PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009."

Transcrição

1 PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Oi Amigos, Como estou recebendo muitos pedidos da resolução da prova a PRF Elaborei os comentários das questões. Observe que foram elaborados alguns pedidos de recursos para as seguintes questões, e que serão apreciados pela banca da FUNRIO. QUESTÕES COM RECURSOS JÁ SOLICITADOS: - QUESTÃO 21: RECURSO SOLICITADO, POIS OS ASSUNTOS PROGRESSÃO GEOMÉTRICA E PROGRESSÃO ARITMÉTICA NÃO ESTAVAM NO PROGRAMA DO EDITAL. - QUESTÃO 22: RECURSO SOLICITADO, POIS NÃO HÁ OPÇÃO CORRETA. - QUESTÃO 23: RECURSO SOLICITADO, POIS OS ASSUNTOS PROBABILIDADE E MÉDIA DE VARÍÁVEIS ALETÓRIAS NÃO CONSTAVAM NO PROGRAMA DO EDITAL. Estaremos aguardando os resultados dos recursos e torcendo pela sua aprovação. Boa Sorte. Joselias Questão 21 Os acidentes automobilísticos ocorridos em duas autoestradas (E1 e E2) são classificados, pela idade do motorista que provoca o acidente, em três faixas etárias distintas (A, B e C). As quantidades de acidentes nas faixas etárias A, B e C seguem, nessa ordem, uma progressão aritmética decrescente para a estrada E1, e uma progressão geométrica de razão 0,5 para a estrada E2. Sabendo-se que 51% de todos os acidentes ocorrem na estrada E1, a probabilidade de um motorista pertencente à faixa etária B provocar um acidente é de A) 0,25. B) 0,53. C) 0,42. D) 0,31. E) 0,64.

2 Autoestrada E1: 51% de todos os acidentes. Progressão aritmética de razão r: Sejam x-r, x, x+r as porcentagens de acidentes em cada uma das faixas A, B e C, respectivamente. Logo x-r+x+x+r=51% 3x=51% x=17% na faixa B. (*) Autoestrada E2: 49% de todos os acidentes. Progressão geométrica com razão 1/2: Sejam 4x, 2x, x as porcentagens de acidentes em cada uma das faixas A, B e C, respectivamente Logo 4x+2x+x = 49% 7x= 49% x = 7% portanto na faixa B temos 2x =2 x 7% = 14%. (**) Sendo assim a probabilidade de um motorista pertencente à faixa etária B, veja (*) e (**), provocar um acidente é de 17%+14% = 31%. Resposta: D Questão 22 Os motoristas que cometeram as infrações A, B e C foram contabilizados em sete conjuntos: X1, X2, X3, X4, X5, X6 e X7. Os conjuntos X1, X2 e X3 são compostos pelos motoristas que cometeram, respectivamente, a infração A, B e C; os conjuntos X4, X5 e X6 são formados pelos que cometeram, respectivamente, as infrações A e B, A e C, e B e C. Finalmente, o conjunto X7 é composto pelos que cometeram as três infrações; seja N o número mínimo de motoristas que cometeram apenas uma infração. Sabendo que os números de motoristas desses sete conjuntos são todos diferentes e divisores de 30, o valor de N é A) 6.

3 B) 22. C) 18. D) 14. E) 10. Podemos verificar que os conjuntos possuem os seguintes números de elementos: N(X1) = 5, N(X2) = 10, N(X3) = 15, N(X4) = 2, N(X5) = 3, N(X6) = 6 e N(X7) = 1. Veja a figura abaixo: Portanto o número mínimo de motoristas que cometeram apenas uma infração = 11. Não há opção correta. Resposta: Não há opção correta. Questão 23 Duas tabelas, cada qual com 5 linhas e 3 colunas, apresentam os números de acidentes referentes a 5 rodovias federais em três meses. Na primeira tabela, os números foram obtidos sem o uso de radar, enquanto na segunda esses números foram levantados com o emprego de radar. Constatou-se que, na primeira tabela, o número registrado na i-ésima linha e j-ésima coluna é dado pelo quadrado da soma (i+j) e que, na segunda tabela, o número na posição correspondente é dado pelo quadrado da diferença (i j). Após esse levantamento, deseja-se diminuir a quantidade de acidentes nessas estradas com o emprego de apenas 2 radares, adotando a seguinte estratégia: primeiramente, colocar um dos radares na estrada em que se verificou a maior redução de acidentes e, em seguida, empregar o outro numa das demais estradas, escolhida aleatoriamente para cada um dos três

4 meses. A redução média do número total de acidentes utilizando essa estratégia em relação à situação em que não se empregam radares é de A) 160. B) 140. C) 200. D) 180. E) 120. Sem radar: Estrada/Mês Mês 1 Mês 2 Mês 3 Estrada Estrada Estrada Estrada Estrada Com radar: Estrada/Mês Mês 1 Mês 2 Mês 3 Estrada Estrada Estrada Estrada Estrada Redução: Estrada/Mês Mês 1 Mês 2 Mês 3 Estrada Estrada Estrada Estrada Estrada

5 Primeiramente vamos calcular algumas informações úteis: (*) A maior redução ocorre na estrada 5, e será 120(VALOR FIXO). Em seguida, empregar o outro numa das demais estradas, escolhida aleatoriamente para cada um dos três meses. Teremos 4x4x4 = 64 amostras para empregar o outro numa das demais estradas, escolhida aleatoriamente para cada um dos três meses. Isto é teremos 64 amostras aleatórias (x 1, x 2, x 3 ), cada uma com probabilidade igual a 1/64. Queremos agora obter a redução média total em cada uma das amostras isto é, precisamos saber os valores de x 1 +x 2 +x 3 =z para cada amostra. A média(esperança) da variável aleatória Z, que será calculada como X X X PX x,x x,x x = X X X X X X Observe que na soma de todos os valores de (X X X, o elemento X, que será a redução de qualquer uma das quatro estradas no primeiro mês será somada 16 vezes, o elemento X, que será a redução de qualquer uma das quatro estradas no segundo mês será somada 16 vezes, e analogamente o elemento X, que será a redução de qualquer uma das quatro estradas no terceiro mês será somada 16 vezes logo a soma total será, conforme calculamos acima(*) 16x240 = Logo teremos: 1 64 X X X

6 Assim a média solicitada será igual a: Resposta: D E(Z) = = 180. Questão 24 Um policial rodoviário deteve Carlos, João, José, Marcelo e Roberto, suspeitos de terem causado um acidente fatal em uma autoestrada. Na inquirição, os suspeitos afirmaram o seguinte: - Carlos: o culpado é João ou José; - João: o culpado é Marcelo ou Roberto; - José: o culpado não é Roberto; - Marcelo: o culpado está mentindo; - Roberto: o culpado não é José. Sabe-se ainda que - existe apenas um único culpado; - um único suspeito sempre mente e todos os demais sempre falam a verdade. Pode-se concluir que o culpado é A) Carlos. B) João. C) José. D) Marcelo. E) Roberto. Observe que o Marcelo não pode ser o culpado, pois se ele for o culpado termos que a sua declaração ( do Marcelo) o culpado está mentindo será um paradoxo pois não poderá ser verdadeira nem falsa. Logo Marcelo não é o culpado. Se o Roberto for o culpado teremos duas pessoas mentindo(carlos e José) que contradiz o enunciado. Até o momento sabemos que o culpado não é o Marcelo, nem o Roberto. Concluímos então que João está mentindo(e como apenas uma pessoa mente), Marcelo disse a verdade( o culpado está mentindo ). Logo o culpado é o João. Resposta: B

7 Questão 25 Em uma reunião de agentes da Polícia Rodoviária Federal, verificou-se que a presença por Estado correspondia a 46 % do Rio de Janeiro, 34 % de Minas Gerais e 20 % do Espírito Santo. Alguns agentes do Rio de Janeiro se ausentaram antes do final da reunião, alterando o percentual de agentes presentes do Rio de Janeiro para 40 %. O percentual referente ao número de agentes que se retirou em relação ao total inicialmente presente na reunião é de A) 6 %. B) 8 %. C) 12 %. D) 10 %. E) 15 %. Como a questão apresenta apenas valore em porcentagem vamos supor, sem perda de generalidade, que na reunião estavam presentes 100 pessoas, assim distribuídas. Rio de Janeiro 46 pessoas. Minas Gerais 34 pessoas. Espírito Santo 20 pessoas. Suponhamos que alguns cariocas se ausentaram, ficando assim x pessoas na reunião, sendo 40% dos presentes do Rio de Janeiro, e 60% do Espírito Santo e Minas Gerais. Como todos os participantes do Espírito Santo(20) e Minas Gerais(34) continuam na sala temos que 60% 54 0, ,6 90 ã. Logo o número de cariocas que se ausentaram foi a = 10. Isto é: O percentual referente ao número de agentes que se retirou em relação ao total inicialmente presente na reunião é de 10%. Resposta: D

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Resolução da prova de Raciocínio Lógico APO 2010 (ESAF)

Resolução da prova de Raciocínio Lógico APO 2010 (ESAF) Resolução da prova de Raciocínio Lógico APO 2010 (ESAF) Questão 01) Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita

Leia mais

A Matemática do ENEM em Bizus

A Matemática do ENEM em Bizus A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Tendo como referência as informações apresentados no texto acima, julgue o item que se segue.

Tendo como referência as informações apresentados no texto acima, julgue o item que se segue. COMENTÁRIO PROA POLICIA EDERAL 2009 COMENTÁRIO GERAL A prova foi bem fácil para o aluno que estudou. A CESPE continuou impecável, abordando todos os assuntos do edital. Existe apenas uma questão cujo gabarito

Leia mais

MATEMÁTICA LISTA 1 - CONJUNTOS PROBLEMAS

MATEMÁTICA LISTA 1 - CONJUNTOS PROBLEMAS MATEMÁTICA Prof. Sabará LISTA 1 - CONJUNTOS PROBLEMAS 1. Numa pesquisa sobre preferência de detergentes realiada numa população de 100 pessoas, constatou-se que 62 consomem o produto A; 47 consomem o produto

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais

Reaproveitando algoritmos

Reaproveitando algoritmos Reaproveitando algoritmos Alguns exercícios pedem que se modifique um algoritmo feito anteriormente, para que ele resolva um novo problema. Isto procura demonstrar uma prática corriqueira, chamada de reaproveitamento

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Os gráficos estão na vida

Os gráficos estão na vida Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada

Leia mais

Apresentação de Dados em Tabelas e Gráficos

Apresentação de Dados em Tabelas e Gráficos Apresentação de Dados em Tabelas e Gráficos Os dados devem ser apresentados em tabelas construídas de acordo com as normas técnicas ditadas pela Fundação Instituto Brasileiro de Geografia e Estatística

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

Quantidade dos Serviços

Quantidade dos Serviços Capítulo 3 Quantidade dos Serviços 3.1 Introdução Dissemos na introdução da lição 1 que não podemos ignorar o massivo emprego de programas para a execução de orçamentos em micro computadores. Precisamos,

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Oficina - Álgebra 1. Oficina de CNI EM / Álgebra 1 Material do Monitor. Setor de Educação de Jovens e Adultos. Caro monitor,

Oficina - Álgebra 1. Oficina de CNI EM / Álgebra 1 Material do Monitor. Setor de Educação de Jovens e Adultos. Caro monitor, Oficina - Álgebra 1 Caro monitor, As situações de aprendizagem apresentadas nessa atividade têm como objetivo desenvolver o raciocínio algébrico, e assim, proporcionar que o educando realize a representação

Leia mais

A Torre de Hanói e o Princípio da Indução Matemática

A Torre de Hanói e o Princípio da Indução Matemática A Torre de Hanói e o Princípio da Indução Matemática I. O jogo A Torre de Hanói consiste de uma base com três pinos e um certo número n de discos de diâmetros diferentes, colocados um sobre o outro em

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. 1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA MATEMÁTICA IV ANÁLISE COMBINATÓRIA DISCURSIVAS SÉRIE AULA AULA 0 1 (UP 01 A Mega Sena é a maior loteria do Brasil realizada pela Caixa Econômica Federal (CEF. Para ganhar o prêmio da Mega Sena, o apostador

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14 FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito

Leia mais

Resolução da Prova de Raciocínio Lógico do TCE/SP, aplicada em 06/12/2015.

Resolução da Prova de Raciocínio Lógico do TCE/SP, aplicada em 06/12/2015. de Raciocínio Lógico do TCE/SP, aplicada em 6/12/215. Raciocínio Lógico p/ TCE-SP Na sequência, criada com um padrão lógico-matemático, (1; 2; 1; 4; 2; 12; 6; 48; 24;...) o quociente entre o 16º termo

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

QUESTAO ENVOLVENDO RACIOCINIO DIRETO OBSERVE QUE APENAS AS PLACAS I-III e V deve-se verificar a informação ALTERNATIVA D

QUESTAO ENVOLVENDO RACIOCINIO DIRETO OBSERVE QUE APENAS AS PLACAS I-III e V deve-se verificar a informação ALTERNATIVA D 11. Em um posto de fiscalização da PRF, cinco veículos foram abordados por estarem com alguns caracteres das placas de identificação cobertos por uma tinta que não permitia o reconhecimento, como ilustradas

Leia mais

Prof. Bruno Holanda - Semana Oĺımpica 2011 - Nível 1. Teoria dos Grafos

Prof. Bruno Holanda - Semana Oĺımpica 2011 - Nível 1. Teoria dos Grafos Prof. Bruno Holanda - Semana Oĺımpica 0 - Nível Teoria dos Grafos O que é um grafo? Se você nunca ouviu falar nisso antes, esta é certamente uma pergunta que você deve estar se fazendo. Vamos tentar matar

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM MATEMÁTICA FINANCEIRA ON LINE Aula Gratuita PORCENTAGEM Introdução (Clique aqui para assistir à aula gravada) A porcentagem é o estudo da matemática financeira mais aplicado ao nosso dia-a-dia. É freqüente

Leia mais

Prof. Bart. Matemática - Racicínio Lógico

Prof. Bart. Matemática - Racicínio Lógico Prof. Bart Matemática - Racicínio Lógico 01. De acordo com o relatório estatístico de 2006, um setor de certa empresa expediu em agosto um total de 1.347 documentos. Se a soma dos documentos expedidos

Leia mais

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

RELATÓRIOS GERENCIAIS

RELATÓRIOS GERENCIAIS RELATÓRIOS GERENCIAIS Neste treinamento vamos abordar o funcionamento dos seguintes relatórios gerenciais do SisMoura: Curva ABC Fluxo de Caixa Semanal Análise de Lucratividade Análise Financeira o Ponto

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

MANUAL PARA JUNTAR DIVERSOS PEDIDOS EM

MANUAL PARA JUNTAR DIVERSOS PEDIDOS EM 19/7/2010 SHP MANUAL PARA JUNTAR DIVERSOS PEDIDOS EM UMA NOTA SHP HELP DESK Manual para juntar diversos Pedidos em uma Nota Este manual tem por objetivo ajudar na atividade de juntar diversos pedidos de

Leia mais

INTERNATIONAL VIRTUAL AVIATION ORGANISATION DIVISÃO BRASILEIRA DEPARTAMENTO DE TREINAMENTO. IVAO Brasil Academy. Versão 01 / Junho 2013

INTERNATIONAL VIRTUAL AVIATION ORGANISATION DIVISÃO BRASILEIRA DEPARTAMENTO DE TREINAMENTO. IVAO Brasil Academy. Versão 01 / Junho 2013 INTERNATIONAL VIRTUAL AVIATION ORGANISATION DIVISÃO BRASILEIRA DEPARTAMENTO DE TREINAMENTO IVAO Brasil Academy Versão 01 / Junho 2013 Radionavegação por VOR Autor: Andre Oscar Schneider Padronizado por:

Leia mais

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos

Leia mais

Revisão ENEM. Conjuntos

Revisão ENEM. Conjuntos Revisão ENEM Conjuntos CONJUNTO DOS NÚMEROS NATURAIS N Números naturais são aqueles utilizados na contagem dos elementos de um conjunto. N = {0,1,2,3,...} N* = {1,2,3,4,...} CONJUNTO DOS NÚMEROS INTEIROS

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Cotagem de dimensões básicas

Cotagem de dimensões básicas Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos. Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na

Leia mais

mat fin 2008/6/27 13:15 page 53 #50

mat fin 2008/6/27 13:15 page 53 #50 mat fin 2008/6/27 13:15 page 53 #50 Aula 4 DESCONTO NA CAPITALIZAÇ ÃO SIMPLES O b j e t i v o s Ao final desta aula, você será capaz de: 1 entender o conceito de desconto; 2 entender os conceitos de valor

Leia mais

01. Considere as seguintes proposições:

01. Considere as seguintes proposições: 01. Considere as seguintes proposições: p: O restaurante está fechado. q: O computador está ligado. A sentença O restaurante não está fechado e o computador não está ligado assume valor lógico verdadeiro

Leia mais

Realizando cálculos para o aparelho divisor (I)

Realizando cálculos para o aparelho divisor (I) Realizando cálculos para o aparelho divisor (I) A UU L AL A Você já estudou como fazer os cálculos para encontrar as principais medidas para a confecção de uma engrenagem cilíndrica de dentes retos. Vamos

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

CURSOS ON-LINE CONTABILIDADE GERAL EM EXERCÍCIOS PROFESSOR ANTONIO CÉSAR AULA 11: EXERCÍCIOS (CONTINUAÇÃO)

CURSOS ON-LINE CONTABILIDADE GERAL EM EXERCÍCIOS PROFESSOR ANTONIO CÉSAR AULA 11: EXERCÍCIOS (CONTINUAÇÃO) AULA 11: EXERCÍCIOS (CONTINUAÇÃO) 11- (AFRE MG/ESAF 2005) Duas empresas coligadas avaliam seus investimentos pelo método da equivalência patrimonial. A primeira empresa tem Ativo Permanente de R$ 500.000,00,

Leia mais

ADMINISTRADOR LEIA ATENTAMENTE AS INSTRUÇÕES

ADMINISTRADOR LEIA ATENTAMENTE AS INSTRUÇÕES MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE DESENVOLVIMENTO INSTITUCIONAL E RECURSOS HUMANOS CONCURSO PÚBLICO PARA PROVIMENTO DOS CARGOS DO QUADRO DE PESSOAL TÉCNICO-ADMINISTRATIVO

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br A U A UL LA O céu Atenção Aquela semana tinha sido uma trabalheira! Na gráfica em que Júlio ganhava a vida como encadernador, as coisas iam bem e nunca faltava serviço. Ele gostava do trabalho, mas ficava

Leia mais

18/11/2005. Discurso do Presidente da República

18/11/2005. Discurso do Presidente da República Discurso do presidente da República, Luiz Inácio Lula da Silva, na cerimônia de entrega de certificado para os primeiros participantes do programa Escolas-Irmãs Palácio do Planalto, 18 de novembro de 2005

Leia mais

Como erguer um piano sem fazer força

Como erguer um piano sem fazer força A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam

Leia mais

TÓPICO ESPECIAL DE CONTABILIDADE: IR DIFERIDO

TÓPICO ESPECIAL DE CONTABILIDADE: IR DIFERIDO TÓPICO ESPECIAL DE CONTABILIDADE: IR DIFERIDO! O que é diferimento?! Casos que permitem a postergação do imposto.! Diferimento da despesa do I.R.! Mudança da Alíquota ou da Legislação. Autores: Francisco

Leia mais

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens APRESENTAÇÃO Olá, prezados concursandos! Sejam bem-vindos à resolução de questões de Raciocínio Lógico preparatório para o INSS. Mais uma vez, agradeço ao convite do prof. Francisco Júnior pela oportunidade

Leia mais

Módulo 1: Contextualização

Módulo 1: Contextualização Módulo 1: Contextualização Este trabalho, tem o objetivo de auxiliar os alunos das disciplinas de Introdução a Programação de Computadores, para cursos de Engenharia e de Automação, em seus estudos e no

Leia mais

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples Disciplina: Matemática Ano / Série: 7 Professor (a): Rafael Machado Data: 11/2015 Nome: ----------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

RAZÕES DE RECURSO. Parte nº 03. NOVAS QUESTÕES E NOVAS TESES.

RAZÕES DE RECURSO. Parte nº 03. NOVAS QUESTÕES E NOVAS TESES. Associação de Praças do Estado do Paraná, pessoa jurídica de direito privado, reconhecida e declarada como Entidade de Utilidade Pública, sem fins lucrativos, regidas por normas de direito privado, não

Leia mais

A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada.

A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada. Aplicações da lei de Gauss A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada. De maneira genérica, a lei de Gauss diz que: Fluxo elétrico sobre

Leia mais

Concentração física de minerais

Concentração física de minerais Concentração física de minerais 2. Definição de concentração e balanço de massa Prof. Dr. André Carlos Silva CONCENTRAÇÃO A concentração de minérios ocorre quando é preciso separar os minerais de interesse

Leia mais

Disciplina: Biologia Série: 2ª série EM - 1º TRIM Professora: Ivone Azevedo da Fonseca Assunto: Genética de Populações

Disciplina: Biologia Série: 2ª série EM - 1º TRIM Professora: Ivone Azevedo da Fonseca Assunto: Genética de Populações Disciplina: Biologia Série: 2ª série EM - 1º TRIM Professora: Ivone Azevedo da Fonseca Assunto: Genética de Populações GENÉTICA DE POPULAÇÕES Quando estudamos, em determinada família ou linhagem, o modo

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

COMENTÁRIOS DA PROVA AFTE-RS CARGO: AGENTE FISCAL DO TESOURO DO ESTADO. Olá pessoal,

COMENTÁRIOS DA PROVA AFTE-RS CARGO: AGENTE FISCAL DO TESOURO DO ESTADO. Olá pessoal, Olá pessoal, Neste ultimo domingo (15/11/2009) tivemos a prova para agente fiscal do tesouro do estado do Rio Grande do Sul, uma prova bastante complexa aplicada pela banca FUNDATEC. Vale a pena lembrar

Leia mais

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES Monitora Juliana Dubinski LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES EXERCÍCIO 1 (INTERVALO DE CONFIANÇA PARA MÉDIA) Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se

Leia mais

Resposta aos RECURSOS nível MÉDIO. Parte I CONHECIMENTOS GERAIS

Resposta aos RECURSOS nível MÉDIO. Parte I CONHECIMENTOS GERAIS SERVIÇO PÚBLICO FEDERAL FUNDAÇÃO UNIVERSIDADE FEDERAL DO TOCANTINS COMISSÃO PERMANENTE DE SELEÇÃO Resposta aos RECURSOS nível MÉDIO Parte I CONHECIMENTOS GERAIS LÍNGUA PORTUGUESA QUESTÃO 01. Um recurso

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

Trabalho 7 Fila de prioridade usando heap para simulação de atendimento

Trabalho 7 Fila de prioridade usando heap para simulação de atendimento Trabalho 7 Fila de prioridade usando heap para simulação de atendimento Data: 21/10/2013 até meia-noite Dúvidas até: 09/10/2013 Faq disponível em: http://www2.icmc.usp.br/~mello/trabalho07.html A estrutura

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Índice. 1. Metodologia de Alfabetização...3. 2. Aprendizagem da Escrita...3 3. Aprendizagem da Leitura...6

Índice. 1. Metodologia de Alfabetização...3. 2. Aprendizagem da Escrita...3 3. Aprendizagem da Leitura...6 GRUPO 6.1 MÓDULO 6 Índice 1. Metodologia de Alfabetização...3 1.1. Qual o Conhecimento sobre o Sistema de Escrita dos Jovens e Adultos?... 3 2. Aprendizagem da Escrita...3 3. Aprendizagem da Leitura...6

Leia mais

CONSELHO FEDERAL DE PSICOLOGIA CONSELHO REGIONAL DE PSICOLOGIA - 7ª Região ESCLARECIMENTO II

CONSELHO FEDERAL DE PSICOLOGIA CONSELHO REGIONAL DE PSICOLOGIA - 7ª Região ESCLARECIMENTO II ESCLARECIMENTO II EDITAL DE LICITAÇÃO CONCORRÊNCIA N 01/2014 SERVIÇOS DE PUBLICIDADE E PROPAGANDA O Conselho Regional de Psicologia da 7ª região CRP/RS, através de sua Comissão Permanente de Licitações,

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Enem 2013) Na aferição de um novo semáforo, os tempos são ajustados de modo que, em cada ciclo completo (verde-amarelo-vermelho), a luz amarela permaneça acesa por 5 segundos, e o tempo em que a luz

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Implementando uma Classe e Criando Objetos a partir dela

Implementando uma Classe e Criando Objetos a partir dela Análise e Desenvolvimento de Sistemas ADS Programação Orientada a Obejeto POO 3º Semestre AULA 04 - INTRODUÇÃO À PROGRAMAÇÃO ORIENTADA A OBJETO (POO) Parte: 2 Prof. Cristóvão Cunha Implementando uma Classe

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS

MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIS Como vimos no módulo 1, para que nós possamos extrair dos dados estatísticos de que dispomos a correta análise e interpretação, o primeiro passo deverá ser a correta

Leia mais

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica O Princípio da Complementaridade e o papel do observador na Mecânica Quântica A U L A 3 Metas da aula Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes

Leia mais

É aquela Matemática aplicada em operações comerciais, de compra e venda, envolvendo dois ou mais agentes econômicos.

É aquela Matemática aplicada em operações comerciais, de compra e venda, envolvendo dois ou mais agentes econômicos. Bertolo 1 1 Não é propaganda da Globo e não é usada em Genética... É aquela Matemática aplicada em operações comerciais, de compra e venda, envolvendo dois ou mais agentes econômicos. Suponhamos que o

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

CAP4: Controle Estatístico do Processo (CEP)

CAP4: Controle Estatístico do Processo (CEP) CAP4: Controle Estatístico do Processo (CEP) O principal objetivo do CEP é detectar rapidamente a ocorrência de causas evitáveis que produzam defeitos nas unidades produzidas pelo processo, de modo que

Leia mais

RESOLUÇÃO DA PROVA DE RACIOCÍNIO LÓGICO P/ PERITO MÉDICO LEGISTA DA PCDF

RESOLUÇÃO DA PROVA DE RACIOCÍNIO LÓGICO P/ PERITO MÉDICO LEGISTA DA PCDF RESOLUÇÃO DA PROVA DE RACIOCÍNIO LÓGICO Olá galera!!!! P/ PERITO MÉDICO LEGISTA DA PCDF Hoje estou postando a resolução da prova de Raciocínio Lógico para PERITO MÉDICO LEGISTA DA PCDF, ocorrida no domingo,

Leia mais

Questões comentadas de Raciocínio Lógico

Questões comentadas de Raciocínio Lógico 1 APOSTILA AMOSTRA Para adquirir a apostila de 500 Acesse o site: www.soquestoesdeconcursos.com.br CONTEÚDO Correlacionamento de dados Proposições Silogismo Encontrando o culpado Álgebra Seqüências Psicotécnicos

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

MATEMÁTICA FINANCEIRA Professor Fábio Maia. AULA 1 - Juros Simples. Formulário: Juros Simples: j = C.i.n e Montante: M = C. (1 + i.

MATEMÁTICA FINANCEIRA Professor Fábio Maia. AULA 1 - Juros Simples. Formulário: Juros Simples: j = C.i.n e Montante: M = C. (1 + i. MATEMÁTICA FINANCEIRA Professor Fábio Maia AULA 1 - Juros Simples Juros Simples é o processo financeiro onde apenas o principal rende juros, isto é, os juros são diretamente proporcionais ao capital empregado.

Leia mais

a) C D. b) C D. c) (A B) (C D). d) (A B) (C D).

a) C D. b) C D. c) (A B) (C D). d) (A B) (C D). Conjuntos e Conjuntos Numéricos Exercícios 1. Uma pesquisa de mercado foi realizada, para verificar a preferência sobre três produtos, A, B e C. 1.00 pessoas foram entrevistadas. Os resultados foram os

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 2- Teste Estático e Teste Dinâmico Aula 4 Projeto de Teste 1 SUMÁRIO INTRODUÇÃO... 3 ANÁLISE E PROJETO DE TESTE... 3 1.

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA Caro aluno, Disponibilizo abaixo a resolução das questões de MATEMÁTICA da prova para o cargo de Técnico Judiciário do Tribunal de Justiça de Rondônia (TJ/RO) 2015.

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Sérgio Carvalho Matemática Financeira

Sérgio Carvalho Matemática Financeira Sérgio Carvalho Matemática Financeira Resolução Matemática Financeira ICMS-RJ/2008 Parte 02 33. Uma rede de lojas, que atua na venda de eletrônicos, anuncia a venda de notebook da seguinte forma: - R$

Leia mais