção do Boxplot utilizando o Excel 2007

Construção do Boxplot utilizando o Excel 2007 1 Construção do Boxplot utilizando o Excel 2007 (1 Passo) Vamos digitar os dados na planilha. Para isso temos três banco de dados (Dados 1, Dados 2 e Dados 3), no qual irão gerar três Boxplot. Figura 1

Leia mais

Especialização em Engenharia Clínica

Especialização em Engenharia Clínica Especialização em Engenharia Clínica Introdução a Bioestatística Docente: > Marcelino M. de Andrade, Dr. Apresentação: Módulo 02 Teoria Elementar da Amostragem A teoria elementar da amostragem é um estudo

Leia mais

Apoio à Decisão. Aulas 1 e 2. Quem sou eu? Mônica Barros, D.Sc. Programa do Curso Ferramentas de Análise do Excel. Mônica Barros

Apoio à Decisão. Aulas 1 e 2. Quem sou eu? Mônica Barros, D.Sc. Programa do Curso Ferramentas de Análise do Excel. Mônica Barros Quem sou eu? Métodos Estatísticos sticos de Apoio à Decisão Aulas 1 e 2 Mônica Barros, D.Sc. Mônica Barros Doutora em Séries Temporais PUC-Rio Mestre em Estatística University of Texas at Austin, EUA Bacharel

Leia mais

RESUMO DA AULA PRÁTICA DE EXCEL

RESUMO DA AULA PRÁTICA DE EXCEL PARA CONSTRUIR TABELAS: RESUMO DA AULA PRÁTICA DE EXCEL Vai em ; Em seguida irá abrir a janela: Na parte Selecione os dados ou somente a variável que deseja analisar, por exemplo: Em seguida marque a opção

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Datas Importantes 2013/01

Datas Importantes 2013/01 INSTRUMENTAÇÃO CARACTERÍSTICAS DE UM SISTEMA DE MEDIÇÃO PROBABILIDADE PROPAGAÇÃO DE INCERTEZA MÍNIMOS QUADRADOS Instrumentação - Profs. Isaac Silva - Filipi Vianna - Felipe Dalla Vecchia 2013 Datas Importantes

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla

Leia mais

000 IT_005582 000 IT_007009

000 IT_005582 000 IT_007009 000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo, sem

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais

Prof. MSc. Herivelto Tiago Marcondes dos Santos FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ PROF. JOÃO MOD

Prof. MSc. Herivelto Tiago Marcondes dos Santos FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ PROF. JOÃO MOD Prof. MSc. Herivelto Tiago Marcondes dos Santos FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ PROF. JOÃO MOD OBJETIVO Utilizar os métodos estatísticos para tomadas de decisões. Ementa: Fundamentos da estatística.

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 marzagao.1@osu.edu PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Saiba mais e encontre um representante local da Minitab em www.minitab.com. resumo do conteúdo

Saiba mais e encontre um representante local da Minitab em www.minitab.com. resumo do conteúdo resumo do conteúdo Capítulo 1: Estatística descritiva e análise gráfica 1.1 Introdução 1.1.1 Objetivos de aprendizagem 1.2 Tipos de Dados 1.2.1 Conceitos básicos 1.2.2 Tipos de dados 1.2.3 Teste de conhecimento:

Leia mais

Avaliação e Desempenho Aula 4

Avaliação e Desempenho Aula 4 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Matemática Profª Valéria Lanna

Matemática Profª Valéria Lanna Matemática Profª Valéria Lanna Para responder a questão 01, utilize os dados da tabela abaixo, que apresenta as freqüências acumuladas das notas de 20 alunos entre 14 e 20 pontos. Notas (em pontos) Frequência

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Teorema da Probabilidade Total e Teorema de Bayes

Teorema da Probabilidade Total e Teorema de Bayes PROBABILIDADES Teorema da Probabilidade Total e Teorema de Bayes BERTOLO Lembrando a Aula Anterior Probabilidade Condicional: Teorema do Produto:. ) Se os eventos B e E 1 forem INDEPENDENTES:. ) 06/09/2012

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase 15 Páginas Duração

Leia mais

PESQUISA DE OPINIÃO PÚBLICA

PESQUISA DE OPINIÃO PÚBLICA PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS ADMINISTRATIVOS FEVEREIRO DE 2008 JOB294 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL Levantar junto à população da área em estudo opiniões relacionadas

Leia mais

Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL

Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL Faculdade de Medicina Universidade Federal do Ceará Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL - Uma curva de distribuição pode descrever a forma da distribuição

Leia mais

DISTRIBUIÇÃO DE FREQÜÊNCIAS

DISTRIBUIÇÃO DE FREQÜÊNCIAS DISTRIBUIÇÃO DE FREQÜÊNCIAS 1 Dados Brutos: são os dados tomados como eles são, de forma desorganizada. Indica-se por x i Rol: são os dados organizados em ordem crescente ou decrescente. Tamanho da amostra:

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

Documento Auxiliar do Conhecimento de Transporte Eletrônico

Documento Auxiliar do Conhecimento de Transporte Eletrônico Documento Auxiliar do Conhecimento de Transporte Eletrônico 8338 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8339 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8340 Documento

Leia mais

RACIOCÍNIO LÓGICO E NOÇÕES BÁSICAS DE MATEMÁTICA (Itens 31 a 40)

RACIOCÍNIO LÓGICO E NOÇÕES BÁSICAS DE MATEMÁTICA (Itens 31 a 40) ITEM 31 RACIOCÍNIO LÓGICO E NOÇÕES BÁSICAS DE MATEMÁTICA (Itens 31 a 40) O apartamento que Renato gostaria de comprar custava 40 mil reais em janeiro. Em fevereiro, o preço do apartamento teve um aumento

Leia mais

NOÇÕES BÁSICAS DE ESTATÍSTICA

NOÇÕES BÁSICAS DE ESTATÍSTICA Curso de Capacitação em Epidemiologia Básica e Análise da Situação de Saúde Ministério da Saúde Secretaria de Vigilância em Saúde NOÇÕES BÁSICAS DE ESTATÍSTICA Gleice Margarete de Souza Conceição Airlane

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

MATEMÁTICA FINANCEIRA PROF. DANIEL DE SOUZA INTRODUÇÃO:

MATEMÁTICA FINANCEIRA PROF. DANIEL DE SOUZA INTRODUÇÃO: 1 MATEMÁTICA FINANCEIRA PROF. DANIEL DE SOUZA INTRODUÇÃO: O PRINCIPAL CONCEITO QUE ORIENTARÁ TODO O NOSSO RACIOCÍNIO AO LONGO DESTE CURSO É O CONCEITO DO VALOR DO DINHEIRO NO TEMPO. EMPRÉSTIMOS OU INVESTIMENTOS

Leia mais

PLANO PEDAGÓGICO DE ENSINO (PPE)

PLANO PEDAGÓGICO DE ENSINO (PPE) I. IDENTIFICAÇÃO CURSO: CST Análise e Desenvolvimento de Sistemas MODALIDADE/FORMA: Presencial DISCIPLINA: Probabilidade e Estatística CÓDIGO/SIGLA: ADS24 PROFESSOR: Jeovani Schmitt Contato: jeovani.schmitt@blumenau.ifc.edu.br

Leia mais

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F.

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. COLÉGIO PEDRO II - UNIDADE CENTRO Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. Lima Aluno(a): Nº Turma 1) Um bombeiro deseja

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Planificação 7º ano 2012/2013 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira

ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira ANÁLISE ESTATÍSTICA de Oliveira uanderson@csn.com.br www.uandersonrebula.blogspot.com CADERNO DE EXERCÍCIOS Tabelas e Gráficos Estatísticos 1) Classifique as Séries abaixo: ) Construção de tabelas: a)

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160 1 MQI 2003 Estatística para Metrologia semestre 2008.01 LISTA DE EXERCÍCIOS # 1 PROBLEMA 1 Uma empresa de TV a cabo toma uma amostra de 1000 clientes, com o objetivo de verificar a relação entre a renda

Leia mais

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007

UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada

Leia mais

01. Dinâmica: do 1, 2, 3

01. Dinâmica: do 1, 2, 3 01. Dinâmica: do 1, 2, 3 Objetivo: Quebra-gelo 1º momento: Formam-se duplas e então solicite para que os dois comecem a contar de um a três, ora um começa, ora o outro. Fica Fácil. 2º momento: Solicite

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Estatística Descritiva I

Estatística Descritiva I Estatística Descritiva I Bacharelado em Economia - FEA - Noturno 1 o Semestre 2016 Profs. Fábio P. Machado e Gilberto A. Paula MAE0219 (Economia-FEA-Noturno) Estatística Descritiva I 1 o Semestre 2016

Leia mais

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio. Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

PESQUISA DE OPINIÃO PÚBLICA

PESQUISA DE OPINIÃO PÚBLICA PESQUISA DE OPINIÃO PÚBLICA SOBRE RELIGIÃO A B R I L D E 2 0 0 6 O P P 0 7 1 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL - Levantar com a população da área em estudo opiniões relacionadas a religião.

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Apresentação Lupércio França Bessegato lupercio.bessegato@ufjf.edu.br Departamento de Estatística

Leia mais

SOCIEDADE CAMPINEIRA DE EDUCAÇÃO E INSTRUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS Média de Qualidade de cada Aspecto por ano/semestre

SOCIEDADE CAMPINEIRA DE EDUCAÇÃO E INSTRUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS Média de Qualidade de cada Aspecto por ano/semestre 1º Semestre de 2007 03/08/16 17:03 Pagina 1 de19 2º Semestre de 2007 03/08/16 17:03 Pagina 2 de19 1º Semestre de 2008 03/08/16 17:03 Pagina 3 de19 2º Semestre de 2008 03/08/16 17:03 Pagina 4 de19 1º Semestre

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

Horário de Aulas Fundamental II

Horário de Aulas Fundamental II Infantil - Fundamental - Médio Horário de Aulas Fundamental II 1ª AULA 7H10 ÀS 8H 2ª AULA 8H ÀS 8H50 3ª AULA 8H50 ÀS 9H40 INTERVALO 9H40 ÀS 10H 4ª AULA 10H ÀS 10H50 5ª AULA 10H50 ÀS 11H40 6ª AULA 11H40

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais