Atenção: o conjunto vazio é representado por { } 1.2 Pertinência e Inclusão

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Atenção: o conjunto vazio é representado por { } 1.2 Pertinência e Inclusão"

Transcrição

1 Módulo 1 Conjuntos A Teoria dos Conjuntos foi estabelecida por Georg Ferdinand Ludwig Cantor ( ). Em meados do século XX, a Teoria dos Conjuntos exerceu profundos efeitos sobre o ensino da Matemática. 1.1 Definição Define se por conjunto a uma coleção de objetos cuja representação pode ser feita de três modos: 1. Representação Ordinária: Na representação ordinária os elementos do conjunto são explicitamente listados. Exemplos incluem o conjunto das faces de um dado A = { 1, 2, 3, 4, 5, 6 }, o conjunto de regiões do Brasil A = { SU, SE, CO, NE, NO }, o conjunto das notas musicais A = { dó, ré, mi, fá, sol, lá, si }. 2. Representação Abstrata: Na representação abstrata os elementos do conjunto são representados através de uma caracterização que é previamente definida. Em termos gerais se os elementos de um conjunto A são caracterizados por uma propriedade P então o conjunto A pode ser assim enunciado A = { x tal que x satisfaz a propriedad e P } ou ainda utilizando símbolos A = { x / x satisfaz P }(o símbolo / representa tal que, ás vezes a barra é substituída por ponto e vírgula). A representação abstrata é amplamente utilizada em matemática por que permite que se possa expressar quaisquer tipos de conjuntos, bastando definir a propriedade que caracteriza os elementos do conjunto. Por exemplo, se definirmos a propriedade P como P: regiões do Brasil, então o conjunto das regiões do Brasil pode ser reescrito como A = { x / x satisfaz P }. 3. Representação por Diagramas de Venn: A vantagem na utilização dos diagramas de Venn como representação de conjuntos é seu apelo visual, muito útil para visualizar operações entre conjuntos, entretanto é importante salientar que o poder analítico desse tipo de dispositivo é extremamente limitado. O conjunto das faces de um dado pode ser posto como: 1

2 A Atenção: o conjunto vazio é representado por { } 1.2 Pertinência e Inclusão Quando um elemento a está num conjunto A, dizemos que este pertence ao conjunto A e representamos este fato simbolicamente como: a A Se ao contrário, o elemento não está no conjunto A então dizemos que o mesmo não pertence ao conjunto A e representamos este fato como: a A Essas são as chamadas relações de pertinência que conectam os conjuntos aos seus elementos. Quando o conjunto A não possui elemento algum dizemos que o conjunto A é o conjunto vazio e neste caso representamos esse conjunto pelo símbolo. Dados dois conjuntos A e B, quando todo elemento de A é também elemento de B, dizemos que o conjunto A está incluído em B ou que o conjunto A é um subconjunto do conjunto B, este fato é simbolicamente representado como: A B Quando por outro lado, existe ao menos um elemento que pertence ao conjunto A e não pertence ao conjunto B então A não está incluído em B ou o conjunto A não é subconjunto do conjunto B. Este fato é simbolicamente representado como: A B Essas são as chamadas relações de inclusão e conectam conjuntos a outros conjuntos. É importante ter em mente a distinção entre pertinência e inclusão. No primeiro caso a relação é entre elemento e conjunto e no segundo entre dois conjuntos quaisquer. Por 2

3 exemplo, as sentenças a seguir possuem significados totalmente diferentes, embora pareçam dizer a mesma coisa: a A e { a } A A primeira sentença diz que o elemento a pertence ao conjunto A e a segunda sentença diz que o conjunto unitário {a} está incluído ou é subconjunto do conjunto A. A relação de inclusão é freqüentemente utilizada para determinar a igualdade entre conjuntos. Dois conjuntos A e B são iguais se possuem exatamente os mesmos elementos, fato que pode ser estabelecido mostrando se que: A B e B A 1.3 Operações Entre Conjuntos Interseção Dados dois conjuntos A e B, a interseção entre A e B é o conjunto definido como: A B = { x / x A e x B } Pelos conjuntos dados acima se vê que A B = { 1, 2 }. O diagrama de Venn abaixo ilustra a operação de interseção. A B A B 1 Quando a interseção entre os conjuntos A e B resultar no conjuntos vazio, dizemos que A e B são conjuntos disjuntos. 3

4 1.3.2 União Dados dois conjuntos A e B, a união entre A e B é o conjunto definido como: A B = { x / x A ou x B } Sejam A = { 1, 2, 3, 4 } e B = { 1, 2, 5, 6 } então A B = { 1, 2, 3, 4, 5, 6 }. O diagrama de Venn abaixo ilustra a operação de união. A B A B Observe que o número de elementos da união é calculado por: n ( A B ) = n ( A ) + n ( B ) n ( A B ) Diferença ou Complemento Relativo Dados dois conjuntos A e B, a diferença ou complemento relativo de A e B é o conjunto definido como: A B = { x / x A e x B } No exemplo dado acima se vê que A B = { 3, 4 }. O diagrama de Venn abaixo ilustra a operação de diferença. 4

5 A B A B 1.4 Alguns conjuntos numéricos importantes: 1 Conjunto dos Números Naturais: N = {1, 2,3,4,5,6,...} 2 Conjunto dos Números Inteiros: Z = {..., 3, 2, 1,0,1,2,3,...} 3 Conjunto dos Números Racionais: Q = {m/n; m Z,n Z,n 0} 4 Conjuntos dos Números Reais: R = o conjunto dos números reais incluem os números racionais e outros números que não são racionais como, por exemplo, os números dízimas não periódicas. 2 e as 5 Produto Cartesiano Entre Conjuntos Dados dois conjuntos A e B, o produto cartesiano entre A e B é o conjunto definido como: A B = {( x, y ) / x A e y B } Exemplo: Sejam A = { 1, 2, 3, 4 } e B = { 1, 2, 5, 6 } então: ( 1, 1 ),( 1, 2 ),( 1, 5 ),( 1, 6 ) ( 2, 1 ),( 2, 2 ),( 2, 5 ),( 2, 6 ) A B = ( 3, 1 ),( 3, 2 ),( 3, 5 ),( 3, 6 ) ( 4, 1 ),( 4, 2 ),( 4, 5 ),( 4, 6 ) O diagrama abaixo, conhecido como plano cartesiano ilustra o produto cartesiano entre números reais. 5

6 R y (x,y) x (y,x) 0 x y R O plano cartesiano é formado pelo conjunto R R = {(x, y); x R, y R }. É importante observar, que o conjunto resultante do produto cartesiano entre dois conjuntos corresponde a uma coleção de pares ordenados, ou seja, cada elemento do produto cartesiano toma a forma (x, y). Assim as sentenças {x, y} e (x, y) correspondem a objetos inteiramente distintos. O primeiro é o conjunto formado pelos elementos x e y e o segundo ao par ordenado (x, y). Assim sendo é imediato concluir que {x, y} = {y, x}, mas (x, y) (y, x). 1.5 Aplicações 1 Uma empresa colocou no mercado um produto em duas embalagens diferentes, A e B. Depois de algum tempo, entrevistou 200 pessoas num supermercado sobre a preferência pelas embalagens. Dos entrevistados, 120 declararam preferir o tipo A, 142 o tipo B e 30 declararam desconhecer o produto. Quantas pessoas gostariam de encontrar o produto nas duas embalagens. 6

7 Solução: Designando por A e B respectivamente o conjunto das embalagens A e B, podemos escrever: n(a) = 120 pessoas n(b) = 142 pessoas n(aub) = = 170 pessoas O número de pessoas que gostariam de encontrar o produto nas duas embalagens é dado pela intersecção entre os conjuntos A e B, isto é, n ( A B ) Representando a situação no diagrama de Venn, temos: A B Aplicando a fórmula da união de conjuntos n ( A B ) = n ( A ) + n ( B ) n ( A B ), temos: 170 = n ( A B ) n ( A B ) = = 92 Logo, 92 pessoas gostariam de encontrar o produto nas duas embalagens. 2 Em uma pesquisa de mercado 1000 pessoas foram entrevistadas em todo o território nacional sobre a preferência por marcas de refrigerante de laranja. O gráfico abaixo mostra como a pesquisa foi distribuída entre as regiões brasileiras. 7

8 Centro Oeste 10% Norte 15% Sudeste 30% Sul 20% Nordeste 25% Três marcas de refrigerante foram pesquisadas, as marcas A, B e C. Na pesquisa verificouse que 40% dos entrevistados preferem a marca A, 25% a marca B e 35% a marca C. Também foi constatado que dos que preferem a marca B, 70% são da região Nordeste, 8% da região Sul, 2%da região Centro Oeste, 10% da região Norte e 10% da região Sudeste. A empresa que encomendou a pesquisa deseja saber o seguinte: a) Quantas pessoas pertencem ao conjunto dos Sulistas que preferem a marca B? b) Dentro do conjunto de pessoas que preferem a marca B, quantas são da região Norte ou da região Nordeste? Solução: a) Pelos dados do gráfico o número de pessoas que consomem a marca B é 25% de 1000 pessoas = 250 pessoas. Destas 250 pessoas, 8% são sulistas, portanto 8% de 250 = 20 sulistas. b) Do enunciado, dos que preferem a marca B, 10% são da região Norte, logo 10% de 250 = 25 pessoas e 70% são da região Nordeste, logo 70% de 250 = 175 pessoas. Representando pelo conjunto A as pessoas da região Norte e o conjunto B as pessoas da região Nordeste, o número de pessoas que são da região Norte ou Nordeste é dado por n ( A B ), com n ( A B ) = 0, pois não há pessoas em comum das regiões Norte e Nordeste, que preferem a marca B, portanto, 8

9 n ( A B ) = n ( A ) + n ( B ) n ( A B ) n ( A B ) = n ( A B ) = 200 pessoas Logo, 200 pessoas da região Norte ou Nordeste preferem a marca B. 3 Uma fabricante de medicamentos realizou uma pesquisa para testar a eficiência de uma nova loção contra calvície. A empresa utilizou 100 pacientes homens para testar quatro fórmulas experimentais. Os resultados do experimento são dados na tabela a seguir: F1 F2 F3 F4 MB B RE RU Onde F1 = Fórmula 1, F2 = Fórmula 2, F3 = Fórmula 3, F4 = Fórmula 4, MB = Muito Bom, B = Bom, RE = Regular e RU = Ruim. Os números dentro das células correspondem às quantidades de pacientes que tiveram determinado resultado para a fórmula correspondente. Considere os seguintes conjuntos: Encontre A = { MB, B, RE, RU } B = { F 1, F 2, F 3, F 4 } A B e substitua os pares ordenados encontrados pelos respectivos números que aparecem na tabela e em seguida reescreva A B com esses resultados. Solução: Sejam A = { MB, B, RE, RU } e B = { F 1, F 2, F 3, F 4 } O produto cartesiano de A por B, A X B é dado por: A X B = {(MB, F1), (MB, F2), (MB, F3), (MB, F4), (B, F1), (B, F2), (B, F3), (B, F4), (RE, F1), (RE, F2), (RE, F3), (RE, F4), (RU, F1), (RU, F2), (RU, F3), (RU, F4)} 9

10 Substituindo cada par ordenado pelos números da tabela, obtemos: A X B = { 3, 4, 6, 4, 5, 6, 12, 14, 12, 11, 4, 3, 4, 5, 4, 5 } que representa de forma simplificada o resultado da pesquisa. Observe que o número de elementos do conjunto A X B = 16 elementos, calculado pelo produto do número de elementos do conjunto A e do conjunto B, isto é: n(axb) = n(a) n(b) 10

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens APRESENTAÇÃO Olá, prezados concursandos! Sejam bem-vindos à resolução de questões de Raciocínio Lógico preparatório para o INSS. Mais uma vez, agradeço ao convite do prof. Francisco Júnior pela oportunidade

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais

a) C D. b) C D. c) (A B) (C D). d) (A B) (C D).

a) C D. b) C D. c) (A B) (C D). d) (A B) (C D). Conjuntos e Conjuntos Numéricos Exercícios 1. Uma pesquisa de mercado foi realizada, para verificar a preferência sobre três produtos, A, B e C. 1.00 pessoas foram entrevistadas. Os resultados foram os

Leia mais

TEORIA DOS CONJUNTOS Símbolos

TEORIA DOS CONJUNTOS Símbolos 1 MATERIAL DE APOIO MATEMÁTICA Turmas 1º AS e 1º PD Profº Carlos Roberto da Silva A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar

Leia mais

Elementos de Matemática Discreta

Elementos de Matemática Discreta Elementos de Matemática Discreta Prof. Marcus Vinícius Midena Ramos Universidade Federal do Vale do São Francisco 9 de junho de 2013 marcus.ramos@univasf.edu.br www.univasf.edu.br/~marcus.ramos Marcus

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

.x.y.z A B = {1,2,3,4} Conjunto das Partes CONJUNTOS. Nomenclatura: Conjuntos Letras maiúsculas Elementos Letras minúsculas

.x.y.z A B = {1,2,3,4} Conjunto das Partes CONJUNTOS. Nomenclatura: Conjuntos Letras maiúsculas Elementos Letras minúsculas Nomenclatura: Representação:.x.y.z CONJUNTOS Conjuntos Letras maiúsculas Elementos Letras minúsculas A = {x,y,z}- Entre chaves Diagrama de Euler-Venn Descrição de um Conjunto Enumerado - A= {a,e,i,o,u}

Leia mais

RELAÇÕES BINÁRIAS Produto Cartesiano A X B

RELAÇÕES BINÁRIAS Produto Cartesiano A X B RELAÇÕES BINÁRIAS PARES ORDENADOS Um PAR ORDENADO, denotado por (x,y), é um par de elementos onde x é o Primeiro elemento e y é o Segundo elemento do par A ordem é relevante em um par ordenado Logo, os

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números

Leia mais

Faculdades Pitágoras de Uberlândia. Matemática Básica 1

Faculdades Pitágoras de Uberlândia. Matemática Básica 1 Faculdades Pitágoras de Uberlândia Sistemas de Informação Disciplina: Matemática Básica 1 Prof. Walteno Martins Parreira Júnior www.waltenomartins.com.br waltenomartins@yahoo.com 2010 Professor Walteno

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

MATEMÁTICA. Prof. Sabará CONJUNTOS NUMÉRICOS TEORIA DOS CONJUNTOS. Símbolos. : pertence : existe. : não pertence : não existe

MATEMÁTICA. Prof. Sabará CONJUNTOS NUMÉRICOS TEORIA DOS CONJUNTOS. Símbolos. : pertence : existe. : não pertence : não existe MATEMÁTICA Prof. Sabará CONJUNTOS NUMÉRICOS Símbolos TEORIA DOS CONJUNTOS : pertence : existe : não pertence : não existe : está contido : para todo (ou qualquer que seja) 1 : não está contido : conjunto

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

Operações com Conjuntos

Operações com Conjuntos Colégio Adventista Portão EIEFM MATEMÁTICA Operações com Conjuntos 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2013 Aluno(a): Número: Turma: Operações

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

A Torre de Hanói e o Princípio da Indução Matemática

A Torre de Hanói e o Princípio da Indução Matemática A Torre de Hanói e o Princípio da Indução Matemática I. O jogo A Torre de Hanói consiste de uma base com três pinos e um certo número n de discos de diâmetros diferentes, colocados um sobre o outro em

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 09 CONJUNTOS

MATEMÁTICA - 1 o ANO MÓDULO 09 CONJUNTOS MATEMÁTICA - 1 o ANO MÓDULO 09 CONJUNTOS A 3 7 1 5 9 A B A B A B A B A B A B A B A B A B A B A B A B A B A - B A B A - B A B A - B Como pode cair no enem (UERJ) Em um posto de saúde de uma comunidade carente,

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

Capítulo 5 Representações gráficas para variáveis quantitativas

Capítulo 5 Representações gráficas para variáveis quantitativas Capítulo 5 Representações gráficas para variáveis quantitativas Introdução Até o capítulo passado, você aprendeu a sintetizar dados a partir de um conjunto desordenado de dados, identificando a quantidade

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS

PROF. LUIZ CARLOS MOREIRA SANTOS 1 - CONCEITO PROF. LUIZ CARLOS MOREIRA SANTOS CONJUNTOS Conjunto proporciona a idéia de coleção, admitindo-se coleção de apenas um elemento (conjunto unitário) e coleção sem nenhum elemento (conjunto vazio).

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130 Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

CONJUNTOS. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais. Uma breve história. Alguns conceitos primitivos CONJUNTOS ELEMENTOS

CONJUNTOS. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais. Uma breve história. Alguns conceitos primitivos CONJUNTOS ELEMENTOS PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais rrelva@globo.com 1 Uma breve história e administrar os seus bens de forma a não ser enganado. O homem sempre teve a necessidade de se

Leia mais

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA PORCENTAGEM MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA Quando é dito que 40% das pessoas entrevistadas votaram no candidato A, esta sendo afirmado que, em média, de cada pessoas, 40 votaram no candidato

Leia mais

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos

Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos I. Conjuntos 1. Introdução e notações 1.1. Relação de pertença 1.2. Modos de representar um conjunto 1.3. Classificação de conjuntos quanto ao número de elementos 1.4. Noção de correspondência 2. Relações

Leia mais

Experimentos Aleatórios e Espaços Amostrais

Experimentos Aleatórios e Espaços Amostrais Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

MATEMÁTICA PRINCÍPIOS

MATEMÁTICA PRINCÍPIOS MTEMÁTI PRINÍPIOS PÍTULO NÚMEROS oneões Podemos imaginar um campo de futebol no qual desejamos ir de uma trave à outra. Pode-se seguir este raciocínio: Na caminhada, em determinado momento, estaremos na

Leia mais

MATEMÁTICA PARA COMPUTAÇÃO

MATEMÁTICA PARA COMPUTAÇÃO Professor Angelo Gonçalves da Luz MATEMÁTICA PARA COMPUTAÇÃO Teoria de conjuntos Notação e Relação entre elementos Letras maiúsculas denotam Conjuntos. O Símbolo denota que um elemento pertence a um determinado

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

MATEMÁTICA PROVA 1º BIMESTRE 8º ANO

MATEMÁTICA PROVA 1º BIMESTRE 8º ANO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 1º BIMESTRE 8º ANO 2010 PROVA MATEMÁTICA - 8º ANO QUESTÃO 01 Marcos

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

ANALISE COMBINATORIA Um pouco de probabilidade

ANALISE COMBINATORIA Um pouco de probabilidade ANALISE COMBINATORIA Um pouco de probabilidade Programa Pró-Ciência Fapesp/IME-USP-setembro de 1999 Antônio L. Pereira -IME USP (s. 234A) tel 818 6214 email:alpereir@ime.usp.br 1 Um carro e dois bodes

Leia mais

Lógica para a Programação - 1º semestre AULA 01 Prof. André Moraes

Lógica para a Programação - 1º semestre AULA 01 Prof. André Moraes Pág 4 Lógica para a Programação - 1º semestre AULA 01 Prof. André Moraes 1 APRESENTAÇÃO DA UNIDADE CURRICULAR A unidade curricular de Lógica para a programação tem como objetivo promover o estudo dos principais

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos 1) O tipo float está contido dentro de quais conjuntos? (Mais de uma alternativa pode ser marcada como correta).

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Princípio da contagem e Probabilidade: conceito

Princípio da contagem e Probabilidade: conceito Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança

Leia mais

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss.

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss. Matemática Jacob Palis Álgebra 1 Euclides Roxo David Hilbert George F. B. Riemann George Boole Niels Henrik Abel Karl Friedrich Gauss René Descartes Gottfried Wilhelm von Leibniz Nicolaus Bernoulli II

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times:

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times: Raciocínio Lógico- Vinicius Werneck 1. Em um campeonato de futebol, a pontuação acumulada de um time é a soma dos pontos obtidos em cada jogo disputado. Por jogo, cada time ganha três pontos por vitória,

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

1 Axiomas de Probabilidade

1 Axiomas de Probabilidade 1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

Gráficos de funções em calculadoras e com lápis e papel (*)

Gráficos de funções em calculadoras e com lápis e papel (*) Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

Álgebra. SeM MiSTéRio

Álgebra. SeM MiSTéRio Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem

Leia mais

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos ESCOL ESTDUL DE ENSINO MÉDIO UL PILL COMPONENTE CUICUL: Matemática POFESSO: Maria Inês Castilho Noções básicas: Conjuntos 1º NOS DO ENSINO MÉDIO Um conjunto é uma coleção qualquer de objetos, de dados,

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

GERADORES ELÉTRICOS INTRODUÇÃO TEÓRICA

GERADORES ELÉTRICOS INTRODUÇÃO TEÓRICA GERADORES ELÉTRICOS OBJETIVOS: a) verificar o funcionamento de um gerador real; b) medir a resistência interna e a corrente de curto-circuito; c) levantar a curva característica de um gerador real. INTRODUÇÃO

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

PROGRAMAÇÃO OO DIAGRAMA DE CLASSES. Engenheiro Anilton S. Fernandes (asfernandes.com) Janeiro 2012

PROGRAMAÇÃO OO DIAGRAMA DE CLASSES. Engenheiro Anilton S. Fernandes (asfernandes.com) Janeiro 2012 PROGRAMAÇÃO OO DIAGRAMA DE CLASSES Engenheiro Anilton S. Fernandes (asfernandes.com) Janeiro 2012 Pensando Objectos Imagine Quero representar um cão REX O REX é - cor: castanho claro; olhos : pretos; altura:

Leia mais

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b) Equação Vetorial da Reta Dois pontos P e Q, definem um único vetor v = PQ, que representa uma direção. Todo ponto R cuja direção PR seja a mesma de PQ está contido na mesma reta definida pelos pontos P

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição. 1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 GRUPO DISCIPLINAR DE MATEMÁTICA MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 (Em conformidade com o Programa de Matemática homologado em 17 de junho de 2013 e com as de Matemática homologadas em 3

Leia mais

Pesquisa das Características e motivação de consumidores de produtos do Comércio Justo e Solidário

Pesquisa das Características e motivação de consumidores de produtos do Comércio Justo e Solidário Durante ação de promoção comercial ocorrida na Exposustentat 2010, o FACES do Brasil realizou uma pesquisa para conhecer o perfil do público da feira e entender melhor as motivações dos consumidores potenciais

Leia mais

O AXIOMA DA ESCOLHA, O LEMA DE ZORN E O TEOREMA DE ZERMELO

O AXIOMA DA ESCOLHA, O LEMA DE ZORN E O TEOREMA DE ZERMELO O AXIOMA DA ESCOLHA, O LEMA DE ZORN E O TEOREMA DE ZERMELO Resumo. Após uma breve discussão sobre as origens do Axioma da Escolha, discutiremos nessas notas a equivalência das três asserções do título

Leia mais

LISTA DE EXERCÍCIOS. CONTEÚDO: LÓGICA E TEORIA DOS CONJUNTOS PROFESSORES: João Mendes e Alexandrino

LISTA DE EXERCÍCIOS. CONTEÚDO: LÓGICA E TEORIA DOS CONJUNTOS PROFESSORES: João Mendes e Alexandrino CONTEÚDO: LÓGICA E TEORIA DOS CONJUNTOS PROFESSORES: João Mendes e Alexandrino LISTA DE EXERCÍCIOS 01. Roberto, Sérgio, Carlos, Joselias e Aldo estão trabalhando em um projeto, onde cada um exerce uma

Leia mais

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Nível Intermediário 0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Quando um jovem estudante de matemática começa a estudar os números reais, é difícil não sentir certo desconforto

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

Lista de férias. Orientação de estudos:

Lista de férias. Orientação de estudos: Lista de férias Orientação de estudos: 1. Você deve rever as aulas iniciais sobre distância entre dois pontos e coeficiente angular. Lembre-se que há duas maneiras para determinar o coeficiente angular.

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Fundamentos de Matemática Elementar (MAT133)

Fundamentos de Matemática Elementar (MAT133) Fundamentos de Matemática Elementar (MAT133) Notas de aulas Maria Julieta Ventura Carvalho de Araújo (Colaboração: André Arbex Hallack) Março/2010 i Índice 1 Conjuntos 1 1.1 A noção de conjunto e alguns

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES 1 1. CONJUNTOS... 3 1 Introdução... 3 2 Formas de representação de conjuntos... 4 3 Conjunto universo... 7 4 Subconjuntos.... 8 5 Conjuntos em que os elementos também são conjuntos.... 10 6 Operações com

Leia mais

Tecnologia GreenTech EC

Tecnologia GreenTech EC Tecnologia GreenTech EC Benefícios econômicos alcançados pela comutação eletrônica A escolha dos Engenheiros Não desligue o seu ventilador, controle-o de forma inteligente! Aqui está um exemplo prático

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Vou de Taxi. Série Matemática na Escola

Vou de Taxi. Série Matemática na Escola Vou de Taxi Série Matemática na Escola Objetivos 1 Utilizar coordenadas cartesianas no plano introduzindo uma nova noção de distância onde a função módulo aparece de forma natural 2 Apresentar a Geometria

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS

NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Atenção: Material do grupo do. adquiriu com outra pessoa, foi vítima de um falso rateio e em

Atenção: Material do grupo do. adquiriu com outra pessoa, foi vítima de um falso rateio e em Atenção: Material do grupo do Roger Rodrigues se você adquiriu com outra pessoa, foi vítima de um falso rateio e em breve não receberá mais material. Aula 03 Raciocínio Lógico p/ INSS - Técnico do Seguro

Leia mais