7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

Tamanho: px
Começar a partir da página:

Download "7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora"

Transcrição

1 7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo, podemos formular a hipótese que a produtividade 2,5 peças/hora. Formalmente isso é escrito como: H 0 : 2,5 peças/hora H 1 : 2,5 peças/hora Ho é chamada de hipótese nula e H1 de hipótese alternativa. Nesse caso, a alternativa formulada é bilateral, mas também podem ser estabelecidas alternativas unilaterais, tais como: H 0 : 2,5 peças / hora H 1 : 2,5 peças/hora Os testes de hipótese são uma das aplicações da estatística mais usadas. Via de regra, a hipótese nula é feita com base no comportamento passado do produto/processo/serviço, enquanto a alternativa é formulada em função de alterações/inovações recentes. No ambiente atual de melhoria contínua, é fácil entender a importância dos testes de hipótese, eles permitem confirmar a eficácia das medidas de melhoria adotadas. Ao testar a hipótese, toma-se uma amostra aleatória do sistema em estudo e se calcula a estimativa desejada. Conforme o valor da estimativa, a hipótese nula será aceita ou rejeitada, a partir de procedimentos estatísticos. Ao testar uma hipótese, há dois tipos de erros que podemos cometer: = P {rejeitar Ho/Ho é verdadeira} = erro do tipo I = P {aceitar Ho/Ho é falsa} = erro do tipo II

2 72 7. Teste de Hipóteses O procedimento usual é fixar o valor de e verificar o valor de. O risco é uma função do tamanho da amostra, e é controlado indiretamente. Quanto maior o tamanho da amostra, menor será o risco. Na seqüência os seguintes pontos serão cobertos: - Comparação de médias, variância conhecida; - Comparação de médias, variância desconhecida; - Comparação de pares de observações; - Comparação de variâncias; - Comparação dos parâmetros da Binomial. COMPARAÇÃO DE MÉDIAS, VARIÂNCIA CONHECIDA Suponha que X é uma variável aleatória com média desconhecida e variância 2 conhecida. E queremos testar a hipótese que a média é igual a um certo valor especifica 0. O teste de hipótese pode ser formulado como segue: Eq 127: H o : 0 H 1 : 0 Para testar a hipótese, toma-se uma amostra aleatória de n observações e se calcula a estatística Eq 128: Z 0 = Note que o teste é feito usando-se / que esse é o desvio padrão da média. no denominador, uma vez A hipótese Ho é rejeitada se > onde Z /2 é um valor limite da distribuição normal reduzida tal que a probabilidade de se obter valores externos a ± Z /2 é. Ou seja, a probabilidade do valor Zo acontecer segundo a hipótese nula é menor do que a, logo rejeitase a hipótese nula Ho. Assim, se X resultar próximo de 0, ou seja, <, a hipótese Ho é aceita; caso contrário, se X resultar longe de 0, ou seja, se >, a hipótese Ho é rejeitada.

3 73 7. Teste de Hipóteses EXEMPLO 1 Um processo deveria produzir mesas com 0,85 m de altura. O engenheiro desconfia que as mesas que estão sendo produzidas são diferentes que o especificado. Uma amostra de 8 mesas foi coletada e indicou X 0,84 m. Sabendo que o desvio padrão é 0,010m, teste a hipótese do engenheiro usando um nível de significância =0,05. Solução: H 0 : = 0,850 H 1 : Z 0 = = - 0,85 Z 0,025 = 1,96 ( Bilateral ) Como, < não se pode desprezar H 0. Em alguns casos, o objetivo pode ser rejeitar Ho somente se a verdadeira média for maior que. Assim, a hipótese alternativa unilateral será H1 : o, e a hipótese nula será rejeitada somente se Zo > Z. Se o objetivo for rejeitar Ho somente quando a verdadeira média for menor que o, a hipótese alternativa será H1 : o, e a hipótese nula será rejeitada somente se >. Quando há duas populações com médias desconhecidas, digamos o e 1 e variâncias conhecidas, e, o teste para verificar a hipótese de que as médias sejam iguais é o seguinte: H 1 : 1 2 Nesse caso, a partir de uma amostra aleatória de n1 observações da população 1 e n2 observações da população 2, calcula-se:

4 74 7. Teste de Hipóteses Z 0 = E Ho é rejeitada se, ou seja, a probabilidade do valor Zo acontecer segundo a hipótese nula é menor do que, logo rejeita-se a hipótese nula Ho. No caso da alternativa unilateral H1 : 1 2, a hipótese nula Ho será rejeitada quando Zo > Z. E se a alternativa unilateral for H1 : 1 2, a hipótese Ho será rejeitada quando resultar >. Hipótese Estatística Critério para rejeitar H 0 H 0 : = 0 H 1 : 0 ( Bilateral ) H 0 : = 0 Z 0 = H 1 : 0 > H 0 : = 0 ( Unilateral ) H 1 : 0 H 1 : 1 2 ( Bilateral ) Z 0 = H 1 : 1 2 > ( Unilateral ) H 1 : 1 2

5 75 7. Teste de Hipóteses E QUANDO A MÉDIA E VARIÂNCIA DA POPULAÇÃO 2 SÃO DESCONHECIDAS? Suponha que X é uma variável aleatória Normal com média e variância 2 desconhecidas. Para testar a hipótese que a média é igual a um valor especificado 0, formulamos: H 0 : = 0 H 1 : 0 Esse problema é idêntico aquele da seção anterior, exceto que agora a variância é desconhecida. Como a variância é desconhecida, é necessário fazer a suposição adicional que a variável tenha distribuição Normal. Essa suposição é necessária para poder desenvolver a estatística do teste; contudo, os resultados ainda serão válidos se o afastamento da normalidade não for forte. Como 2 não é conhecido, usa-se a distribuição de Student-t para construir a estatística do teste: t 0 = E a hipótese nula H 0 : = 0 é rejeitada se > onde é um valor limite da distribuição de Student-t tal que a probabilidade de se obter valores externos a é. EXEMPLO 2 Um empresário desconfia que o tempo médio de espera para atendimento de seus clientes é superior a 20 minutos. Para testar essa hipótese ele entrevistou 20 pessoas e questionou quanto tempo demorou para ser atendido. O resultado dessa pesquisa aparece a seguir. Conclua, ao nível de significância de 5% (ou... ao nível de aceitação de 95%) se sua suspeita está correta. Solução: H 0 : = 20 minutos H 1 : > 20 minutos X = 21,8 min S = 1,4 min

6 76 7. Teste de Hipóteses t 0 = = = 5,75 = 5,75 = 1,729 Como >, rejeita-se H 0. DUAS AMOSTRAGENS... Quando há duas populações normais com médias 1 2 e variâncias e desconhecidas, as hipóteses para testar se as médias são iguais são as seguintes: H 1 : 1 2 O procedimento do teste irá depender se. Se essa suposição for razoável, então calcula-se a variância combinada: E a seguir calcula-se a estatística t 0 = Ho será rejeitada se >.

7 77 7. Teste de Hipóteses EXEMPLO 3 Um engenheiro desconfia que a qualidade de um material pode depender da matéria-prima utilizada. Há dois fornecedores de matéria-prima sendo usados. Testes com 10 observações de cada fornecedor indicaram: X 1 39, S1 7, X 2 43, S2 9. Use um nível de significância = 0,05 e teste a hipótese do engenheiro. Solução: H 1 : 1 2 Supondo, temos: A estatística teste: t 0 = t 0,025;18 =2,101 Como t 0 < t0,025 ; 18 não se pode rejeitar H 0.

8 78 7. Teste de Hipóteses Exercícios Exercício 7.1 Estabeleça a hipótese nula e a hipótese alternativa para as seguintes situações: a) Um fornecedor afirma que o tempo de vida de um produto que ele comercializa é maior que 3 meses. B) Um engenheiro desconfia que uma máquina está fora do ajuste, produzindo peças com diâmetro diferente do especificado que é de = 2,54. c) Um fabricante atesta que o consumo de um certo modelo de eletrodoméstico é inferior a 20 watts. Exercício 7.2 Uma amostra de vinte observações de um produto indicou um tempo de vida média de 217 ciclos. Sabendo que o desvio padrão é de 20 ciclos, teste a hipótese de que o tempo de vida é inferior a 250 ciclos, conforme atestam alguns engenheiros. Use = 0,05. Exercício 7.3 Dois tipos de combustíveis estão sendo testados. A hipótese é que eles tenham o mesmo desempenho. Teste essa hipótese, sabendo que o desvio-padrão é conhecido = 0,7 Km/l e os resultados de testes feitos com 10 automóveis usando cada tipo combustível indicaram X1 13,3Km / l e X2 13,9Km / l. Use = 0,05. Exercício 7.4 Os dados a seguir representam a produtividade de um processo. Use = 0,05 e teste a hipótese de que nas condições atuais a produtividade seja superior a 1,5. 1,50 1,55 1,59 1,42 1,53 1,58 1,48 1,52 1,53 1,62 1,46 1,56 1,63 1,54 1,58 1,68 Exercício 7.5 Repita o exercício 7.3 supondo que o desvio-padrão não fosse conhecido, mas que tivesse sido medido nas duas amostras de 10 valores, resultando em S1 = 0,6 Km/l e S2 = 0,8 Km/l. (Suponha e use = 0,05). Exercício 7.6 Um médico está estudando o crescimento de dois tipos de bactérias. Essas bactérias foram cultivadas em diferentes substratos. Como pode haver um efeito significativo do substrato, os dois tipos de bactérias foram cultivados em cada substrato. Use = 0,01 e teste a hipótese de que a bactéria 1 cresce mais que a bactéria 2. Substrato B1 3,0 3,2 2,7 2,5 3,8 4,3 3,5 4,8 B2 3,2 3,1 2,4 2,1 3,2 3,7 3,2 4,0

9 79 7. Teste de Hipóteses Exercício 7.7 Um fabricante atesta que as máquinas de enchimento que ele produz apresentam um coeficiente de variação inferior a 2%. Um experimento aleatório realizado com garrafas de 2 litros indicou S2=0,0024 litros 2 para uma amostra de 15 garrafas. Teste a hipótese do fabricante para um nível de significância = 0,05. Exercício 7.8 Uma nova unidade de desalinização foi instalada em uma indústria química. Uma amostra com n = 10, coletada antes da instalação da nova unidade indicou concentração de sal X 19,55 e S 2 15,35. Enquanto que, após a instalação, uma amostra com n = 16 indicou X 17,85 e S 2 = 8,65 Baseado nesses dados, pede-se: a) Teste a hipótese que as duas variâncias sejam iguais? b) Teste a hipótese que a nova unidade reduziu a concentração média de sal? Exercício 7.9 Um engenheiro deseja testar a hipótese que o percentual de peças defeituosas é inferior a 10%. Uma amostra aleatória com 75 peças revelou 6 peças defeituosas. Use = 0,05 e conclua a respeito. Exercício 7.10 Um engenheiro desconfia que o percentual de produtos defeituosos reduziu depois da implantação do controle estatístico de processo. Em uma amostragem de 500 produtos realizada antes da implantação do CEP, identificou-se 5 produtos defeituosos. Após a implantação do CEP, coletou-se uma amostra de 700 produtos e identificou-se 1 defeituoso. Teste a hipótese do engenheiro usando 2,5% de significância. Exercício 7.11 Num estudo do tempo médio de adaptação para uma amostra aleatória de 50 homens num grande complexo industrial, surgiram as seguintes estatísticas: média da amostra = 3,2 anos e desvio padrão da amostra = 0,8 anos. Pode-se concluir, ao nível de 1% de significância que os homens tenham um tempo de adaptação menor que as mulheres que é de 3,7 anos? Exercício 7.12 Um fabricante alega que apenas 2% das peças que ele fornece estão abaixo das condições de utilização. Em 200 peças escolhidas aleatoriamente de uma remessa de encontraram-se 10 falhas. A alegação do fabricante parece aceitável ao nível de 5% de significância?

10 80 7. Teste de Hipóteses Exercício 7.13 Os dados abaixo dão os acertos obtidos por 8 soldados num experimento destinado a determinar se a precisão do tiro é afetada pela maneira de dispor os olhos. (a) com o olho direito aberto (b) com o olho esquerdo aberto Que tipo de conclusão você poderia tirar? Soldado Direito Esquerdo Exercício 7.14 Para verificar o grau de adesão de uma nova cola para vidros, preparamse dois tipos de montagem; Cruzado (A) onde a cola é posta em forma de X e Quadrado (B), onde a fórmula é posta nas 4 bordas. O resultado para a resistência das duas amostras de 10 cada estão abaixo. Para um nível de 5% de significância que tipo de conclusão poderia ser tirada? Método A Método B Exercício 7.15 A fim de comparar a eficácia de dois operários, foram tomadas, para cada um, oito medidas do tempo gasto, em segundos, para realizar certa operação. Os resultados obtidos são dados a seguir. Pergunta-se se, ao nível de 5% de significância, os operários devem ser considerados igualmente eficazes ou não. Operário Operário Exercício 7.16 Uma pesquisa nacional indica que aproximadamente 25% das contas de grandes magazines incorrem em penalidade por atraso nos pagamentos. Se um magazine local constata 40 atrasos numa amostra de 200 clientes, pode necessariamente admitir que seus clientes sejam melhores que os clientes de todo país? Adote 5% de significância.

Hipótese Estatística:

Hipótese Estatística: 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,

Leia mais

Estatística Aplicada

Estatística Aplicada INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Estatística Aplicada Ano Lectivo 2006/2007 Ficha n.º1 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES Monitora Juliana Dubinski LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES EXERCÍCIO 1 (INTERVALO DE CONFIANÇA PARA MÉDIA) Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.

Leia mais

EXERCÍCIOS BINOMIAL. X 0 1 2 3 4 P(X=x) 0.00390625 0.046875 0.2109375 0.421875 0.3164063

EXERCÍCIOS BINOMIAL. X 0 1 2 3 4 P(X=x) 0.00390625 0.046875 0.2109375 0.421875 0.3164063 EXERCÍCIOS BINOMIAL Prof. Jomar 1. Num determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma. Então: a) Qual a probabilidade

Leia mais

TESTES DE HIPÓTESES. Testes de comparação entre grupos

TESTES DE HIPÓTESES. Testes de comparação entre grupos TESTES DE HIPÓTESES Testes de comparação entre grupos 1 Abordagem não paramétrica Não se faz suposição sobre as medidas da variável de interesse Exemplo 1 Com o objetivo de avaliar o efeito de um programa

Leia mais

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22 Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete

Leia mais

Teste de Hipótese para uma Amostra Única

Teste de Hipótese para uma Amostra Única Teste de Hipótese para uma Amostra Única OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar problemas de engenharia de tomada de decisão, como

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 3

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 3 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Disciplina: Estatística II LISTA DE EXERCÍCIOS 3 1. Testes de resistência à tensão foram feitas em duas estruturas

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO GRUPO: ESTATÍSTICA DATA: HORÁRIO: NOME DO CANDIDATO: CPF: ASSINATURA: INSTRUÇÕES:

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

Universidade Federal Fluminense

Universidade Federal Fluminense Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado

Leia mais

Aula de Exercícios - Testes de Hipóteses

Aula de Exercícios - Testes de Hipóteses Aula de Exercícios - Testes de Hipóteses Organização: Airton Kist Digitação: Guilherme Ludwig Testes de Hipóteses Exemplo Para decidirmos se os habitantes de uma ilha são descendentes da civilização A

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.

Leia mais

Aula 10 Testes de hipóteses

Aula 10 Testes de hipóteses Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial Distribuições: Binomial, Poisson e Normal Distribuição Binomial Monitor Adan Marcel e Prof. Jomar 1. Uma remessa de 800 estabilizadores de tensão é recebida pelo controle de qualidade de uma empresa. São

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Lista IV - Curva Normal. Professor Salvatore Estatística I

Lista IV - Curva Normal. Professor Salvatore Estatística I Lista IV - Curva Normal Professor Salvatore Estatística I 19/12/2011 Consulta à tabela Normal: 1. Estabeleça a área entre 0 (zero) e Zi igual a a. + 1,35 b. + 1,58 c. +2,05 d. +2,76 e. -1,26 f. -2,49 g.

Leia mais

Monitor Giovani Roveroto

Monitor Giovani Roveroto Monitor Giovani Roveroto Intervalo de Confiança 1. Suponha que o gerente de uma loja de comércio de tintas queira calcular a verdadeira quantidade de tinta contida em um galão, comprados de um fabricante

Leia mais

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014 PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método

Leia mais

Especialização em Engenharia Clínica

Especialização em Engenharia Clínica Especialização em Engenharia Clínica Introdução a Bioestatística Docente: > Marcelino M. de Andrade, Dr. Apresentação: Módulo 02 Teoria Elementar da Amostragem A teoria elementar da amostragem é um estudo

Leia mais

Disciplinas: Cálculo das Probabilidades e Estatística I

Disciplinas: Cálculo das Probabilidades e Estatística I Introdução a Inferência Disciplinas: Cálculo das Probabilidades e Estatística I Universidade Federal da Paraíba Prof a. Izabel Alcantara Departamento de Estatística (UFPB) Introdução a Inferência Prof

Leia mais

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber 8 Teste de hipóteses com duas amostras Estatística Aplicada Larson Farber Seção 8.1 Testando a diferença entre duas médias (amostras grandes e independentes) Visão geral Para testar o efeito benéfico de

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS

Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS 1) Devido às altas taxas de juros, uma firma informa que 30% de suas

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente.

1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente. TESTES NÃO - PARAMÉTRICOS As técnicas da Estatística Não-Paramétrica são, particularmente, adaptáveis aos dados das ciências do comportamento. A aplicação dessas técnicas não exige suposições quanto à

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

INE 5122 LISTA DE EXERCÍCIOS INFERÊNCIA ESTATÍSTICA

INE 5122 LISTA DE EXERCÍCIOS INFERÊNCIA ESTATÍSTICA INE 5122 LISTA DE EXERCÍCIOS INFERÊNCIA ESTATÍSTICA Marcados com asterisco os exercícios de Estimação de Parâmetros. Lista de Exercícios Inferência Estatística 1 1. O tempo médio de atendimento em uma

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Experimentos de Bernoulli) Considere as seguintes experimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Avaliando o que foi Aprendido

Avaliando o que foi Aprendido Avaliando o que foi Aprendido Treinamento, teste, validação Predição da performance: Limites de confiança Holdout, cross-validation, bootstrap Comparando algoritmos: o teste-t Predecindo probabilidades:função

Leia mais

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução a Analise Química - II sem/2012 Profa Ma Auxiliadora - 1 Introdução à Análise Química QUI 094 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

Teorema Central do Limite e Intervalo de Confiança

Teorema Central do Limite e Intervalo de Confiança Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Valor Prático da Distribuição Amostral de

Valor Prático da Distribuição Amostral de DISTRIBUIÇÃO AMOSTRAL DA MÉDIA DA AMOSTRA OU DISTRIBUIÇÃO AMOSTRAL DE Antes de falarmos como calcular a margem de erro de uma pesquisa, vamos conhecer alguns resultados importantes da inferência estatística.

Leia mais

Olá pessoal! Sem mais delongas, vamos às questões.

Olá pessoal! Sem mais delongas, vamos às questões. Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente º Semestre 1º Folha Nº4: Intervalos de confiança Probabilidades e Estatística 1.a) Determine o intervalo de confiança a 90% para a média de uma população

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos amigos concurseiros. Seguem breves comentários à prova de RLQ do ATA- MF. Não encontramos nenhuma questão passível de recurso. Mas, se vocês tiverem visualizado alguma coisa e quiserem debater

Leia mais

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1 RESISTORS: LAWS AND THEOREMS Resistores: Leyes y Teoremas Resistores: Leis e Teoremas M-1101A *Only illustrative image./imagen meramente ilustrativa./imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual

Leia mais

Lista de Exercícios - Distribuição Normal

Lista de Exercícios - Distribuição Normal Lista de Exercícios - Distribuição Normal Monitor: Giovani e Prof. Jomar 01. Em indivíduos sadios, o consumo renal de oxigênio tem distribuição Normal de média 12 cm³/min e desvio padrão 1,5 cm³/min. Determinar

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida

Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida Ivan Bezerra Allaman Considerando variância conhecida Introdução Nestes casos utiliza-se a seguinte estatística

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

Teste de Hipóteses e Intervalos de Confiança

Teste de Hipóteses e Intervalos de Confiança Teste de Hipóteses e Intervalos de Confiança Teste de Hipótese e Intervalo de Confiança para a média Monitor Adan Marcel 1) Deseja-se estudar se uma moléstia que ataca o rim altera o consumo de oxigênio

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Posição Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Noções de Pesquisa e Amostragem. André C. R. Martins

Noções de Pesquisa e Amostragem. André C. R. Martins Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 1. (Uerj) Com o intuito de separar o lixo para fins de reciclagem, uma instituição colocou em suas dependências cinco lixeiras, de acordo com o tipo de resíduo a que se destinam:

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Estatística Aplicada para Engenharia Inferência para Duas Populações

Estatística Aplicada para Engenharia Inferência para Duas Populações Universidade Federal Fluminense Instituto de Matemática e Estatística Estatística Aplicada para Engenharia Inferência para Duas Populações Ana Maria Lima de Farias Departamento de Estatística Conteúdo

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Exercícios Resolvidos sobre Amostragem

Exercícios Resolvidos sobre Amostragem Exercícios Resolvidos sobre Amostragem Observe agora, nestes Exercícios Resolvidos, como alguns parâmetros estatísticos devem ser construídos para formar amostras fidedignas de certas populações ou fenômenos

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Estatística Aplicada Lista de Exercícios 7

Estatística Aplicada Lista de Exercícios 7 AULA 7 CORRELAÇÃO E REGRESSÃO Prof. Lupércio F. Bessegato 1. Ache os valores de a e b para a equação de regressão Y = a + bx, usando o conjunto de dados apresentados a seguir, sem fazer cálculos (sugestão:

Leia mais

1. Uma situação na qual um comprador e um vendedor possuem informações diferentes sobre uma transação é chamada de...

1. Uma situação na qual um comprador e um vendedor possuem informações diferentes sobre uma transação é chamada de... 1. Uma situação na qual um comprador e um vendedor possuem informações diferentes sobre uma transação é chamada de... Resposta: Informações assimétricas caracterizam uma situação na qual um comprador e

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Todos nós estamos habituados a avaliar nosso desempenho. Isso se inicia principalmente na vida escolar, com as provas e os testes. Uma avaliação considera quanto da prova se respondeu

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

Histogramas. 12 de Fevereiro de 2015

Histogramas. 12 de Fevereiro de 2015 Apêndice B Histogramas Uma situação comum no laboratório e na vida real é a de se ter uma grande quantidade de dados e deles termos que extrair uma série de informações. Encontramos essa situação em pesquisas

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística MAE6 Noções de Estatística Grupo A - º semestre de 007 Exercício ( pontos) Uma máquina de empacotar um determinado produto o faz segundo uma distribuição normal, com média µ e desvio padrão 0g. (a) Em

Leia mais

UM POUCO SOBRE GESTÃO DE RISCO

UM POUCO SOBRE GESTÃO DE RISCO UM POUCO SOBRE GESTÃO DE RISCO Por Hindemburg Melão Jr. http://www.saturnov.com Certa vez o maior trader de todos os tempos, Jesse Livermore, disse que a longo prazo ninguém poderia bater o Mercado. Ele

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Estatística Aplicada ao Serviço Social Módulo 1:

Estatística Aplicada ao Serviço Social Módulo 1: Estatística Aplicada ao Serviço Social Módulo 1: Introdução à Estatística Importância da Estatística Fases do Método Estatístico Variáveis estatísticas. Formas Iniciais de Tratamento dos Dados Séries Estatísticas.

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

Intervalos Estatísticos para uma Única Amostra

Intervalos Estatísticos para uma Única Amostra Roteiro Intervalos Estatísticos para uma Única Amostra 1. Introdução 2. Intervalo de Confiança para Média i. População normal com variância conhecida ii. População normal com variância desconhecida 3.

Leia mais

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade Escola de Engenharia de Lorena - EEL Controle Estatístico de Processos CEP Prof. MSc. Fabrício Maciel Gomes Objetivo de um Processo Produzir um produto que satisfaça totalmente ao cliente. Conceito de

Leia mais

MRP II. Planejamento e Controle da Produção 3 professor Muris Lage Junior

MRP II. Planejamento e Controle da Produção 3 professor Muris Lage Junior MRP II Introdução A lógica de cálculo das necessidades é conhecida há muito tempo Porém só pode ser utilizada na prática em situações mais complexas a partir dos anos 60 A partir de meados da década de

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

CAP4: Controle Estatístico do Processo (CEP)

CAP4: Controle Estatístico do Processo (CEP) CAP4: Controle Estatístico do Processo (CEP) O principal objetivo do CEP é detectar rapidamente a ocorrência de causas evitáveis que produzam defeitos nas unidades produzidas pelo processo, de modo que

Leia mais