Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Tamanho: px
Começar a partir da página:

Download "Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC."

Transcrição

1 Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos os professores universitários que só lecionam em faculdades da cidade X, A é o conjunto de todos os professores que lecionam na faculdade A, B é o conjunto de todos os professores que lecionam na faculdade B e M é o conjunto de todos os médicos que trabalham na cidade X. Em todas as regiões do diagrama, é correto representar pelo menos um habitante da cidade X. A respeito do diagrama, foram feitas quatro afirmações: I. Todos os médicos que trabalham na cidade X e são professores universitários lecionam na faculdade A. II. Todo professor que leciona na faculdade A e não leciona na faculdade B é médico. III. Nenhum professor universitário que só lecione em faculdades da cidade X, mas não lecione nem na faculdade A e nem na faculdade B, é médico. IV. Algum professor universitário que trabalha na cidade X leciona, simultaneamente, nas faculdades A e B, mas não é médico. Está correto o que se afirma APENAS em (A) I. (B) I e III. (C) I, III e IV. (D) II e IV. (E) IV. Resolução Vamos analisar cada uma das alternativas de per si.

2 I. Todos os médicos que trabalham na cidade X e são professores universitários lecionam na faculdade A. O item I é falso, como pode bem ser visto no diagrama acima. A região pintada de vermelho possui pelo menos um elemento que é médico que trabalha na cidade X (pois é elemento de M), é professor universitário que só leciona em faculdades da cidade X e não leciona na faculdade A. II. Todo professor que leciona na faculdade A e não leciona na faculdade B é médico. O item II é falso, como pode ser visto no diagrama acima. A região pintada de vermelho possui pelo menos um elemento que leciona na faculdade A, não leciona na faculdade B e não é médico. III. Nenhum professor universitário que só lecione em faculdades da cidade X, mas não lecione nem na faculdade A e nem na faculdade B, é médico.

3 A região pintada de vermelho indica o conjunto das pessoas que só lecionam em faculdades da cidade X (elementos de U), não leciona nem na faculdade A e nem na faculdade B e não são médicos. O item III é falso. IV. Algum professor universitário que trabalha na cidade X leciona, simultaneamente, nas faculdades A e B, mas não é médico. De acordo com a região pintada de vermelho, percebemos que todos os professores universitários que trabalham na cidade X e que lecionam simultaneamente nas faculdades A e B não são médicos. O item IV é verdadeiro. Letra E 02. (SEFAZ-SP 2009/FCC) Considere a sequência: (P, 3, S, 4, W, 5, B, 4, F, 3,...) De acordo com a lógica observada nos primeiros elementos da sequência, o elemento, dentre os apresentados, que a completa corretamente é (A) C

4 (B) G (C) I (D) 2 (E) 4 Resolução Observe que o primeiro elemento da sequência é a letra P. O número 3 que o segue indica que devemos avançar 3 letras na sequência do alfabeto. 1ª 2ª 3ª O número 4 que aparece após a letra S indica que devemos avançar 4 letras na sequência do alfabeto. 1ª 2ª 3ª 4ª O número 5 que aparece após a letra W indica que devemos avançar 5 letras na sequência do alfabeto. Quando o alfabeto acaba, retornamos para a letra A. 1ª 2ª 3ª 4ª 5ª O número 4 que aparece após a letra B indica que devemos avançar 4 letras na sequência do alfabeto. 1ª 2ª 3ª 4ª O número 3 que aparece após a letra F indica que devemos avançar 3 letras na sequência do alfabeto. 1ª 2ª 3ª Letra C 03. (SEFAZ-SP 2009/FCC) Seis pessoas, entre elas Marcos, irão se sentar ao redor de uma mesa circular, nas posições indicadas pelas letras do esquema abaixo. Nesse esquema, dizemos que a posição A está à frente da posição D, a posição B está entre as posições A e C e a posição E está à esquerda da posição F.

5 Sabe-se que: - Pedro não se sentará à frente de Bruno. - Bruno ficará à esquerda de André e à direita de Sérgio. - Luís irá se sentar à frente de Sérgio. Nessas condições, é correto afirmar que (A) Pedro ficará sentado à esquerda de Luís. (B) Luís se sentará entre André e Marcos. (C) Bruno ficará à frente de Luís. (D) Pedro estará sentado à frente de Marcos. (E) Marcos se sentará entre Pedro e Sérgio. Resolução Em uma mesa circular o que interessa não é a posição absoluta de cada pessoa e sim a posição relativa: quem está à frente de quem, quem está à direita de quem, etc. Vamos colocar Bruno, por exemplo, na posição D. Como Bruno esta à esquerda de André, então André está na posição E. Como Bruno está à direita de Sérgio, então Sérgio está na posição C. Luís está à frente de Sérgio, portanto, Luís está na posição F.

6 Como Pedro não está à frente de Bruno, então Pedro está na posição B. Por exclusão, Marcos está na posição A. (B) Luís se sentará entre André e Marcos. Letra B 04. (SEFAZ-SP 2009/FCC) Um torneio de futebol passará a ser disputado anualmente por seis equipes. O troféu será de posse transitória, isto é, o campeão de um ano fica com o troféu até a próxima edição do torneio, quando o passa para o novo campeão. Uma equipe só ficará definitivamente com o troféu quando vencer quatro edições consecutivas do torneio ou sete edições no total, o que acontecer primeiro. Quando isso ocorrer, um novo troféu será confeccionado. Os números mínimo e máximo de edições que deverão ocorrer até que uma equipe fique com a posse definitiva do troféu valem, respectivamente, (A) 4 e 7 (B) 4 e 37 (C) 4 e 43 (D) 6 e 36 (E) 6 e 42 Resolução O número mínimo é dado quando uma das equipes vence as 4 primeiras edições consecutivamente.

7 O número máximo é dado quando cada equipe vencer 6 edições não consecutivas (6x6=36) e alguma das equipes vencer mais uma edição totalizando 37 edições. Letra B 05. (SEFAZ-SP 2009/FCC) Os alunos de uma faculdade de História criaram a Espiral do Tempo num dos pátios da escola. Na Espiral do Tempo, todos os anos da era cristã são representados segundo a lógica da figura a seguir, na qual só foram mostrados os anos de 1 a 9. A espiral é atualizada anualmente, representando-se o ano que se inicia seguindo a mesma lógica dos anteriores. Se a soma de todos os números que compõem a Espiral do Tempo em 2009 é igual a S, então, em 2010, essa soma passará a ser igual a (A) S (B) S (C) S (D) S (E) S Resolução Observe que o número 1 aparece uma vez, o número 2 aparece duas vezes, o número 3 aparece três vezes, o número 4 aparece quatro vezes e assim sucessivamente. Desta forma, o número 2010 aparecerá 2010 vezes. Se a soma dos números até o ano de 2009 é igual a S, então em 2010 a soma será: Letra A

8 06. (SEFAZ-SP 2009/FCC) Num terreno plano, partindo de um ponto P, uma pessoa fez uma série de deslocamentos, descritos a seguir, até chegar a um ponto Q. - Avançou 10 metros em linha reta, numa certa direção. - Girou 90 para a direita. - Avançou 12 metros em linha reta. - Girou 90 para a direita. - Avançou 15 metros em linha reta. - Girou 90 para a esquerda. - Avançou 7 metros em linha reta. - Girou 90 para a esquerda. - Avançou 5 metros em linha reta, atingindo o ponto Q. A distância, em metros, entre os pontos P e Q é igual a (A) 22 (B) 19 (C) 17 (D) 10 (E) 5 Resolução Vamos nos localizar em um plano cartesiano e colocar como ponto inicial a origem do plano. Digamos que o primeiro passo foi dado para a direita. - Avançou 10 metros em linha reta, numa certa direção. - Girou 90 para a direita. - Avançou 12 metros em linha reta. - Girou 90 para a direita. - Avançou 15 metros em linha reta. - Girou 90 para a esquerda. - Avançou 7 metros em linha reta. - Girou 90 para a esquerda. - Avançou 5 metros em linha reta, atingindo o ponto Q.

9 O trajeto feito é o seguinte: P 10 metros 15 metros 12 metros 7 metros 5 metros 10 metros 5 metros Q A distância de P a Q é igual a soma das distâncias percorridas na vertical. Letra B (SEFAZ-SP 2009/FCC) Em toda a sua carreira, um tenista já disputou N partidas, tendo vencido 70% delas. Considere que esse tenista ainda vá disputar, antes de se aposentar, mais X partidas, e que vença todas elas. Para que o seu percentual de vitórias ao terminar sua carreira suba para 90%, X deverá ser igual a (A) N. (B) 1,2 N. (C) 1,3 N. (D) 1,5 N. (E) 2 N. Resolução O tenista venceu 70% das N primeiras partidas. Portanto, o número partidas vencidas é igual a: 70% ,7

10 O tenista jogará mais X partidas e vencerá todas as X partidas. Portanto, o número de partidas vencidas pelo tenista ao longo de toda a sua carreira será igual a: 0,7 Sabemos que ao longo da carreira o tenista jogou jogos. Queremos que o número de partidas vencidas seja igual a 90% do número total de jogos. Portanto: Letra E 90% 0, ,7 0,9 0,7 0,9 0,9 0,9 0,9 0,7 0,1 0,2 0,2 0, (SEFAZ-SP 2009/FCC) No período de 2010 a 2050, os anos bissextos (isto é, aqueles com 366 dias) são todos aqueles divisíveis por 4. Sabendo que 2010 terá 53 sextas-feiras, o primeiro ano desse período em que o dia 1 o de janeiro cairá numa segunda-feira será (A) 2013 (B) 2014 (C) 2016 (D) 2018 (E) 2019 Resolução Para verificar se um ano é bissexto ou não, devemos dividir o ano por 4 e verificar o resto. Se o resto for igual a 0, então o ano é bissexto e tem 366 dias, caso contrário, não será um ano bissexto e terá 365 dias.

11 Gosto de dar uma boa dica para verificar se um ano é ou não bissexto. Para começar, os anos bissextos devem ser pares. Ora, sabemos que os anos pares ou são anos de Copa do Mundo ou são anos de Olimpíadas. Se o ano for de Copa do Mundo, então não é bissexto. Se o ano for de Olimpíada, então o ano é bissexto. Gostou? Quando dividimos 2010 por 4, obtemos resto igual a 2. O ano de 2010 não é um ano bissexto porque não é divisível por 4, portanto tem 365 dias. Estamos em Copa do Mundo, 2010 não é, portanto, um ano bissexto. Para saber o número de semanas em um ano, basta dividir 365 por / Isto significa que os anos não bissextos possuem 52 semanas completas e mais 1 dia. Ou seja, cada dia da semana aparece em um ano exatamente 52 vezes, sendo que um desses dias aparece 53 vezes. O dia da semana que aparece 53 vezes é o dia que começa e termina o ano. No caso de 2010, este dia é sexta-feira. Concluímos que o ano de 2010 começou na sexta-feira e terminará na sexta-feira. Se o ano for bissexto, serão dois dias que aparecerão duas vezes: o dia da semana que começará o ano (1º de janeiro) e o dia da semana que for 2 de janeiro. Seguindo o mesmo raciocínio, o dia da semana de 31 de dezembro é o mesmo de 2 de janeiro. Se 2010 terminará na sexta-feira, então 2011 (que também não é bissexto porque é ímpar) começará e terminará no sábado é um ano bissexto (é divisível por 4 e será ano de Olimpíada). Como 2011 terminará no sábado, então 2012 começará no domingo. O dia 2 de janeiro será uma segunda-feira. Portanto, 2012 terminará na segunda-feira. Seguindo mesmo raciocínio, 2013, que não é bissexto (porque é ímpar), começa e termina na terça-feira (também não é bissexto porque o resto da divisão por 4 é igual a 2. Lembre-se que 2014 será a Copa do Mundo no Brasil) começa e termina na quarta-feira, 2015 (também não é bissexto porque é ímpar) começa e termina na quinta-feira (basta dividir 2016 por 4 e verificar que o resto da divisão é 0) é um ano bissexto e começará na sexta-feira. O dia 2 de janeiro de 2016 será um sábado. Portanto, 2016 terminará no sábado.

12 O ano de 2017, que não é bissexto (porque é ímpar), começará e terminará no domingo. Assim, o ano de 2018 começará na segunda-feira. Letra D 09. (SEFAZ-SP 2009/FCC) Nos últimos n anos, ocorreram 22 edições de um congresso médico, sempre realizadas em uma única dentre as três seguintes cidades: São Paulo, Rio de Janeiro e Belo Horizonte. Esse congresso nunca ocorreu duas vezes no mesmo ano, mas houve anos em que ele não foi realizado. Sabe-se ainda que, nesse período de n anos, houve 24 anos em que o congresso não ocorreu em São Paulo, 23 anos em que não aconteceu no Rio de Janeiro e 27 anos em que não foi realizado em Belo Horizonte. Nessas condições, o valor de n é igual a (A) 29 (B) 30 (C) 31 (D) 32 (E) 33 Resolução Vamos considerar que o congresso foi realizado vezes em São Paulo, vezes no Rio de Janeiro e vezes em Belo Horizonte. Vamos considerar ainda que o congresso não foi realizado durante anos (não necessariamente consecutivos). Desta forma,. Como ocorreram 22 edições do congresso, concluímos que: 22 Houve 24 anos em que o congresso não ocorreu em São Paulo. 24 Houve 23 anos em que não aconteceu no Rio de Janeiro. 23 Houve 27 anos em que não foi realizado em Belo Horizonte. 27 Temos o seguinte sistema de equações:

13 Observe que não estamos interessados em saber o valor particular de cada uma dessas incógnitas. Estamos interessados no valor de que é igual a. Vamos somar todas as equações obtidas membro a membro Dividindo os dois membros desta equação por 3: Letra D (SEFAZ-SP 2009/FCC) Uma caixa retangular tem 46 cm de comprimento, 9 cm de largura e 20 cm de altura. Considere a maior bola que caiba inteiramente nessa caixa. A máxima quantidade de bolas iguais a essa que podem ser colocadas nessa caixa, de forma que ela possa ser tampada, é (A) 6 (B) 8 (C) 9 (D) 10 (E) 12 Resolução O diâmetro da bola é limitado pela menor das dimensões da caixa retangular. Portanto, o maior diâmetro possível da bola é de 9 cm. Como a altura da caixa é de 20 cm, podemos arrumar duas camadas de bola (uma em cima da outra). 9 cm 20 cm 46 cm Como a caixa tem 46 cm de comprimento, podemos colocar no máximo 5 bolas uma ao lado da outra (pois 9x5=45). Teremos, portanto, 2 camadas de 5 bolas, totalizando 10 bolas.

14 Como a altura da caixa é de 20 cm, ficam sobrando 2 cm na altura. Como o comprimento é de 46 cm, fica sobrando 1 cm no comprimento. Letra D 11. (SEFAZ-SP 2009/FCC) Os dados da tabela a seguir referem-se às cinco escolas municipais de uma pequena cidade. Sabe-se que nenhum professor leciona ao mesmo tempo em duas dessas escolas e que a proporção entre professores e alunos em cada uma delas é de 1 para 20. Serão sorteados n professores da rede municipal dessa cidade para realizar um curso. Para que entre os sorteados tenha-se, certamente, pelo menos um professor de cada escola, n deverá ser, no mínimo, (A) 5 (B) 72 (C) 73 (D) 121 (E) 122 Resolução A proporção entre professores e alunos em cada uma das escolas é de 1 para 20. Isso quer dizer, que para calcular a quantidade de professores, devemos dividir a quantidade de alunos por 20. Na escola A há 16 x 20 = 320 alunos. Portanto, são 320/20 = 16 professores. Na escola B há 20 x 25 = 500 alunos. Portanto, são 500/20 = 25 professores. Na escola C há 8 x 15 = 120 alunos. Portanto, são 120/20 = 6 professores. Na escola D há 48 x 30 = alunos. Portanto, são 1.440/20 = 72 professores. Na escola E há 8 x 20 = 160 alunos. Portanto, são 160/20 = 8 professores. Resumindo:

15 Escola Quantidade de Professores A 16 B 25 C 6 D 72 E 8 Realizar-se-á um sorteio de n professores. Queremos que pelo menos um professor de cada escola seja sorteado. Qual o número mínimo de professores que devem ser sorteados para que isso aconteça? Devemos pensar na pior das hipóteses: Imagine que os professores da escola D (a que mais tem professores) estão com MUITA sorte. E, por coincidência ou não, todos eles são sorteados. Então, com 72 sorteios, podemos garantir que teremos pelo menos um professor de cada escola sendo sorteado? Não! Agora os professores da escola B (a segunda no ranking de número de professores) estão com muita sorte. E todos os 25 professores são sorteados. Podemos concluir que, em um caso muito extremo, realizando = 97 sorteios seriam sorteados apenas professores das escolas D e B. Em seguida, a maré de sorte segue para os professores da escola A e depois para os professores da escola E. Já temos um total de = 121 sorteios. Pensando em casos extremos, poderia acontecer que destes 121 sorteados, todos os contemplados lecionassem nas escolas A, B, D e E. Realizando mais um sorteio, agora não tem como fugir: o próximo contemplado seguramente será um professor da escola A (porque todos os professores das outras escolas já o foram). Concluímos que com 122 sorteios, pelo menos um professor de cada escola será sorteado. Letra E

16 12. (SEFAZ-SP 2009/FCC) O setor de fiscalização da secretaria de meio ambiente de um município é composto por seis fiscais, sendo três biólogos e três agrônomos. Para cada fiscalização, é designada uma equipe de quatro fiscais, sendo dois biólogos e dois agrônomos. São dadas a seguir as equipes para as três próximas fiscalizações que serão realizadas. Sabendo que Pedro é biólogo, é correto afirmar que, necessariamente, (A) Valéria é agrônoma. (B) Tânia é bióloga. (C) Rafael é agrônomo. (D) Celina é bióloga. (E) Murilo é agrônomo. Resolução Vamos observar o segundo grupo de fiscalização. Sabemos que neste grupo deve haver dois biólogos e dois agrônomos. Como Pedro é biólogo, apenas um dentre Tânia, Valéria e Murilo é biólogo. Vamos testar cada uma das possibilidades: i) Tânia é bióloga? Se Tânia for bióloga, então Valéria e Murilo são agrônomos. Contradição, pois no primeiro grupo de fiscalização em que Valéria e Murilo figuram (eles são agrônomos) devemos ter dois biólogos: Celina e Rafael. Temos, portanto, 4 biólogos, a saber: Celina, Rafael, Tânia e Pedro. Devemos descartar esta possibilidade de Tânia ser bióloga. ii) Valéria é bióloga? Se Valéria for bióloga, então Tânia e Murilo são agrônomos. Contradição, pois no terceiro grupo de fiscalização em que Tânia e Murilo figuram (eles são agrônomos) devemos ter dois biólogos: Celina e Rafael. Temos, portanto, 4 biólogos, a saber: Celina, Rafael, Valéria e Pedro. Devemos descartar esta possibilidade de Valéria ser bióloga.

17 iii) Por exclusão, concluímos que Murilo é biólogo. Murilo sendo o biólogo, Tânia e Valéria são agrônomas. Letra A 13. (SEFAZ-SP 2009/FCC) Tiago é capaz de cortar a grama do jardim de sua casa em 2/3 do tempo que seu irmão Gabriel faria o mesmo serviço e em 1/3 do tempo que seu outro irmão, Rodrigo, conseguiria. Se os três decidirem cortar a grama do jardim juntos, levarão 10 minutos. O tempo, em minutos, que Gabriel e Rodrigo levariam para cortar a grama do jardim de sua casa juntos é (A) 15 (B) 18 (C) 20 (D) 27 (E) 30 Resolução Se Tiago é capaz de cortar a grama do jardim de sua casa em 2/3 do tempo que Gabriel faria, então enquanto Tiago corta a grama do jardim todo, Gabriel corta apenas 2/3 da grama. Se Tiago é capaz de cortar a grama do jardim de sua casa em 1/3 do tempo que Rodrigo faria, então enquanto Tiago corta a grama do jardim todo, Rodrigo corta apenas 1/3 da grama. Juntando as duas informações temos o seguinte: o tempo que Tiago leva para cortar a grama toda do jardim é igual ao tempo que Gabriel e Rodrigo (juntos) levam para cortar a grama toda (pois 2/3 + 1/3 = 1). Ou seja, Tiago tem a mesma capacidade de trabalhar de Gabriel e Rodrigo juntos. Se os três decidem cortar a grama do jardim juntos e levam 10 minutos, isto quer dizer que nestes 10 minutos Tiago cortou metade da grama e Gabriel e Rodrigo (juntos) cortaram a outra metade. Se Gabriel e Rodrigo cortam metade da grama em 10 minutos, eles cortam a grama toda em 20 minutos. Letra C 14. (SEFAZ-SP 2009/FCC) Considere a afirmação: Pelo menos um ministro participará da reunião ou nenhuma decisão será tomada. Para que essa afirmação seja FALSA

18 (A) é suficiente que nenhum ministro tenha participado da reunião e duas decisões tenham sido tomadas. (B) é suficiente que dois ministros tenham participado da reunião e alguma decisão tenha sido tomada. (C) é necessário e suficiente que alguma decisão tenha sido tomada, independentemente da participação de ministros na reunião. (D) é necessário que nenhum ministro tenha participado da reunião e duas decisões tenham sido tomadas. (E) é necessário que dois ministros tenham participado da reunião e nenhuma decisão tenha sido tomada. Resolução Vamos lembrar alguns fatos sobre proposições compostas. Uma proposição do tipo p ou q é verdadeira quando pelo menos um dos componentes é verdadeiro e falso quando os dois componentes forem falsos. Para que uma proposição do tipo p ou q seja falsa, devemos impor que as duas proposições p, q sejam falsas. Desta forma, devemos forçar a falsidade das duas proposições componentes: Pelo menos um ministro participará da reunião (F) Para que esta proposição seja falsa, devemos ter que nenhum ministro participe da reunião. Nenhuma decisão será tomada (F) Para que esta proposição seja falsa, pelo menos uma decisão deve ser tomada. Portanto, se duas decisões forem tomadas, a proposição obrigatoriamente será falsa. Observe que não precisamos de duas decisões, apenas uma já bastaria. Letra A 15. (SEFAZ-SP 2009/FCC) Uma empresa mantém a seguinte regra em relação a seus funcionários: Se um funcionário tem mais de 45 anos de idade, então ele deverá, todo ano, realizar pelo menos um exame médico e tomar a vacina contra a gripe. Considerando que essa regra seja sempre cumprida, é correto concluir que, necessariamente, se um funcionário dessa empresa (A) anualmente realiza um exame médico e toma a vacina contra a gripe, então ele tem mais de 45 anos de idade. (B) tem 40 anos de idade, então ele não realiza exames médicos anualmente ou não toma a vacina contra a gripe. (C) não realizou nenhum exame médico nos últimos dois anos, então ele não tem 50 ou mais anos de idade. (D) tem entre 55 e 60 anos de idade, então ele realiza um único exame médico por ano, além de tomar a vacina contra a gripe.

19 (E) tomou a vacina contra a gripe ou realizou exames médicos nos últimos dois anos, então ele tem pelo menos 47 anos de idade. Resolução Vamos dar nomes às proposições: p: um funcionário tem mais de 45 anos de idade. q: ele deverá, todo ano, realizar pelo menos um exame médico. r: ele deverá, todo ano, tomar a vacina contra a gripe. Em Lógica, o símbolo do conectivo se...,então... é uma seta e o símbolo do conectivo e é. A proposição expressa no enunciado é simbolizada assim:. Para que a regra seja cumprida, a proposição deve ser sempre verdadeira. Vamos construir a tabela-verdade correspondente a esta proposição. A tabelaverdade dispõe as relações entre os valores lógicos das proposições. Tabelasverdades são especialmente usadas para determinar os valores lógicos de proposições construídas a partir de proposições simples. Lembre-se que o número de linhas de uma tabela verdade composta por proposições simples é igual a 2. Como são 3 proposições simples componentes, então a tabela terá 2 3 = 8 linhas. Para calcular o valor lógico de, devemos calcular o valor lógico da proposição e, em seguida, conectar a proposição com através do conectivo se..., então.... V V V V V F V F V V F F F V V F V F F F V F F F Este é o modelo inicial de uma tabela-verdade composta por 3 proposições simples. Para listar todas as possibilidades, devemos proceder assim: Para a primeira proposição, colocamos 4 V s seguidos de 4 F s. Para a segunda proposição, colocamos 2 V, 2F, 2V, 2F. Para a terceira proposição colocamos 1V, 1F, 1V, 1F, 1V, 1F, 1V, 1F.

20 Lembre-se que uma proposição composta pelo conectivo e ( ) só é verdadeira quando todas as proposições componentes forem verdadeiras. Portanto, a proposição é verdadeira nas linhas 1 e 5. V V V V V V F F V F V F V F F F F V V V F V F F F F V F F F F F Vamos agora conectar a proposição com a proposição formando a proposição. Lembre-se que uma proposição do tipo só é falsa quando A é verdadeira e B é falsa. Ou seja, uma condicional só é falsa quando o antecedente é verdadeiro e o consequente é falso. O antecedente é a proposição (1ª coluna) e o consequente é a proposição (4ª coluna). V V V V V V V F F F V F V F F V F F F F F V V V V F V F F V F F V F V F F F F V Para que a regra seja cumprida, devemos nos ater apenas às linhas em que a proposição é verdadeira. Vamos tomar esta tabela como referência. V V V V V F V V V V F V F F V F F V F V F F F F V Vamos analisar cada uma das alternativas de per si.

21 ... é correto concluir que, necessariamente, se um funcionário dessa empresa (A) anualmente realiza um exame médico e toma a vacina contra a gripe, então ele tem mais de 45 anos de idade. Esta alternativa é falsa, pois se q é verdadeira (o funcionário realiza anualmente pelo menos um exame médico) e r é verdadeira (o funcionário anualmente toma a vacina contra a gripe), então p pode ser verdadeira ou falsa (o funcionário pode ter qualquer idade). Basta olhar as duas primeiras linhas da última tabela construída. V V V V V F V V V V (B) tem 40 anos de idade, então ele não realiza exames médicos anualmente ou não toma a vacina contra a gripe. Se o funcionário tem 40 anos de idade, então a proposição é falsa. Neste caso, o funcionário pode se sentir a vontade para realizar os exames médicos ou não e tomar a vacina contra a gripe ou não. Basta olhar as 4 últimas linhas da tabela. A alternativa B é falsa. F V V V V F V F F V F F V F V F F F F V (C) não realizou nenhum exame médico nos últimos dois anos, então ele não tem 50 ou mais anos de idade. Se o funcionário não realizou os exames médicos nos últimos dois anos, então a proposição q é falsa. Devemos olhar apenas para as duas últimas linhas da tabela de referência. F F V F V F F F F V Percebemos que quando q é falsa, p também o é. Portanto, o funcionário tem menos de 45 anos. A alternativa C é verdadeira.

22 (D) tem entre 55 e 60 anos de idade, então ele realiza um único exame médico por ano, além de tomar a vacina contra a gripe. Se ele tem entre 55 e 60 anos de idade, então ele deve realizar anualmente pelo menos um exame médico por ano e tomar a vacina contra a gripe. Esta alternativa é falsa pois está escrito que o funcionário deve realizar apenas um exame médico. (E) tomou a vacina contra a gripe ou realizou exames médicos nos últimos dois anos, então ele tem pelo menos 47 anos de idade. A alternativa E fala que q é verdadeira ou r é verdadeira. Vamos olhar para as quatro primeiras linhas da tabela de referência. V V V V V F V V V V F V F F V F F V F V Observe que p pode ser verdadeira ou falsa. Portanto, o funcionário pode ter qualquer idade. A alternativa E é falsa. Letra C (SEFAZ-SP 2009/FCC) Instruções: Para responder às questões de números 16 e 17, considere o texto e o quadro abaixo. O tabuleiro a seguir é usado em um jogo que uma professora de Matemática costuma propor a seus alunos do 6º ano. A cada rodada, cada jogador, inicialmente colocado na casa onde está marcado o número 7, deve jogar um dado numerado de 1 a 6 e dividir o número da casa onde se encontra pela pontuação obtida no dado. O resto dessa divisão indicará a quantidade de casas que ele deverá avançar. Por exemplo, se na primeira rodada um jogador tirar 5, ele deverá avançar 2 casas, que é o resto da divisão de 7 por 5, chegando à casa onde está marcado o número 27. O jogador que primeiro atingir a casa onde está escrito CHEGADA é o vencedor. 16. (SEFAZ-SP 2009/FCC) Lendo-se as regras do jogo, percebe-se que sua dinâmica depende dos números marcados nas diversas casas do tabuleiro. O número 27, marcado na terceira casa, poderia ser trocado, sem que houvesse qualquer alteração na dinâmica do jogo, pelo número (A) 77 (B) 81

23 (C) 84 (D) 87 (E) 96 Resolução O número a ser trocado, deve possuir os mesmos restos das divisões de 27 por 1, 2, 3, 4, 5 e 6 respectivamente. Obviamente não precisamos testar as divisões por 1, já que qualquer número inteiro dividido por 1 deixa resto 0. O resto da divisão de 27 por 2 é igual a 1. O resto da divisão de 27 por 3 é igual a 0. O resto da divisão de 27 por 4 é igual a 3. O resto da divisão de 27 por 5 é igual a 2. O resto da divisão de 27 por 6 é igual a 3. (A) 77 O resto da divisão de 77 por 2 é igual a 1. O resto da divisão de 77 por 3 é igual a 2. O resto da divisão de 77 por 4 é igual a 1. O resto da divisão de 77 por 5 é igual a 2. O resto da divisão de 77 por 6 é igual a 5. Observe que a lista de restos não coincidiu. A alternativa A é falsa. (B) 81 O resto da divisão de 81 por 2 é igual a 1. O resto da divisão de 81 por 3 é igual a 0. O resto da divisão de 81 por 4 é igual a 1. O resto da divisão de 81 por 5 é igual a 1. O resto da divisão de 81 por 6 é igual a 3. Observe que a lista de restos não coincidiu. A alternativa B é falsa. (C) 84 O resto da divisão de 84 por 2 é igual a 0. O resto da divisão de 84 por 3 é igual a 0. O resto da divisão de 84 por 4 é igual a 0. O resto da divisão de 84 por 5 é igual a 4. O resto da divisão de 84 por 6 é igual a 0. Observe que a lista de restos não coincidiu. A alternativa C é falsa. (D) 87

24 O resto da divisão de 87 por 2 é igual a 1. O resto da divisão de 87 por 3 é igual a 0. O resto da divisão de 87 por 4 é igual a 3. O resto da divisão de 87 por 5 é igual a 2. O resto da divisão de 87 por 6 é igual a 3. A lista de restos coincidiu e a resposta é a letra D. (E) 96 O resto da divisão de 96 por 2 é igual a 0. O resto da divisão de 96 por 3 é igual a 0. O resto da divisão de 96 por 4 é igual a 0. O resto da divisão de 96 por 5 é igual a 1. O resto da divisão de 96 por 6 é igual a 0. Observe que a lista de restos não coincidiu. A alternativa E é falsa. Não precisaríamos efetuar todas as divisões. Quando você percebe que algum resto não coincide, podemos eliminar a alternativa e verificar a próxima. 17. (SEFAZ-SP 2009/FCC) Se um jogador cair em uma determinada casa do tabuleiro, ele não poderá mais ganhar o jogo, pois não conseguirá mais avançar a partir daquela casa. Por esse motivo, essa casa é chamada de buraco negro. Para que um jogador caia no buraco negro, ele deverá, necessariamente, estar numa outra casa específica do tabuleiro e, ao jogar o dado, obter pontuação igual a (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 Resolução

25 O buraco negro é uma casa que a pessoa fica presa, ou seja, o número de casas a serem avançadas ao lançar o dado é igual a 0. Isto significa que é um número divisível por 1, 2, 3, 4, 5 e 6. Para encontrar um número que seja divisível por 1, 2, 3, 4, 5 e 6 devemos calcular o mínimo múltiplo comum entre eles. 1,2,3,4,5,6 2 1,1,3,2,5,3 2 1,1,3,1,5,3 3 1,1,1,1,5,1 5 1,1,1,1,1,1 Desta forma, 1,2,3,4,5, Isto significa que os múltiplos de 60 são divisíveis (deixam resto 0) por 1, 2, 3, 4, 5 e 6. O único número apresentado no jogo que é múltiplo de 60 é o próprio 60. Este é o buraco negro. Buraco Negro Perceba: quando dividimos 60 por 1, o resto da divisão é 0. O aluno deve ficar parado. Quando dividimos 60 por 2, o resto da divisão é 0. O aluno deve ficar parado. Quando dividimos 60 por 3, o resto da divisão é 0. O aluno deve ficar parado. Quando dividimos 60 por 4, o resto da divisão é 0. O aluno deve ficar parado. Quando dividimos 60 por 5, o resto da divisão é 0. O aluno deve ficar parado. Quando dividimos 60 por 6, o resto da divisão é 0. O aluno deve ficar parado. Interessante, não? Bom, vamos voltar à questão. Se o aluno estiver na casa de número 8 há alguma chance de ele avançar apenas uma casa para cair no buraco negro? Vejamos: 8 dividido por 1 deixa resto 0 e o aluno fica parado. 8 dividido por 2 deixa resto 0 e o aluno fica parado. 8 dividido por 3 deixa resto 2, o aluno avança duas casas e pula o buraco negro. 8 dividido por 4 deixa resto 0 e o aluno fica parado. 8 dividido por 5 deixa resto 3, o aluno avança três casas e pula o buraco negro.

26 8 dividido por 6 deixa resto 2, o aluno avança 2 casas e pula o buraco negro. Esta não é a casa que procuramos. Se o aluno estiver na casa de número 41 há alguma chance de ele avançar duas casas para cair no buraco negro? 41 dividido por 1 deixa resto 0 e o aluno fica parado. 41 dividido por 2 deixa resto 1, o aluno avança apenas uma casa e não cai no buraco negro. 41 dividido por 3 deixa resto 2, o aluno avança duas casas e cai no buraco negro. Esta é a casa que nos interessa. Portanto, o aluno deve estar na casa de número 41 e obter 3 pontos no dado. Letra B 18. (SEFAZ-SP 2009/FCC) Considere as seguintes afirmações: I. Se ocorrer uma crise econômica, então o dólar não subirá. II. Ou o dólar subirá, ou os salários serão reajustados, mas não ambos. III. Os salários serão reajustados se, e somente se, não ocorrer uma crise econômica. Sabendo que as três afirmações são verdadeiras, é correto concluir que, necessariamente, (A) o dólar não subirá, os salários não serão reajustados e não ocorrerá uma crise econômica. (B) o dólar subirá, os salários não serão reajustados e ocorrerá uma crise econômica. (C) o dólar não subirá, os salários serão reajustados e ocorrerá uma crise econômica. (D) o dólar subirá, os salários serão reajustados e não ocorrerá uma crise econômica. (E) o dólar não subirá, os salários serão reajustados e não ocorrerá uma crise econômica. Resolução Vamos dar nomes às proposições simples envolvidas: : ô : ó á : á ã I. Se ocorrer uma crise econômica, então o dólar não subirá. II. Ou o dólar subirá, ou os salários serão reajustados, mas não ambos. III. Os salários serão reajustados se, e somente se, não ocorrer uma crise econômica.

27 Em símbolos, temos: I. ~ II. III. ~ De acordo com o enunciado, as três proposições compostas são verdadeiras. Vamos construir a tabela verdade correspondente e verificar quando é que isso ocorre. Como são três proposições simples envolvidas, então a tabela terá 2 8 linhas. Lembre-s que o número de linhas de uma tabela verdade com proposições simples é igual a 2. Devemos lembrar as regras dos conectivos. A proposição composta pelo se..., então... é falsa quando o antecedente é verdadeiro e o consequente é falso. A proposição composta pelo conectivo da disjunção exclusiva ou...ou é verdadeira quando apenas um dos componentes é verdadeiro. A proposição composta pelo bicondicional se e somente se é verdadeiro quando os componentes têm o mesmo valor lógico (ou ambos são verdadeiros ou ambos são falsos). A tabela começa assim: ~ ~ ~ ~ V V V V V F V F V V F F F V V F V F F F V F F F A proposição ~ é a negação da proposição, portanto seus valores lógicos são opostos aos valores de. A proposição ~ é a negação da proposição, portanto seus valores lógicos são opostos aos valores de. ~ ~ ~ ~ V V V F F V V F F F V F V F V V F F F V F V V V F F V F V F F F V V V F F F V V

28 A proposição ~ só é falsa quando é verdadeiro e ~ é falso (linhas 1 e 2). ~ ~ ~ ~ V V V F F F V V F F F F V F V F V V V F F F V V F V V V F V F V F V F V F F V V V V F F F V V V A proposição é verdadeira quando apenas um dos componentes for verdadeiro. Ou seja, é verdadeira quando é verdadeira e é falso ou quando é falso e é verdadeiro (linhas 2, 3, 6 e 7). ~ ~ ~ ~ V V V F F F F V V F F F F V V F V F V V V V F F F V V F F V V V F V F F V F V F V V F F V V V V V F F F V V V F A proposição ~ só é verdadeira quando e ~ têm valores lógicos iguais. ~ ~ ~ ~ V V V F F F F F V V F F F F V V V F V F V V V F V F F F V V F V F V V V F V F V F V F V F V V F F F V V V V V V F F F V V V F F Como as três proposições compostas são verdadeiras, estamos interessados apenas na sétima linha desta tabela.

29 ~ ~ ~ ~ V V V F F F F F V V F F F F V V V F V F V V V F V F F F V V F V F V V V F V F V F V F V F V V F F F V V V V V V F F F V V V F F Para que as compostas sejam verdadeiras, a proposição deve ser falsa, a proposição deve ser falsa e a proposição deve ser verdadeira. : ô : ó á : á ã Concluímos que não ocorrerá uma crise econômica, o dólar não subirá e os salários serão reajustados. (E) o dólar não subirá, os salários serão reajustados e não ocorrerá uma crise econômica. Letra E 19. (SEFAZ-SP 2009/FCC) Numa cidade existem 10 milhões de pessoas. Nenhuma delas possui mais do que 200 mil fios de cabelo. Com esses dados, é correto afirmar que, necessariamente, (A) existem nessa cidade duas pessoas com o mesmo número de fios de cabelo. (B) existem nessa cidade pessoas sem nenhum fio de cabelo. (C) existem nessa cidade duas pessoas com quantidades diferentes de fios de cabelo. (D) o número médio de fios de cabelo por habitante dessa cidade é maior do que 100 mil. (E) somando-se os números de fios de cabelo de todas as pessoas dessa cidade obtém-se Resolução A alternativa A é verdadeira, pois mesmo se tentarmos fazer com que todos os habitantes tenham quantidades de fios de cabelo diferentes, começando em 0 até , quando chegarmos no habitante de número teremos que repetir a sua quantidade de fios com a de algum outro habitante. O problema não garante a alternativa B.

30 A alternativa C é falsa. Basta pensar no caso extremo de todos os habitantes da cidade terem a mesma quantidade de fios de cabelo. Não podemos calcular o número médio de fios de cabelos porque não sabemos quantos fios de cabelo tem cada habitante. A alternativa D é falsa. Não podemos somar os números de fios de cabelo de todas as pessoas, pois o problema não forneceu as quantidades individuais de fios de cabelo. A alternativa E é falsa. Letra A 20. (SEFAZ-SP 2009/FCC) Uma loja promove todo ano uma disputa entre seus três vendedores com o objetivo de motivá-los a aumentar suas vendas. O sistema é simples: ao final de cada mês do ano, o primeiro, o segundo e o terceiro colocados nas vendas recebem a, b e c pontos, respectivamente, não havendo possibilidade de empates e sendo a, b e c números inteiros e positivos. No fim do ano, o vendedor que acumular mais pontos recebe um 14 o salário. Ao final de n meses (n > 1), a situação da disputa era a seguinte: Nessas condições, conclui-se que n é igual a (A) 2 (B) 3 (C) 5 (D) 7 (E) 11 Resolução Em cada mês o primeiro lugar ganha pontos, o segundo lugar ganha pontos e o terceiro lugar ganha pontos. Desta forma, o somatório das três pontuações por mês é igual a. Em dois meses, a soma das pontuações será igual a 2. Em três meses, a soma das pontuações será igual a 3. Em quatro meses, a soma das pontuações será igual a Em n meses, a soma das pontuações será igual a. Ao final de n meses (n > 1), a situação da disputa era a seguinte: Portanto:

31 Sabemos que é a quantidade de meses, portanto deve ser um número inteiro e positivo e maior que 1. Desta forma, o número deve ser um divisor de 35. Os divisores de 35 são 1,5,7 e 35. Temos as seguintes possibilidades: Os número a,b, c são inteiros positivos e distintos. Desta maneira é impossível que 1, pois se o terceiro lugar ganhar 1 ponto, o segundo lugar e o primeiro lugar ganharão mais de 1 ponto e a soma dos três será maior que 1. Também não é possível 5. Se o terceiro lugar receber a menor pontuação possível que é 1, o segundo lugar receber a menor pontuação possível para ele que é 2 e o primeiro lugar receber a menor pontuação possível para ele que é 3, então 6. Não tem como ser igual a 5. Também não é possível fazer 35. Isto porque e o problema mandou considerar Concluímos que 7. Desta forma, Letra C

32 Relação das questões comentadas 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos os professores universitários que só lecionam em faculdades da cidade X, A é o conjunto de todos os professores que lecionam na faculdade A, B é o conjunto de todos os professores que lecionam na faculdade B e M é o conjunto de todos os médicos que trabalham na cidade X. Em todas as regiões do diagrama, é correto representar pelo menos um habitante da cidade X. A respeito do diagrama, foram feitas quatro afirmações: I. Todos os médicos que trabalham na cidade X e são professores universitários lecionam na faculdade A. II. Todo professor que leciona na faculdade A e não leciona na faculdade B é médico. III. Nenhum professor universitário que só lecione em faculdades da cidade X, mas não lecione nem na faculdade A e nem na faculdade B, é médico. IV. Algum professor universitário que trabalha na cidade X leciona, simultaneamente, nas faculdades A e B, mas não é médico. Está correto o que se afirma APENAS em (A) I. (B) I e III. (C) I, III e IV. (D) II e IV. (E) IV.

33 02. (SEFAZ-SP 2009/FCC) Considere a sequência: (P, 3, S, 4, W, 5, B, 4, F, 3,...) De acordo com a lógica observada nos primeiros elementos da sequência, o elemento, dentre os apresentados, que a completa corretamente é (A) C (B) G (C) I (D) 2 (E) (SEFAZ-SP 2009/FCC) Seis pessoas, entre elas Marcos, irão se sentar ao redor de uma mesa circular, nas posições indicadas pelas letras do esquema abaixo. Nesse esquema, dizemos que a posição A está à frente da posição D, a posição B está entre as posições A e C e a posição E está à esquerda da posição F. Sabe-se que: - Pedro não se sentará à frente de Bruno. - Bruno ficará à esquerda de André e à direita de Sérgio. - Luís irá se sentar à frente de Sérgio. Nessas condições, é correto afirmar que (A) Pedro ficará sentado à esquerda de Luís. (B) Luís se sentará entre André e Marcos. (C) Bruno ficará à frente de Luís. (D) Pedro estará sentado à frente de Marcos. (E) Marcos se sentará entre Pedro e Sérgio. 04. (SEFAZ-SP 2009/FCC) Um torneio de futebol passará a ser disputado anualmente por seis equipes. O troféu será de posse transitória, isto é, o campeão de um ano fica com o troféu até a próxima edição do torneio, quando o passa para o novo campeão. Uma equipe só ficará definitivamente com o troféu quando vencer quatro edições consecutivas do torneio ou sete edições no total, o que acontecer primeiro. Quando isso ocorrer, um novo troféu será confeccionado. Os números mínimo e máximo de edições que deverão ocorrer até que uma equipe fique com a posse definitiva do troféu valem, respectivamente, (A) 4 e 7 (B) 4 e 37 (C) 4 e 43

34 (D) 6 e 36 (E) 6 e (SEFAZ-SP 2009/FCC) Os alunos de uma faculdade de História criaram a Espiral do Tempo num dos pátios da escola. Na Espiral do Tempo, todos os anos da era cristã são representados segundo a lógica da figura a seguir, na qual só foram mostrados os anos de 1 a 9. A espiral é atualizada anualmente, representando-se o ano que se inicia seguindo a mesma lógica dos anteriores. Se a soma de todos os números que compõem a Espiral do Tempo em 2009 é igual a S, então, em 2010, essa soma passará a ser igual a (A) S (B) S (C) S (D) S (E) S (SEFAZ-SP 2009/FCC) Num terreno plano, partindo de um ponto P, uma pessoa fez uma série de deslocamentos, descritos a seguir, até chegar a um ponto Q. - Avançou 10 metros em linha reta, numa certa direção. - Girou 90 para a direita. - Avançou 12 metros em linha reta. - Girou 90 para a direita. - Avançou 15 metros em linha reta. - Girou 90 para a esquerda. - Avançou 7 metros em linha reta. - Girou 90 para a esquerda. - Avançou 5 metros em linha reta, atingindo o ponto Q.

35 A distância, em metros, entre os pontos P e Q é igual a (A) 22 (B) 19 (C) 17 (D) 10 (E) (SEFAZ-SP 2009/FCC) Em toda a sua carreira, um tenista já disputou N partidas, tendo vencido 70% delas. Considere que esse tenista ainda vá disputar, antes de se aposentar, mais X partidas, e que vença todas elas. Para que o seu percentual de vitórias ao terminar sua carreira suba para 90%, X deverá ser igual a (A) N. (B) 1,2 N. (C) 1,3 N. (D) 1,5 N. (E) 2 N. 08. (SEFAZ-SP 2009/FCC) No período de 2010 a 2050, os anos bissextos (isto é, aqueles com 366 dias) são todos aqueles divisíveis por 4. Sabendo que 2010 terá 53 sextas-feiras, o primeiro ano desse período em que o dia 1 o de janeiro cairá numa segunda-feira será (A) 2013 (B) 2014 (C) 2016 (D) 2018 (E) (SEFAZ-SP 2009/FCC) Nos últimos n anos, ocorreram 22 edições de um congresso médico, sempre realizadas em uma única dentre as três seguintes cidades: São Paulo, Rio de Janeiro e Belo Horizonte. Esse congresso nunca ocorreu duas vezes no mesmo ano, mas houve anos em que ele não foi realizado. Sabe-se ainda que, nesse período de n anos, houve 24 anos em que o congresso não ocorreu em São Paulo, 23 anos em que não aconteceu no Rio de Janeiro e 27 anos em que não foi realizado em Belo Horizonte. Nessas condições, o valor de n é igual a (A) 29 (B) 30 (C) 31 (D) 32 (E) (SEFAZ-SP 2009/FCC) Uma caixa retangular tem 46 cm de comprimento, 9 cm de largura e 20 cm de altura. Considere a maior bola que caiba inteiramente nessa caixa. A máxima quantidade de bolas iguais a essa que podem ser colocadas nessa caixa, de forma que ela possa ser tampada, é (A) 6 (B) 8 (C) 9

36 (D) 10 (E) (SEFAZ-SP 2009/FCC) Os dados da tabela a seguir referem-se às cinco escolas municipais de uma pequena cidade. Sabe-se que nenhum professor leciona ao mesmo tempo em duas dessas escolas e que a proporção entre professores e alunos em cada uma delas é de 1 para 20. Serão sorteados n professores da rede municipal dessa cidade para realizar um curso. Para que entre os sorteados tenha-se, certamente, pelo menos um professor de cada escola, n deverá ser, no mínimo, (A) 5 (B) 72 (C) 73 (D) 121 (E) (SEFAZ-SP 2009/FCC) O setor de fiscalização da secretaria de meio ambiente de um município é composto por seis fiscais, sendo três biólogos e três agrônomos. Para cada fiscalização, é designada uma equipe de quatro fiscais, sendo dois biólogos e dois agrônomos. São dadas a seguir as equipes para as três próximas fiscalizações que serão realizadas. Sabendo que Pedro é biólogo, é correto afirmar que, necessariamente, (A) Valéria é agrônoma. (B) Tânia é bióloga.

37 (C) Rafael é agrônomo. (D) Celina é bióloga. (E) Murilo é agrônomo. 13. (SEFAZ-SP 2009/FCC) Tiago é capaz de cortar a grama do jardim de sua casa em 2/3 do tempo que seu irmão Gabriel faria o mesmo serviço e em 1/3 do tempo que seu outro irmão, Rodrigo, conseguiria. Se os três decidirem cortar a grama do jardim juntos, levarão 10 minutos. O tempo, em minutos, que Gabriel e Rodrigo levariam para cortar a grama do jardim de sua casa juntos é (A) 15 (B) 18 (C) 20 (D) 27 (E) (SEFAZ-SP 2009/FCC) Considere a afirmação: Pelo menos um ministro participará da reunião ou nenhuma decisão será tomada. Para que essa afirmação seja FALSA (A) é suficiente que nenhum ministro tenha participado da reunião e duas decisões tenham sido tomadas. (B) é suficiente que dois ministros tenham participado da reunião e alguma decisão tenha sido tomada. (C) é necessário e suficiente que alguma decisão tenha sido tomada, independentemente da participação de ministros na reunião. (D) é necessário que nenhum ministro tenha participado da reunião e duas decisões tenham sido tomadas. (E) é necessário que dois ministros tenham participado da reunião e nenhuma decisão tenha sido tomada. 15. (SEFAZ-SP 2009/FCC) Uma empresa mantém a seguinte regra em relação a seus funcionários: Se um funcionário tem mais de 45 anos de idade, então ele deverá, todo ano, realizar pelo menos um exame médico e tomar a vacina contra a gripe. Considerando que essa regra seja sempre cumprida, é correto concluir que, necessariamente, se um funcionário dessa empresa (A) anualmente realiza um exame médico e toma a vacina contra a gripe, então ele tem mais de 45 anos de idade. (B) tem 40 anos de idade, então ele não realiza exames médicos anualmente ou não toma a vacina contra a gripe. (C) não realizou nenhum exame médico nos últimos dois anos, então ele não tem 50 ou mais anos de idade. (D) tem entre 55 e 60 anos de idade, então ele realiza um único exame médico por ano, além de tomar a vacina contra a gripe. (E) tomou a vacina contra a gripe ou realizou exames médicos nos últimos dois anos, então ele tem pelo menos 47 anos de idade.

38 (SEFAZ-SP 2009/FCC) Instruções: Para responder às questões de números 16 e 17, considere o texto e o quadro abaixo. O tabuleiro a seguir é usado em um jogo que uma professora de Matemática costuma propor a seus alunos do 6º ano. A cada rodada, cada jogador, inicialmente colocado na casa onde está marcado o número 7, deve jogar um dado numerado de 1 a 6 e dividir o número da casa onde se encontra pela pontuação obtida no dado. O resto dessa divisão indicará a quantidade de casas que ele deverá avançar. Por exemplo, se na primeira rodada um jogador tirar 5, ele deverá avançar 2 casas, que é o resto da divisão de 7 por 5, chegando à casa onde está marcado o número 27. O jogador que primeiro atingir a casa onde está escrito CHEGADA é o vencedor. 16. (SEFAZ-SP 2009/FCC) Lendo-se as regras do jogo, percebe-se que sua dinâmica depende dos números marcados nas diversas casas do tabuleiro. O número 27, marcado na terceira casa, poderia ser trocado, sem que houvesse qualquer alteração na dinâmica do jogo, pelo número (A) 77 (B) 81 (C) 84 (D) 87 (E) (SEFAZ-SP 2009/FCC) Se um jogador cair em uma determinada casa do tabuleiro, ele não poderá mais ganhar o jogo, pois não conseguirá mais avançar a partir daquela casa. Por esse motivo, essa casa é chamada de buraco negro. Para que um jogador caia no buraco negro, ele deverá, necessariamente, estar numa outra casa específica do tabuleiro e, ao jogar o dado, obter pontuação igual a (A) 2 (B) 3 (C) 4 (D) 5 (E) (SEFAZ-SP 2009/FCC) Considere as seguintes afirmações: I. Se ocorrer uma crise econômica, então o dólar não subirá. II. Ou o dólar subirá, ou os salários serão reajustados, mas não ambos. III. Os salários serão reajustados se, e somente se, não ocorrer uma crise econômica. Sabendo que as três afirmações são verdadeiras, é correto concluir que, necessariamente, (A) o dólar não subirá, os salários não serão reajustados e não ocorrerá uma crise econômica.

39 (B) o dólar subirá, os salários não serão reajustados e ocorrerá uma crise econômica. (C) o dólar não subirá, os salários serão reajustados e ocorrerá uma crise econômica. (D) o dólar subirá, os salários serão reajustados e não ocorrerá uma crise econômica. (E) o dólar não subirá, os salários serão reajustados e não ocorrerá uma crise econômica. 19. (SEFAZ-SP 2009/FCC) Numa cidade existem 10 milhões de pessoas. Nenhuma delas possui mais do que 200 mil fios de cabelo. Com esses dados, é correto afirmar que, necessariamente, (A) existem nessa cidade duas pessoas com o mesmo número de fios de cabelo. (B) existem nessa cidade pessoas sem nenhum fio de cabelo. (C) existem nessa cidade duas pessoas com quantidades diferentes de fios de cabelo. (D) o número médio de fios de cabelo por habitante dessa cidade é maior do que 100 mil. (E) somando-se os números de fios de cabelo de todas as pessoas dessa cidade obtém-se (SEFAZ-SP 2009/FCC) Uma loja promove todo ano uma disputa entre seus três vendedores com o objetivo de motivá-los a aumentar suas vendas. O sistema é simples: ao final de cada mês do ano, o primeiro, o segundo e o terceiro colocados nas vendas recebem a, b e c pontos, respectivamente, não havendo possibilidade de empates e sendo a, b e c números inteiros e positivos. No fim do ano, o vendedor que acumular mais pontos recebe um 14 o salário. Ao final de n meses (n > 1), a situação da disputa era a seguinte: Nessas condições, conclui-se que n é igual a (A) 2 (B) 3 (C) 5 (D) 7 (E) 11

OFICINA DE JOGOS APOSTILA DO PROFESSOR

OFICINA DE JOGOS APOSTILA DO PROFESSOR OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

PRINCÍPIO DA CASA DOS POMBOS

PRINCÍPIO DA CASA DOS POMBOS PRINCÍPIO DA CASA DOS POMBOS 1) Certa noite, Carlos Eduardo resolveu ir ao cinema, mas descobriu que não tinha meias limpas pra calçar. Foi então ao quarto do pai, que estava na escuridão. Ele sabia que

Leia mais

Encontrando o melhor caminho

Encontrando o melhor caminho Reforço escolar M ate mática Encontrando o melhor caminho Dinâmica 8 9º Ano 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Aluno Matemática Ensino Fundamental 9º Geométrico Teorema de Pitágoras Primeira Etapa

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

01. Considere as seguintes proposições:

01. Considere as seguintes proposições: 01. Considere as seguintes proposições: p: O restaurante está fechado. q: O computador está ligado. A sentença O restaurante não está fechado e o computador não está ligado assume valor lógico verdadeiro

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática

PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/214 1 JOGOS E PROPOSTAS DE TRABALHO PARA OS ALUNOS JOGO DOS 6 PALITOS

Leia mais

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA (UNIDADE ACADÊMICA DE MATEMÁTICA E ESTATÍSTICA) PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: PROF.

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

COPA DAS FEDERAÇÕES REGULAMENTO GERAL PARA 2014

COPA DAS FEDERAÇÕES REGULAMENTO GERAL PARA 2014 COPA DAS FEDERAÇÕES REGULAMENTO GERAL PARA 2014 1. DO CAMPEONATO Anualmente a CBT - Confederação Brasileira de Tênis promoverá a Copa das Federações, para definir o Estado Campeão Brasileiro. A Copa das

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. Fone (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos. Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2014

Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2014 1 2 Questão 1 Em uma biblioteca em cada estante existem 3 prateleiras, em uma destas estantes foram colocados 9 livros ao todo. Quatro livros não foram colocados abaixo de nenhum outro livro. Três destes

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase I 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase I 2014 1 2 Questão 1 Em uma biblioteca em cada estante existem 5 prateleiras, em uma destas estantes foram colocados 27 livros ao todo. Seis livros não foram colocados abaixo de nenhum outro livro. Cinco destes

Leia mais

CONTEÚDO PROGRAMÁTICO

CONTEÚDO PROGRAMÁTICO CONTEÚDO PROGRAMÁTICO ÍNDICE INSS - RLM...2 Proposições Conceitos Iniciais...2 1 Proposições Conceitos Iniciais Conceito: AlfaCon Concursos Públicos INSS - RLM _ Características: _ Valores: _ Princípios

Leia mais

WWW.CPCCONCURSOS.COM.BR

WWW.CPCCONCURSOS.COM.BR REVISÃO PRÉ-PROVA QUESTÕES DA FCC 1. (TRT 15ª região 2015 Analista Judiciário) O cadastro dos pacientes que se consultaram em uma clínica odontológica, em janeiro, indica que apenas 5 2 eram homens. Desses

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

AULÃO ENEM 2014 MATEMÁTICA OSWALDO

AULÃO ENEM 2014 MATEMÁTICA OSWALDO AULÃO ENEM 2014 MATEMÁTICA OSWALDO 1) Se o litro da gasolina aumentou 10% e um proprietário de carro o abastecia com 55 litros de gasolina, após o aumento, com a mesma quantia de dinheiro, ele abastecerá

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Problemas de Jogos e Tabuleiros

Problemas de Jogos e Tabuleiros Problemas de Jogos e Tabuleiros Professor Emiliano Augusto Chagas Para esquentar! 01) Duas crianças se revezam em turnos quebrando uma barra retangular de chocolate, com seis quadrados de altura e oito

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES A D C B D B C A B D A C C B A D Como pode cair no enem (ENEM) A escrita Braile para cegos é um sistema de símbolos no qual cada caractere

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. 1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico da prova para o cargo de Oficial de Promotoria do Ministério

Leia mais

Tendo como referência as informações apresentados no texto acima, julgue o item que se segue.

Tendo como referência as informações apresentados no texto acima, julgue o item que se segue. COMENTÁRIO PROA POLICIA EDERAL 2009 COMENTÁRIO GERAL A prova foi bem fácil para o aluno que estudou. A CESPE continuou impecável, abordando todos os assuntos do edital. Existe apenas uma questão cujo gabarito

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE

COLÉGIO MILITAR DE BELO HORIZONTE COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2007 / 200 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONCURSO DE ADMISSÃO À 6ª SÉRIE DO ENSINO FUNDAMENTAL CMBH 2007 PÁGINA: 2 RESPONDA AS

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO 36.(ESCREV.TÉC.JUD-CAMPINAS E GUARULHOS- 006-VUNESP) Certo plano de saúde emite boletos para pagamento bancário com as seguintes condições: Pagamento até o vencimento: Pagamento após a data de vencimento:

Leia mais

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11.

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11. EXERCÍCIOS DE RECUPERAÇÃO 7º ANO º BIMESTRE MATEMÁTICA PROFº PAULO 1. Dois números de sinais contrários são opostos? Justifique. O sinal de menos ( ) colocado antes de um número indica o oposto desse número.

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito no INSPER INSPER Resolvida 5/novembro/0 Prova A (Verde) ANÁLISE quantitativa e lógica 0 Por um terminal de ônibus passam dez diferentes linhas A mais movimentada delas é a linha : quatro

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma fazenda, como podemos calcular a

Leia mais

REGRAS E REGULAMENTOS

REGRAS E REGULAMENTOS REGRAS E REGULAMENTOS V OLIMPÍADA DE RACIOCINIO MENTEINOVADORA MIND LAB (alunos de 4º ao 7º ano) IV OLIMPÍADA DE RACIOCÍNIO MENTEINOVADORA DE JOVENS (alunos de 8º e 9º ano) I OLIMPÍADA DE RACIOCÍNIO MENTEINOVADORA

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

Veja dicas de estudo para a reta final do concurso do Banco do Brasil

Veja dicas de estudo para a reta final do concurso do Banco do Brasil Terça-feira, 28 de janeiro de 2014 Atualizado em 28/01/2014 07h00 Veja dicas de estudo para a reta final do concurso do Banco do Brasil BB aplica provas para escriturário no dia 9 de fevereiro. Lia Salgado

Leia mais

A B C F G H I. Apresente todas as soluções possíveis. Solução

A B C F G H I. Apresente todas as soluções possíveis. Solução 19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

2º ano do Ensino Médio

2º ano do Ensino Médio 2º ano do Ensino Médio Instruções: 1. Você deve estar recebendo um caderno com dez questões na 1ª parte da prova, duas questões na 2ª parte e duas questões na 3ª parte. Verifique, portanto, se está completo

Leia mais

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática Colégio de Aplicação Universidade Federal do Rio de Janeiro Admissão são 2004 1 a série ensino médio Matemática ADMISSÃO2004 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS

Leia mais

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x

Leia mais

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 3 (para alunos da 5ª à 8ª série)

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 3 (para alunos da 5ª à 8ª série) SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 3 (para alunos da 5ª à 8ª série) Questão 1) (1 ponto) Como você já deve saber o sistema solar

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

(S.I.) = 10 + 6 3) (FP) O

(S.I.) = 10 + 6 3) (FP) O Lista Cinemática 1) (FP) Um motorista pretende realizar uma viagem com velocidade média de 90 km/h. A primeira terça parte do percurso é realizada à 50km/h e os próximos 3/5 do restante é realizado à 80

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

Biotecnologia Ambiental

Biotecnologia Ambiental Ambiental 1º MÓDULO 27 28 29 (AGOSTO) Segunda-feira Terça-feira Quarta-feira Quinta-feira (27/08) Sexta-feira (28/08) Sábado (29/08) //Marco //Marco Ambiental 2º MÓDULO 17 18 19 (SETEMBRO) Segunda-feira

Leia mais

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla

Leia mais

2 CLASSIFICAÇÃO / PONTUAÇÃO

2 CLASSIFICAÇÃO / PONTUAÇÃO 1 CONSTITUIÇÃO DAS EQUIPAS E CONFIGURAÇÃO DOS JOGOS O número de praticantes desportivos por equipa que podem ser inscritos no boletim de jogo é os seguintes: 2º Ciclo: 4 jogadores (Jogos 2x2); 3º Ciclo

Leia mais

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Instruções: XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Folha de Perguntas A duração da prova é de 3h30min. O tempo

Leia mais

RETA FINAL TÉCNICO JUDICIÁRIO TRF 2ª Região Disciplina: Matemática e Raciocínio lógico Prof.: Joselias da Silva Data: 17/06/07

RETA FINAL TÉCNICO JUDICIÁRIO TRF 2ª Região Disciplina: Matemática e Raciocínio lógico Prof.: Joselias da Silva Data: 17/06/07 01) Três dados idênticos, nos quais a soma das faces opostas é 7, são colocados em uma mesa, conforme a figura abaixo, de modo que cada par de faces coladas tenha o mesmo número. Sabendo-se que a soma

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

www.ndu.net.br Sede Social Rua Luís Góis, 2.187 Mirandópolis São Paulo SP Cep: 04043-400 Fone: (11) 7708-7429

www.ndu.net.br Sede Social Rua Luís Góis, 2.187 Mirandópolis São Paulo SP Cep: 04043-400 Fone: (11) 7708-7429 Organização, compromisso e qualidade em prol do esporte universitário paulista www.ndu.net.br Sede Social Rua Luís Góis, 2.187 Mirandópolis São Paulo SP Cep: 04043-400 Fone: (11) 7708-7429 REGULAMENTO

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

Princípio da Casa dos Pombos II

Princípio da Casa dos Pombos II Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 8 Princípio da Casa dos Pombos II Nesta aula vamos continuar praticando as ideias da aula anterior, aplicando o

Leia mais

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer

Leia mais

REGULAMENTO ESPECÍFICO DO BASQUETE

REGULAMENTO ESPECÍFICO DO BASQUETE REGULAMENTO ESPECÍFICO DO BASQUETE 1. As competições de basquete serão realizadas de acordo com as regras internacionais da FIBA e os regulamentos e normas do Novo Desporto Universitário 2012 NDU. 2. Cada

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,

Leia mais

Jogos com números Números ocultos - 2ª Parte

Jogos com números Números ocultos - 2ª Parte Jogos com números Números ocultos - 2ª Parte Observe atentamente os demais números e os elementos que aparecem em cada diagrama, com o objetivo de obter a regra pela qual se formam. 1) 2) 1 3) 4) 5) 6)

Leia mais

Trigonometria na circunferência

Trigonometria na circunferência Módulo 2 Unidade 10 Trigonometria na circunferência Para início de conversa... Figura 1: Reportagem do jornal O Globo da década de 1990 mostra o relógio da Central do Brasil, no Rio de Janeiro, sendo limpo

Leia mais

Avanço Autor: Dan Troyka, 2000. Rastros Autor: Bill Taylor, 1992. Material Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras.

Avanço Autor: Dan Troyka, 2000. Rastros Autor: Bill Taylor, 1992. Material Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras. Avanço Autor: Dan Troyka, 2000 Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras. posição inicial Um jogador ganha se chegar com uma das suas peças à primeira linha do adversário, ou seja,

Leia mais

REGRAS E REGULAMENTOS OLIMPÍADAS DE RACIOCÍNIO PROGRAMA MENTEINOVADORA MIND LAB

REGRAS E REGULAMENTOS OLIMPÍADAS DE RACIOCÍNIO PROGRAMA MENTEINOVADORA MIND LAB REGRAS E REGULAMENTOS VIII OLIMPÍADA DE RACIOCINIO MENTEINOVADORA MIND LAB (alunos de 4º ao 7º ano) VII OLIMPÍADA DE RACIOCÍNIO MENTEINOVADORA DE JOVENS (alunos de 8º e 9º ano) A cada ano, o Grupo Mind

Leia mais

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado.

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado. Módulo 1: Noções de álgebra d) A 6 C B PÁGINA 10 Atividades para classe AB 6 y 1 Em cada item abaio, escreva uma epressão algébrica, e) y 8 utilizando as letras e y para representar A B esses números.

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

Exame Nacional de 2008 2. a chamada

Exame Nacional de 2008 2. a chamada 1. Qual é o mínimo múltiplo comum entre dois números primos diferentes, a e b? Cotações a * b a + b a b 3 - œ10, - 1 24 2. Qual é o menor número inteiro pertencente ao intervalo? - 4-3 - 2-1 3. Numa aula

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

Força Eletromotriz Induzida

Força Eletromotriz Induzida Força Eletromotriz Induzida 1. (Uerj 2013) Um transformador que fornece energia elétrica a um computador está conectado a uma rede elétrica de tensão eficaz igual a 120 V. A tensão eficaz no enrolamento

Leia mais

JOGOS QUE CONSTAM DO KIT DE REFORÇO ESCOLAR

JOGOS QUE CONSTAM DO KIT DE REFORÇO ESCOLAR JOGOS QUE CONSTAM DO KIT DE REFORÇO ESCOLAR DOMINÓ É um jogo onde se combinam a palavra e a figura. Cada jogador recebe 7 peças e segura-as de forma que o adversário não veja. O primeiro jogador coloca

Leia mais

Atenção: Material do grupo do. adquiriu com outra pessoa, foi vítima de um falso rateio e em

Atenção: Material do grupo do. adquiriu com outra pessoa, foi vítima de um falso rateio e em Atenção: Material do grupo do Roger Rodrigues se você adquiriu com outra pessoa, foi vítima de um falso rateio e em breve não receberá mais material. Aula 03 Raciocínio Lógico p/ INSS - Técnico do Seguro

Leia mais

REGULAMENTO TÉCNICO JOGOS DE INTEGRAÇÃO REGULAMENTO TÉCNICO DO BASQUETEBOL MASCULINO

REGULAMENTO TÉCNICO JOGOS DE INTEGRAÇÃO REGULAMENTO TÉCNICO DO BASQUETEBOL MASCULINO REGULAMENTO TÉCNICO JOGOS DE INTEGRAÇÃO REGULAMENTO TÉCNICO DO BASQUETEBOL MASCULINO Art. 1 O torneio de basquetebol masculino será realizado de acordo com as regras estabelecidas pela Federação Internacional

Leia mais

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130 Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:

Leia mais

8º Campeonato Nacional de Jogos Matemáticos

8º Campeonato Nacional de Jogos Matemáticos 8º Campeonato Nacional de Jogos Matemáticos Distribuição dos jogos por ciclo 1º 2º 3º Sec Semáforo x Gatos & Cães x x Ouri x x x Hex x x x Rastros x x Avanço x Semáforo Autor: Alan Parr 8 peças verdes,

Leia mais

A Matemática do ENEM em Bizus

A Matemática do ENEM em Bizus A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

REGULAMENTO DE MINIVOLEIBOL

REGULAMENTO DE MINIVOLEIBOL REGULAMENTO DE MINIVOLEIBOL ÍNDICE CAPITULO I - O JOGO DE MINIVOLEIBOL - REGRA 1 - Concepção do Jogo - REGRA 2 - A quem se dirige - REGRA 3 - Finalidade do Jogo CAPITULO II - INSTALAÇÕES E MATERIAL - REGRA

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

III Virada Esportiva ATC Gênesis - 2013

III Virada Esportiva ATC Gênesis - 2013 III Virada Esportiva ATC Gênesis - 2013 CIRCUITO INTERNO DE TÊNIS ATC RANKING GERAL 2013 REGULAMENTO 4ª ETAPA VIRADA ESPORTIVA DO TORNEIO: O Ranking Geral do Alphaville Tênis Clube objetiva a melhor integração

Leia mais

Os gráficos estão na vida

Os gráficos estão na vida Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada

Leia mais

1-Será disputado pelo sistema de duplas, permitindo-se a inscrição de 02 atletas por equipe, de ambos os sexos.

1-Será disputado pelo sistema de duplas, permitindo-se a inscrição de 02 atletas por equipe, de ambos os sexos. REGULAMENTO DE BURACO 1-Será disputado pelo sistema de duplas, permitindo-se a inscrição de 02 atletas por equipe, de ambos os sexos. 2-No horário estabelecido pela Comissão Organizadora para início de

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Jogos de Integração do Instituto Federal/ Araranguá JIIF

Jogos de Integração do Instituto Federal/ Araranguá JIIF Jogos de Integração do Instituto Federal/ Araranguá JIIF DISPOSIÇÕES GERAIS Art. 1º Para efeito de classificação, a pontuação será a seguinte: I - 1º lugar: 10 pontos. II - 2º lugar: 7 pontos. III - 3º

Leia mais

Existe, mas não sei exibir!

Existe, mas não sei exibir! Existe, mas não sei exibir! Você já teve aquela sensação do tipo ei, isso deve existir, mas não sei exibir um exemplo quando resolvia algum problema? O fato é que alguns problemas existenciais são resolvidos

Leia mais

Figura 3.4.0. Perceba a conta que você fez, pra saber a diferença de velocidade entre eles calculamos, ou seja:

Figura 3.4.0. Perceba a conta que você fez, pra saber a diferença de velocidade entre eles calculamos, ou seja: Movimento Relativo MOVIMENTO RELATIVO A velocidade relativa é um conceito cai bastante nas objetivas, então fica ligado! Ela trata estudar as relações de como um corpo, em movimento ou não, vê o outro

Leia mais

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com)

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) 1. O dominó Você já deve conhecer o dominó. Não vamos pensar no jogo de dominós

Leia mais

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Sumário Questão 1 (Assunto: Operações com números na forma de fração)... Questão (Assunto: Formas geométricas planas)... Questão (Assunto: Potências e raízes)...4 Questão 4 (Assunto: Expressões numéricas)...4

Leia mais

Período: 06/09 a 29/11 11 datas. Realização: Faculdade Anísio Teixeira Departamento de Esportes

Período: 06/09 a 29/11 11 datas. Realização: Faculdade Anísio Teixeira Departamento de Esportes Período: 06/09 a 29/11 11 datas Realização: Faculdade Anísio Teixeira Departamento de Esportes COORDENAÇÃO: Prof. Eurico Gaspar de Oliveira CREF 0124 - G/BA CONTATO: (75) 8307-1261 / 9165-4938 / 3223.4158

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir. Combinação 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Recife 14 de setembro de 2015 segunda-feira

Recife 14 de setembro de 2015 segunda-feira Recife 14 de setembro de 01 segunda-feira I Matemática e suas Tecnologias Com este fascículo, encerramos o estudo da área de Matemática e suas Tecnologias por meio de questões das competências 6 e 7.

Leia mais

AS REGRAS DO TAMBORÉU

AS REGRAS DO TAMBORÉU AS REGRAS DO TAMBORÉU TÍTULO I - O JOGO DE TAMBORÉU art. 1º - O tamboréu é esporte jogado por atletas colocados em posições opostas em cada metade da quadra, que é dividida por uma rede. O objetivo de

Leia mais