Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Tamanho: px
Começar a partir da página:

Download "Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ"

Transcrição

1 Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/ A idade média de todos os estudantes de uma universidade é de 20 anos. As idades médias dos estudantes dos sexos masculino e feminino são 21 e 18 anos, respectivamente. Neste caso, a percentagem de estudantes do sexo masculino da universidade é, aproximadamente, igual a: (A) 33,3% (B) 46,3% (C) 53,3% (D) 66,6% (E) 73,3% A melhor forma de resolver este tipo de questão, bem recorrente em concursos, é utilizar o que eu chamo de método das amplitudes. Torna fácil e rápida a resolução. A média do sexo masculino é 21 A distância (amplitude) entre as médias é 3 (21 18) A média do sexo feminino é 18 OBSERVEMOS QUE: A média geral (de todos os estudantes, sem distinção de sexo) é 20. Só com essa observação, já poderíamos eliminar as opções de resposta A e B, pois se a média geral está mais próxima da média do sexo masculino, isto significa que este sexo tem maior influência sobre a média geral e, portanto, a proporção de estudantes do sexo masculino será superior a 50%. Mas, concluindo: A média do sexo masculino é 21 MÉDIA GERAL = 20 A média do sexo feminino é 18 A amplitude entre a média do sexo masculino e a média geral é igual a 1 A amplitude entre a média geral e a média do sexo feminino é igual a 2 A proporção (fração) de estudantes do sexo feminino terá: como numerador a amplitude entre a média do sexo oposto (masculino) e a média geral; e como denominador a amplitude total entre as médias dos dois sexos. Portanto, o % feminino = ,3%; A proporção (fração) de estudantes do sexo masculino terá: como numerador a amplitude entre a média do sexo oposto (feminino) e a média geral; e como denominador a amplitude total entre as médias dos dois sexos. Portanto, o % masculino = ,6%. Gabarito: Letra D.

2 Considere o texto a seguir para responder às questões de números 42 e 43. A fim de incentivar os funcionários a participarem de um programa de emagrecimento, fez-se um levantamento dos pesos dos 150 funcionários de determinado departamento. Os resultados estão na tabela a seguir: Peso (kg) Percentagem O 20º percentil dessa distribuição é, aproximadamente, igual a: (A) 78,7 (B) 76,7 (C) 74,7 (D) 72,7 (E) 70,7 Basta acrescentar uma coluna de frequência acumulada crescente (Fac) na tabela dada e observar que: Peso (kg) Percentagem Fac A classe que conterá o 20º percentil (20%) da distribuição será a 2ª classe (70 80), pois até a 1ª classe temos apenas 8% da distribuição. A melhor maneira (sem usar fórmula) para encontrar o valor do P 20, é através de interpolação, fazendo uma simples proporção: = 18x = 120 x 6,7 10 x Explicando a proporção: a frequência na classe (18) está para a amplitude de classe (10) assim como a frequência procurada (12, é o que falta para chegar a 20, considerando a frequência acumulada da classe anterior) está para uma amplitude x (que desejamos descobrir). Para encontrar o valor do P 20, basta acrescentar o valor encontrado (x = 6,7) ao limite inferior da classe do P 20, que é igual a 70. Portanto: do P 20 = 76,7 Gabarito: Letra B.

3 43. A média aritmética dessa distribuição é, aproximadamente, igual a: (A) 80,8 (B) 82,8 (C) 84,8 (D) 86,8 (E) 88,8 A forma mais rápida de resolver a questão é usar o Método Simplificado para cálculo da média, criando uma variável reduzida (que vamos chamar de Z), fazendo: X X0 Z =, onde X é o ponto médio de cada classe, X 0 é o ponto médio da classe em que h iremos arbitrar o valor 0 (zero) e h é a amplitude de classe. OBS.: Esse método só pode ser utilizado quando as amplitudes das classes são iguais. Escolhendo a 3ª classe (quanto mais próximo da classe central, melhor), ficará: Peso (kg) Z Percentagem Z F Σ = 38 X 85 Z = A média da variável Z será: = 0, Para encontrar a média da variável X basta entender que, se a transformação de X em Z foi X X0 Z =, a de Z em X será: X = Z h + X 0. Aplicando as propriedades da média, teremos: h X = Z h + e, portanto: X = 0, X = 3, = 88,8. X 0 Gabarito: Letra E. 44. Somando-se 5 a cada um dos números do conjunto 4, 8, 3, 2, 7 e 6, a média aritmética e a variância ficarão aumentadas, respectivamente, de: (A) 5 e 0 (B) 5 e 5 (C) 5 e 25 (D) 1 e 0 (E) 1 e 5

4 Não necessita de cálculo. Basta saber as propriedades da média e da variância. Para a média: Somando ou subtraindo uma constante a uma variável aleatória, a sua média ficará somada ou subtraída da mesma constante; Para a variância: Somando ou subtraindo uma constante a uma variável aleatória, a sua variância não se altera. Gabarito: Letra A. 45. Numa cidade, duas empresas A e B são responsáveis por 30% e 70% do volume total de contratos negociados, respectivamente. Do volume de cada empresa, 30% e 5%, respectivamente, são contratos de longo prazo. Se um contrato, escolhido ao acaso, é de longo prazo, a probabilidade de ter sido negociado pela empresa A é, aproximadamente, igual a: (A) 32% (B) 42% (C) 52% (D) 62% (E) 72% Probabilidade Condicional, resolveremos fazendo a árvore de probabilidades e usando o Teorema de Bayes, que relaciona uma das probabilidades com a probabilidade total. Denominando de L o contrato de longo prazo, a probabilidade condicional pedida na questão é: qual a probabilidade do contrato ter sido negociado pela empresa A, sabendo que (dado que) esse contrato é de longo prazo. P ( A L) será igual a ( A L) P( L) P, ou seja, no numerador a probabilidade conjunta de A e L e no denominador a probabilidade total de ser L (sendo da empresa A ou da empresa B). 0,30 A 0,30 0,70 L A L = 0,090 (Probabilidade de o contrato ser da empresa A e ser de longo prazo) 0,70 B 0,05 L B L = 0,035 P(L) = 0,125 (Probabilidade total de que o contrato seja de longo prazo). 0,95 Gabarito: Letra E. ( ) ( L) P( L) P A P A L = = 0,090 0,125 = 0,72.

5 46. O peso de crianças recém-nascidas do sexo feminino numa comunidade tem distribuição normal com média de 2.400g e desvio padrão de 40g. O 25º percentil desta distribuição é, aproximadamente, igual a: (A) g (B) g (C) g (D) g (E) g Até o ponto de abscissa em z = 0 (correspondente à média 2.400) teremos, debaixo da curva da Normal Padrão, 50% da distribuição. O 25º percentil acumulará à esquerda uma área de 0,25 da curva normal. Basta ver, na tabela dada na prova, que uma área de 0,75 à direita do 25º percentil corresponderá a uma abscissa em z de, aproximadamente, 0,67. Esta abscissa será negativa, pois estará antes da média. Portanto, z = 0,67. Substituindo os dados do enunciado na fórmula de padronização, dada por: µ z = X, onde z é σ a abscissa da tabela normal padronizada, σ é o desvio padrão, µ é a média e X é o valor procurado (correspondente à abscissa em z = 0,67). Logo: X ,67 = X = ( 0,67 40) X = 26, X = 2.373,2. 40 Gabarito: Letra E. 47. Em uma empresa, a probabilidade de o empregado A resolver uma tarefa é de 3/5, e a probabilidade de o empregado B resolver a mesma tarefa é de 1/4. Se ambos tentarem resolver a tarefa independentemente, a probabilidade de a tarefa ser resolvida é igual a: (A) 50% (B) 60% (C) 70% (D) 80% (E) 90% A probabilidade de a tarefa ser resolvida (por A, por B, ou pelos dois, A e B) será dada por: P(A B) = P(A) + P(B) P(A B). Sabemos que P(A) = 3/5; P(B) = 1/4. E P(A B)? Como o enunciado fala em ambos tentarem resolver a tarefa independentemente, podemos aplicar o teorema para eventos independentes: Se A e B são independentes, P(A B) = P(A) P(B), ou seja, a probabilidade conjunta é igual ao produto das probabilidades individuais. Logo, P(A B) = = e P(A B) = + = = = 70%. 20 Gabarito: Letra C.

6 48. Um órgão do governo do estado deseja determinar padrões sobre a quantidade de lixo produzido pelas prefeituras. De um levantamento de oito cidades, foram obtidos os valores, em toneladas de lixo produzido (t), da tabela abaixo: Cidade Quantidade de lixo (t) 44,0 17,0 12,0 6,0 19,0 15,0 14,0 17,0 O valor mediano das quantidades de lixo observadas é igual a: (A) 12,5 t (B) 14,5 t (C) 16,0 t (D) 17,5 t (E) 18,0 t Fazendo o ROL (dados ordenados crescente ou decrescentemente) das quantidades, teremos: 6,0 ; 12,0 ; 14,0 ; 15,0 ; 17,0 ; 17,0 ; 19,0 ; 44,0. Como o número de observações é par, o valor mediano será a média aritmética entre a 4ª e a 5ª observações. Portanto, Md = = 16,0. Gabarito: Letra C. Considere o enunciado a seguir para responder às questões de números 49 e 50. A tabela que se segue resume dados amostrais, selecionados aleatoriamente, de 880 mortes de pedestres por acidente de trânsito, de acordo com a região de procedência e o grau de intoxicação por álcool do pedestre. Região de procedência Pedestre alcoolizado? Sim Não A B Se um elemento da amostra é selecionado aleatoriamente, a probabilidade de verificar-se um pedestre alcoolizado é, aproximadamente, igual a: (A) 17% (B) 24% (C) 31% (D) 39% (E) 61%

7 Façamos, na tabela dada, os totais de linhas e colunas: Região de procedência Pedestre alcoolizado? Sim Não TOTAIS A B TOTAIS A probabilidade de verificar-se um pedestre alcoolizado será: 39%. 880 Gabarito: Letra D. 50. Se um elemento da amostra é selecionado aleatoriamente e verifica-se que é da região B, a probabilidade de ser pedestre alcoolizado é, aproximadamente, igual a: (A) 17,3% (B) 35,2% (C) 61,0% (D) 74,6% (E) 82,7% A probabilidade condicional pedida na questão é: qual a probabilidade de ser pedestre alcoolizado, sabendo que (dado que) esse pedestre é da região B. P ( alcoolizado B) será igual a ( alcoolizado B) P( B) P, ou seja, no numerador a probabilidade conjunta de ser alcoolizado e ser da região B e no denominador a probabilidade total de ser da região B, sendo ou não alcoolizado. Logo, verificando os valores na tabela, teremos: 256 P ( alcoolizado B) = 35,2%. 728 Gabarito: Letra B. Prova fácil, mas bem elaborada, não havendo questões passíveis de recurso. Disponibilizo o meu para: dúvidas, críticas, sugestões, indicação de livros e aulas.

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Posição Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Olá pessoal! Sem mais delongas, vamos às questões.

Olá pessoal! Sem mais delongas, vamos às questões. Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente

Leia mais

Apresentação de Dados em Tabelas e Gráficos

Apresentação de Dados em Tabelas e Gráficos Apresentação de Dados em Tabelas e Gráficos Os dados devem ser apresentados em tabelas construídas de acordo com as normas técnicas ditadas pela Fundação Instituto Brasileiro de Geografia e Estatística

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

Instituto Politécnico de Viseu Escola Superior de Tecnologia

Instituto Politécnico de Viseu Escola Superior de Tecnologia Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Exercícios Resolvidos sobre Parâmetros e tabelas de frequência

Exercícios Resolvidos sobre Parâmetros e tabelas de frequência Exercícios Resolvidos sobre Parâmetros e tabelas de frequência Apresentamos aqui uma série de exercícios nos quais destacamos o uso de parâmetros e tabelas de frequência. O conhecimento desses parâmetros

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

QUALITATIVA VARIÁVEL QUANTITATIVA

QUALITATIVA VARIÁVEL QUANTITATIVA NOMINAL ORDINAL QUALITATIVA VARIÁVEL QUANTITATIVA DISCRETA CONTÍNUA - Variável qualitativa nominal = valores que expressam atributos, sem nenhum tipo de ordem. Ex: cor dos olhos, sexo, estado civil, presença

Leia mais

Usando o Excel ESTATÍSTICA. Funções

Usando o Excel ESTATÍSTICA. Funções Funções Podemos usar no Excel fórmulas ou funções. Anteriormente já vimos algumas fórmulas. Vamos agora ver o exemplo de algumas funções que podem ser úteis para o trabalho de Excel. Para começar podemos

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

A Matemática do ENEM em Bizus

A Matemática do ENEM em Bizus A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos

Leia mais

U U +E U U E Sendo E e U dois algarismos não nulos e distintos, a soma E + U é igual a

U U +E U U E Sendo E e U dois algarismos não nulos e distintos, a soma E + U é igual a Resoluções comentadas das questões de Raciocínio Lógico-Matemático da prova para escriturário do Banco do Brasil Realizada pela Cesgranrio em 15/03/2015 11. Observe a adição: U U +E U U E Sendo E e U dois

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Distribuição de freqüência

Distribuição de freqüência Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição de freqüência Dados brutos e rol Como já estudamos, o conjunto de dados numéricos obtidos após a crítica dos valores

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO MEDIDAS DE DISPERSÃO 1) (PETROBRAS) A variância da lista (1; 1; 2; 4) é igual a: a) 0,5 b) 0,75 c) 1 d) 1,25 e) 1,5 2) (AFPS ESAF) Dada a seqüência de valores 4, 4, 2, 7 e 3 assinale a opção que dá o valor

Leia mais

Cálculo de amostra para monitoria de qualidade em Call Center

Cálculo de amostra para monitoria de qualidade em Call Center Cálculo de amostra para monitoria de qualidade em Call Center Esta metodologia tem como objetivo definir o tamanho mínimo ideal da amostra, garantindo a representatividade da população de chamadas em um

Leia mais

DISTRIBUIÇÃO DE FREQÜÊNCIAS

DISTRIBUIÇÃO DE FREQÜÊNCIAS DISTRIBUIÇÃO DE FREQÜÊNCIAS 1 Dados Brutos: são os dados tomados como eles são, de forma desorganizada. Indica-se por x i Rol: são os dados organizados em ordem crescente ou decrescente. Tamanho da amostra:

Leia mais

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1 Soluções integrais Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo Soluções do Capítulo 1 Basta somar os valores, lembrando que seta para baixo indica valor

Leia mais

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4 ESCOLA DE ADMINISTRAÇÃO DE EMPRESAS DE SÃO PAULO FUNDAÇÃO GETULIO VARGAS Prova Parcial de Estatística I Data: Setembro / Professores: Eduardo Francisco Francisco Aranha Nelson Barth A Nome do Aluno: GABARITO

Leia mais

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE Número de classes a considerar (k): a) Tabela de Truman L. Kelley n 5 10 25 50 100 200 500 1000 k 2 4 6 8 10 12 15 15 b) k=5 para n 25 e para n >25.

Leia mais

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009.

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009. PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Oi Amigos, Como estou recebendo muitos pedidos da resolução da prova a PRF-2009. Elaborei os comentários das questões. Observe que foram

Leia mais

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22 Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

Excel Planilhas Eletrônicas

Excel Planilhas Eletrônicas Excel Planilhas Eletrônicas Capitulo 1 O Excel é um programa de cálculos muito utilizado em empresas para controle administrativo, será utilizado também por pessoas que gostam de organizar suas contas

Leia mais

Atividade 4 - Acerte no alvo

Atividade 4 - Acerte no alvo Atividade 4 - Acerte no alvo 1. Justificativa Para entender um processo estatístico, é possível criar um experimento em que os alunos possam vivenciá-lo, organizando, selecionando, interpretando e criticando

Leia mais

Omatematico.com ESTATÍSTICA DESCRITIVA

Omatematico.com ESTATÍSTICA DESCRITIVA Omatematico.com ESTATÍSTICA DESCRITIVA 1. Classifique as variáveis abaixo: (a) Tempo para fazer um teste. (b) Número de alunos aprovados por turma. (c) Nível sócio-econômico (d) QI (Quociente de inteligência).

Leia mais

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Simulado 02 de Matemática Financeira Questões FGV 01. Determine o valor atual de um título descontado (desconto simples por fora) dois meses

Leia mais

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS Olá, amigos! AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS Ainda não é chegada nossa aula derradeira! Sei que muitos estão chateados e com toda a razão do mundo pelo atraso destas últimas aulas. Noutra ocasião

Leia mais

Lista de Exercícios. Vetores

Lista de Exercícios. Vetores Lista de Exercícios Vetores LINGUAGEM DE PROGRAMAÇÃO PROF. EDUARDO SILVESTRI. WWW.EDUARDOSILVESTRI.COM.BR ATUALIZADO EM: 13/03/2007 Página 1/1 1. Faça um programa que crie um vetor de inteiros de 50 posições

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

MATEMÁTICA FINANCEIRA COM HP 12C E EXCEL

MATEMÁTICA FINANCEIRA COM HP 12C E EXCEL MATEMÁTICA FINANCEIRA COM HP 12C E EXCEL SOLUÇÕES COMPLETAS DE QUESTÕES E EXERCÍCIOS ADRIANO LEAL BRUNI E RUBENS FAMÁ 5ª EDIÇÃO ATLAS 2010 1 APRESENTAÇÃO Este texto apresenta as respostas da questões e

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ISS-Cuiabá Neste artigo, farei a análise das questões de cobradas na prova do ISS-Cuiabá, pois é uma de minhas

Leia mais

Medidas de Variação ou Dispersão

Medidas de Variação ou Dispersão Medidas de Variação ou Dispersão Estatística descritiva Recapitulando: As três principais características de um conjunto de dados são: Um valor representativo do conjunto de dados: uma média (Medidas de

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

Stela Adami Vayego - DEST/UFPR 1

Stela Adami Vayego - DEST/UFPR 1 Aula 03 Análise Exploratória dos Dados (Medidas Descritivas de Variáveis Quantitativas) Parte 1 Medidas de Tendência Central Stela Adami Vayego - DEST/UFPR 1 Medidas de Tendência Central dos Dados Para

Leia mais

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02 Olá, amigos! AULA 02 Tudo bem com vocês? E aí, revisaram a aula passada? Espero que sim. Bem como espero que tenham resolvido as questões que ficaram pendentes! A propósito, vamos iniciar nossa aula de

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

iq2 - Análise de uma tabela cruzada simples

iq2 - Análise de uma tabela cruzada simples Pré-requisitos: Lista de variáveis Dados na base da pesquisa iq2 - Análise de uma tabela cruzada simples A análise de um cruzamento simples (isto é, envolvendo duas variáveis fechadas, onde há escolha

Leia mais

Distribuição de Freqüências

Distribuição de Freqüências Distribuição de Freqüências Por constituir-se o tipo de tabela importante para a Estatística Descritiva, faremos um estudo completo da distribuição de freqüências. Uma distribuição de freqüências condensa

Leia mais

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16 Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o

Leia mais

JURO COMPOSTO. Juro composto é aquele que em cada período financeiro, a partir do segundo, é calculado sobre o montante relativo ao período anterior.

JURO COMPOSTO. Juro composto é aquele que em cada período financeiro, a partir do segundo, é calculado sobre o montante relativo ao período anterior. JURO COMPOSTO No regime de capitalização simples, o juro produzido por um capital é sempre o mesmo, qualquer que seja o período financeiro, pois ele é sempre calculado sobre o capital inicial, não importando

Leia mais

ESTATÍSTICA ORGANIZAÇÃO E REPRESENTAÇÃO DE DADOS. Tabelas. Frequência absoluta. Frequência relativa

ESTATÍSTICA ORGANIZAÇÃO E REPRESENTAÇÃO DE DADOS. Tabelas. Frequência absoluta. Frequência relativa Tabelas. Frequência absoluta. Frequência relativa Com a análise de uma turma, elaborou as seguintes Tabelas: Tabelas. Frequência absoluta. Frequência relativa Perguntou-se a cada aluno a altura e obteve-se

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

Epidemiologia. Profa. Heloisa Nascimento

Epidemiologia. Profa. Heloisa Nascimento Epidemiologia Profa. Heloisa Nascimento Medidas de efeito e medidas de associação -Um dos objetivos da pesquisa epidemiológica é o reconhecimento de uma relação causal entre uma particular exposição (fator

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER ANÁLISE Quantitativa e Lógica Utilize as informações a seguir para as questões 01 e 02. Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam,

Leia mais

Dedicado, Exclusivamente, A Todos Aqueles Que Querem A Aprovação!

Dedicado, Exclusivamente, A Todos Aqueles Que Querem A Aprovação! 1 Questões De Estatística Da Banca ESAF Que Você Precisa Aprender Como Resolver Antes De Fazer A Prova Do Concurso De Auditor-Fiscal Da Receita Federal 2014 Dedicado, Exclusivamente, A Todos Aqueles Que

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1:

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1: O momento do gol A UU L AL A Falta 1 minuto para terminar o jogo. Final de campeonato! O jogador entra na área adversária driblando, e fica de frente para o gol. A torcida entra em delírio gritando Chuta!

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

Prof. Dr. Iron Macêdo Dantas

Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN MESTRADO EM CIÊNCIAS NATURAIS Prof. Dr. Iron Macêdo Dantas

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

UTILIZANDO PROGRAMAS EDUCACIONAIS

UTILIZANDO PROGRAMAS EDUCACIONAIS LINUX EDUCACIONAL UTILIZANDO PROGRAMAS EDUCACIONAIS PROFESSOR GERSON VALENCIO Caro professor: As novas Tecnologias de Informação e Comunicação(TICs) estão mudando nossa forma de pensar, agir, relacionar-se,

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

Fórmulas e Funções 7

Fórmulas e Funções 7 Fórmulas e Funções 7 7.9. Visualização automática do resultado Para visualizar rapidamente o resultado das funções mais simples média, soma, contar, mínimo e máximo: 1. Menu de contexto sobre a barra de

Leia mais

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia

Leia mais

Universidade Cruzeiro do Sul

Universidade Cruzeiro do Sul PESO, ALTURA E MASSA CORPÓREA UMA RELAÇÃO MATEMÁTICA E UM ESTILO DE VIDA. Ana Paula Simões Ana@t-gestiona.com.br José Roberto Pereira robertpe@ig.com.br Noemi Pinheiro do Nascimento Fujii Noemi.pnascimento@sp.senac.br

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Lição 1 - Criação de campos calculados em consultas

Lição 1 - Criação de campos calculados em consultas 1 de 5 21-08-2011 22:15 Lição 1 - Criação de campos calculados em consultas Adição de Colunas com Valores Calculados: Vamos, inicialmente, relembrar, rapidamente alguns conceitos básicos sobre Consultas

Leia mais

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo ESTATÍSTICA COISAS DO ESTADO ESTATÍSTICA: - Apresentação e Análise de dados - Tomadas de Decisões baseadas em análises -

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Vetores Lidando com grandezas vetoriais

Vetores Lidando com grandezas vetoriais Vetores Lidando com grandezas vetoriais matéria de vetores é de extrema importância para o ensino médio basta levar em consideração que a maioria das matérias de física envolve mecânica (movimento, dinâmica,

Leia mais

12-Função Horária da Posição do Movimento Uniforme

12-Função Horária da Posição do Movimento Uniforme 12-Função Horária da Posição do Movimento Uniforme Vamos agora chegar a uma função que nos vai fornecer a posição de um móvel sobre uma trajetória em qualquer instante dado. Para isto, vamos supor que

Leia mais

Teste Intermédio A I (50%)

Teste Intermédio A I (50%) aculdade de Economia da Universidade ova de Lisboa 1304 Análise de Dados e robabilidades ernando Brito Soares Graça Silva edro Chaves Teste Intermédio A Data: 14 de Abril de 2007, 11.00 Duração: 2 horas

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais