MATEMÁTICA E RACIOCÍNIO LÓGICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA E RACIOCÍNIO LÓGICO"

Transcrição

1 ANÁLISE COMBINATÓRIA ARRANJO SIMPLES PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PFC) Importa a ordem dos elementos (PFC) n 1.n 2.n 3... total de possibilidades A p n ( n p)! Supondo que 5 colegas vão sair de carro, sentados nos 5 lugares disponíveis. De quantos modos podemos fazer isso, se: a) Todos souberem dirigir? b) Apenas três souberem dirigir? FATORIAL(!) ( n p) Oito atletas disputarão a final dos 100m rasos na Olimpíada. Desconsiderada a possibilidade de empate, então o número de maneiras diferentes de compor o podium, é de: ! 8! ! A ! 5! ( 8 3 )! n.(n 1).(n 2)...1 n N e n 2 Obs: 0! 1 e 1! 1 2! ! ! ! PERMUTAÇÃO SIMPLES (anagramas) Importa a ordem dos elementos (PFC) 01) Serão distribuídos 5 prêmios entre 5 pessoas, mas elas deverão se organizar em fila para recebê-los. De quantas maneiras distintas isto pode ser feito? Simplificação 6! 6.5.4! a) 30 4! 4! 8! ! b) 56 3!.5! ! 10! + 9! 9! 10.9! + 9! 9! c) 11 P 5 5! ) Quantos anagramas podem ser formados com as letras da palavra PEDRÃO? P 6 6! Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 1

2 PERMUTAÇÃO COM REPETIÇÃO (anagramas) Importa a ordem dos elementos (FÓRMULA) 01) Quantos anagramas podem ser formados com as letras da palavra AMAR? 4! 4.3.2! P ! 2! 02) Quantos anagramas podem ser formados com as letras da palavra APROVAÇÃO? P, 2 α, β... α! β!... 9! ! 3! 2! 2.1 3! ! 20! ! A ! 18! ( 20 2 )! PEDRÃO ANÁLISE COMBINATÓRIA Macetão do Pedrão Não importa a ordem COMBINAÇÃO C p n p! ( n p)! PFC, ARRANJO,PERMUTAÇÃO SIMPLES (não precisa fórmula) Importa a ordem PERMUTAÇÃO COM REPETIÇÃO α, β... α! β!... COMBINAÇÃO SIMPLES EXERCÍCIOS Não importa a ordem dos elementos (FÓRMULA) C p n p! ( n p)! ( n p) Considerando 20 times disputam o Campeonato Brasileiro da série A, calcule: 01) Três amigos irão ao teatro e seus ingressos permitem que escolham três poltronas, entre cinco pré-determinadas de uma mesma fila, para sentar-se. Nessas condições, de quantas maneiras distintas eles poderão se acomodar para assistir ao espetáculo? 02) Um cientista recebeu 5 cobaias para usar em seu estudo sobre uma nova vacina. Seus cálculos indicaram que o número de maneiras possíveis de escolher pelo menos 3 cobaias é: a) Quantos jogos de ida são disputados em uma única rodada? 03) Com o objetivo de manter a democracia, realizouse uma eleição para compor a equipe diretiva de um 20! 20! ! C ! ( 20 2! ) 2! 18! ! clube. Essa equipe deve ser composta por um diretor, um vice-diretor e um coordenador. Considerando que b) Quantos jogos são disputados, considerando as um grupo composto por 10 pessoas resolveu partidas de ida e de volta? participar desse processo e que qualquer uma delas 2.C 2 pode ocupar qualquer cargo, é correto afirmar que o número de equipes que se pode formar com esse 2 grupo é: 2009 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores

3 04) Considere todos os números inteiros positivos que podem ser escritos permutando-se os algarismos do número Quantos dos números considerados são menores que 2341? 13) Considere um grupo formado por 7 homens e 5 mulheres do qual se quer extrair uma comissão constituída por 4 pessoas. Quantas são as comissões formadas por 2 homens e 2 mulheres? 05) Uma prova de matemática consta 8 questões das quais o aluno deve escolher 6. De quantas formas ele poderá escolher as 6 questões? 06) Com os algarismos 2, 3, 4, 6, 7 e 8, quantos números pares de 4 algarismos distintos podemos formar? 07) Utilizando os algarismos 0, 1, 2, 3, 4 e 5, quantos números ímpares de 3 algarismos distintos podem ser formados? 08) A Copa do Mundo de Futebol, que foi realizada na Alemanha a partir de junho de 2006, contou com a participação de 32 seleções divididas em 8 grupos com 4 equipes cada, na primeira fase. Dado que, em cada grupo, as seleções jogaram entre si uma única vez, qual o total de jogos realizados na primeira fase? 09) A senha de acesso a um jogo de computador consiste em quatro caracteres alfabéticos ou numéricos, sendo o primeiro necessariamente alfabético. O número de senhas possíveis será: 10) De quantas formas podemos permutar as letras da palavra ELOGIAR de modo que as letras A e R fiquem juntas em qualquer ordem? 14) Três ingleses, quatro americanos e cinco franceses serão dispostos em fila (dispostos em linha reta) de modo que as pessoas de mesma nacionalidade estejam sempre juntas. De quantas maneiras distintas a fila poderá ser formada de modo que o primeiro da fila seja um francês? 15) A prova de um concurso é composta somente de 10 questões de múltipla escolha, com as alternativas A, B, C e D por questão. Sabendo-se que, no gabarito da prova, não aparece a letra A e que a letra D aparece apenas uma vez, quantos são os gabaritos possíveis de ocorrer? 16) Para colocar preço em seus produtos, uma empresa desenvolveu um sistema simplificado de código de barras formado por cinco linhas separadas por quatro espaços. Podem ser usadas linhas de três larguras possíveis e espaços de duas larguras possíveis. O número total de preços que podem ser representados por esse código é: 17) Um farmacêutico dispõe de 4 tipos de vitaminas e 3 tipos de sais minerais e deseja combinar 3 desses nutrientes para obter um composto químico. O número de compostos que poderão ser preparados usando-se, no máximo, 2 tipos de sais minerais é: 11) Calcule o número de anagramas da palavra CLARA em que as letras AR aparecem juntas e nesta ordem. 12) O número de permutações da palavra ECONOMIA que não começam nem terminam com a letra O é 18) O corpo clínico da pediatria de um certo hospital é composto por 12 profissionais, dos quais 3 são capacitados para atuação junto a crianças que apresentam necessidades educacionais especiais. Para fins de assessoria, deverá ser criada uma comissão de 3 profissionais, de tal maneira que 1 deles, pelo menos, tenha a capacitação referida. Quantas comissões distintas podem ser formadas nestas condições? 2009 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 3

4 19) A boa e velha Loteria Federal é a que dá ao apostador as maiores chances de ganhar, mas por não pagar grandes fortunas não está entre as loterias que mais recebe apostas. As mais populares são Mega-Sena, Quina, Loto-fácil e Lotomania. Na Lotofácil, o apostador marca 15 dos 25 números que constam na cartela e tem uma em chances, de acertar. Se fosse criada uma nova loteria, em que o apostador marcasse 10 dos 16 números disponíveis numa cartela, a chance de acertar uma aposta passaria a ser de uma em: 20) Aconteceu um acidente: a chuva molhou o papel onde Pafúncio marcou o telefone de Emingarda e apagou os três últimos algarismos. Restaram apenas os dígitos Observador, Pafúncio lembrou que o número do telefone da linda garota era um número par, não divisível por 5 e que não havia algarismos repetidos. Apaixonado, resolveu testar todas as combinações numéricas possíveis. Azarado! Restava apenas uma possibilidade, quando se esgotaram os créditos do seu telefone celular. Até então, Pafúncio havia feito quantas ligações? 21) Antônio e Bruno são membros atuantes do Grêmio Estudantil e estão se formando numa turma de 28 alunos. Uma comissão de formatura, com 5 membros, deve ser formada para a organização dos festejos. Quantas comissões podem ser formadas de modo que Antônio e Bruno sejam membros? 22) A partir de um grupo de oito pessoas, quer-se formar uma comissão constituída de quatro integrantes. Nesse grupo, incluem-se Arthur e Felipe, que, sabe-se, não se relacionam um com o outro. Portanto, para evitar problemas, decidiu-se que esses dois, juntos, não deveriam participar da comissão a ser formada. Nessas condições, de quantas maneiras distintas se pode formar essa comissão? 23) De um grupo de 10 pessoas, entre as quais, Maria, Marta e Mércia, deseja-se escolher uma comissão com 4 componentes. Quantas comissões podem ser formadas, das quais participem Maria e Marta, mas Mércia não participe? 24) De quantas maneiras podemos classificar os 4 empregados de uma micro-empresa nas categorias A ou B, se um mesmo empregado pode pertencer às duas categorias? 25) Um jornalista foi designado para cobrir uma reunião de ministros de estado. Ao chegar ao local da reunião, descobriu que havia terminado. Ao perguntar ao porteiro o número de ministros presentes, ele disse: "Ao saírem, todos os ministros se cumprimentaram mutuamente, num total de 15 apertos de mão". Com base nessa informação, qual foi o número de ministros presentes ao encontro? 26) Num avião, uma fila tem sete poltronas dispostas como na figura abaixo: Os modos de Pedro e Ana ocuparem duas poltronas dessa fila, de modo que não haja um corredor entre eles, são em número de 27) Existem quantos números pares, de três algarismos, maiores do que 500? 28) Sobre uma reta são marcados 7 pontos, e sobre uma outra reta, paralela à primeira, 3 pontos. O número de triângulos, com vértices em três desses pontos, é: 29) Num camping existem 2 barracas disponíveis. O número de modos como se pode alojar 6 turistas, ficando 3 em cada uma, é: Neste curso os melhores alunos estão sendo preparados pelos melhores Professores

5 30) Um campeonato de futebol de salão é disputado por várias equipes, jogando entre si, turno e returno. Sabendo-se que foram disputadas 272 partidas, determine o número de equipes participantes. GABARITO ANÁLISE COMBINATÓRIA 01) 60 02) 16 03) ) 09 05) 28 06) ) 48 08) 48 09) ) ) 24 12) ) ) ) ) ) 34 18) ) ) 23 21) ) 55 23) 21 24) 81 25) 06 26) 10 27) ) 84 29) 20 30) Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 5

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75

Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Este material tem por objetivo ajudar o aluno a aplicar o Princípio Fundamental

Leia mais

Disciplina: Matemática Data da entrega: 18/04/2015.

Disciplina: Matemática Data da entrega: 18/04/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Turma: 2ª série (ensino médio) Disciplina: Matemática Data da entrega: 18/04/2015. Observação: A lista deverá apresentar capa, enunciados e as

Leia mais

I. Princípio Fundamental da Contagem (P.F.C.)

I. Princípio Fundamental da Contagem (P.F.C.) ANÁLISE OMBINATÓRIA A principal finalidade da Análise ombinatória é estabelecer métodos de contagem. I. Princípio Fundamental da ontagem (P.F..) O P.F.., ou princípio multiplicativo, determina o número

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

RACIOCÍNIO LÓGICO Q = Z. π NÚMEROS REAIS (R)

RACIOCÍNIO LÓGICO Q = Z. π NÚMEROS REAIS (R) CONJUNTOS É um agrupamento de elementos, e são representados por letras maiúsculas do alfabeto latino e seus elementos são dispostos entre chaves. Ex: A = {vogais} = {a,e,i,o,u} Existem duas outras formas

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 01) O jogo da Mega-Sena consiste no sorteio de 6 números distintos entre 1 e 60. Um apostador escolhe 20 números distintos e faz todos os C 20,6 jogos possíveis de serem realizados com os 20 números.

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES A D C B D B C A B D A C C B A D Como pode cair no enem (ENEM) A escrita Braile para cegos é um sistema de símbolos no qual cada caractere

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA MATEMÁTICA IV ANÁLISE COMBINATÓRIA DISCURSIVAS SÉRIE AULA AULA 0 1 (UP 01 A Mega Sena é a maior loteria do Brasil realizada pela Caixa Econômica Federal (CEF. Para ganhar o prêmio da Mega Sena, o apostador

Leia mais

OFICINA DE JOGOS APOSTILA DO PROFESSOR

OFICINA DE JOGOS APOSTILA DO PROFESSOR OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.

Leia mais

Exercícios de Análise Combinatória ano: 2013

Exercícios de Análise Combinatória ano: 2013 Página1 Exercícios de Análise Combinatória ano: 2013 1. (Pucrj) Em uma sorveteria há sorvetes nos sabores morango, chocolate, creme e flocos. De quantas maneiras podemos montar uma casquinha com duas bolas

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO PORCENTAGEM É sempre uma regra de três simples, diretamente proporcional. 30 30% = = 0,30 00 3 3% = = 0,03 00 Ex: a) Calcule 0% de 20% b) Calcule (0%) 2 04) Um administrador municipal promoveu uma consulta

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

NOTAS DE AULA: LÓGICA, INDUÇÃO E INICIAÇÃO MATEMÁTICA

NOTAS DE AULA: LÓGICA, INDUÇÃO E INICIAÇÃO MATEMÁTICA NOTAS DE AULA: LÓGICA, INDUÇÃO E INICIAÇÃO MATEMÁTICA André Luiz Galdino Notas de Aula: Lógica, Indução e Iniciação Matemática 3 SUMÁRIO 3 1 Noções de Análise Combinatória 4 11 Princípio da Regra da Soma

Leia mais

Análise Combinatória. Parte I. www.soexatas.com Página 1

Análise Combinatória. Parte I. www.soexatas.com Página 1 Parte I Análise Combinatória 1. (Ufmg 2013) Permutando-se os algarismos do número 123456, formam-se números de seis algarismos. Supondo-se que todos os números formados com esses seis algarismos tenham

Leia mais

Vamos ao que interessa. A questão número 36 deve ter seu gabarito trocado da letra A para a LETRA D. Veja a resolução da questão.

Vamos ao que interessa. A questão número 36 deve ter seu gabarito trocado da letra A para a LETRA D. Veja a resolução da questão. Vamos ao que interessa. A questão número 36 deve ter seu gabarito trocado da letra A para a LETRA D. Veja a resolução da questão. A prova foi fácil, apenas uma questão exigiu um pouco mais do aluno: a

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries)

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) PROBLEMA 1 Numa loteria, todos os prêmios em reais são potências de 13 (isto é, R$ 1,00, R$ 13,00, R$ 169,00 etc.)

Leia mais

Avaliação 1 - MA12-2015.1 - Gabarito

Avaliação 1 - MA12-2015.1 - Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA1-015.1 - Gabarito Questão 01 [,00 pts ] Uma escola pretende formar uma comissão de 6 pessoas para organizar uma festa junina. Sabe-se

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE

COLÉGIO MILITAR DE BELO HORIZONTE COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2007 / 200 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONCURSO DE ADMISSÃO À 6ª SÉRIE DO ENSINO FUNDAMENTAL CMBH 2007 PÁGINA: 2 RESPONDA AS

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

VII MARATONA DE PROGRAMAÇÃO UERJ 17/05/2014. Este caderno contém 12 páginas com a descrição de 10 problemas 1 definidos a seguir:

VII MARATONA DE PROGRAMAÇÃO UERJ 17/05/2014. Este caderno contém 12 páginas com a descrição de 10 problemas 1 definidos a seguir: VII MARATONA DE PROGRAMAÇÃO UERJ 17/05/014 Este caderno contém 1 páginas com a descrição de 10 problemas 1 definidos a seguir: A - Botas B Digito Verificador do passaporte C Jogo da Vida D - A Próxima

Leia mais

Prof. Bart. Matemática - Racicínio Lógico

Prof. Bart. Matemática - Racicínio Lógico Prof. Bart Matemática - Racicínio Lógico 01. De acordo com o relatório estatístico de 2006, um setor de certa empresa expediu em agosto um total de 1.347 documentos. Se a soma dos documentos expedidos

Leia mais

QUESTAO ENVOLVENDO RACIOCINIO DIRETO OBSERVE QUE APENAS AS PLACAS I-III e V deve-se verificar a informação ALTERNATIVA D

QUESTAO ENVOLVENDO RACIOCINIO DIRETO OBSERVE QUE APENAS AS PLACAS I-III e V deve-se verificar a informação ALTERNATIVA D 11. Em um posto de fiscalização da PRF, cinco veículos foram abordados por estarem com alguns caracteres das placas de identificação cobertos por uma tinta que não permitia o reconhecimento, como ilustradas

Leia mais

CÓDIGO CRÉDITOS PERÍODO PRÉ-REQUISITO TURMA ANO INTRODUÇÃO

CÓDIGO CRÉDITOS PERÍODO PRÉ-REQUISITO TURMA ANO INTRODUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE GESTÃO E NEGÓCIOS CURSO DE CIÊNCIAS CONTÁBEIS, ADMINISTRAÇÃO E ECONOMIA DISCIPLINA: ESTRUTURA E ANÁLISE DE CUSTO CÓDIGO CRÉDITOS PERÍODO PRÉ-REQUISITO

Leia mais

A Matemática do ENEM em Bizus

A Matemática do ENEM em Bizus A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos

Leia mais

Planejamento Financeiro e Você. Ferramentas para a Conquista de Sonhos! Semana da Estratégia Nacional de Educação Financeira

Planejamento Financeiro e Você. Ferramentas para a Conquista de Sonhos! Semana da Estratégia Nacional de Educação Financeira Planejamento Financeiro e Você Ferramentas para a Conquista de Sonhos! Semana da Estratégia Nacional de Educação Financeira 2015 Hoje estamos aqui para falar de SONHOS e como realizá-los Você está Vivendo

Leia mais

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL Tenho certeza que você se dedicou ao máximo esse ano, galerinha! Sangue no olho, muita garra nessa reta final! Essa vaga é de vocês! Forte abraço prof

Leia mais

SKAT. Introdução. O Baralho

SKAT. Introdução. O Baralho Introdução SKAT O skat foi inventado por volta de 1810 na cidade de Altenburg, cerca de 40 km ao sul de Leipzig, Alemanha, pelos membros da Brommesche Tarok-Gesellschaft. Eles adaptaram um jogo local (Schafkopf)

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

NOÇÕES. Tempo de percurso do empregado de casa para o local de trabalho e do trabalho para

NOÇÕES. Tempo de percurso do empregado de casa para o local de trabalho e do trabalho para HORAS IN ITINERE Paula Freire 2015 NOÇÕES Tempo de percurso do empregado de casa para o local de trabalho e do trabalho para casa. REGRA Em regra, o tempo in itinere, ou horas in itinere não é computado

Leia mais

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA)

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA) RESOLUÇÃO DA a AVALIAÇÃO DE MATEMÁTICA COLÉGIO ANCHIETA-BA - UNIDADE II-013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 01. (UEPB) Dados os conjuntos A = {1,

Leia mais

DISLEXIA PERGUNTAS E RESPOSTAS

DISLEXIA PERGUNTAS E RESPOSTAS Texto de apoio ao curso de Especialização Atividade física adaptada e saúde Prof. Dr. Luzimar Teixeira DISLEXIA PERGUNTAS E RESPOSTAS A avaliação é importante? Muito importante. Ela é fundamental para

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6

a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6 PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

Princ ıpios b asicos Exemplo 1. Exemplo 2. Exemplo 3.

Princ ıpios b asicos Exemplo 1. Exemplo 2. Exemplo 3. Capítulo 6 Combinatória 1 Princípios básicos O princípio fundamental da contagem diz que se há x modos de tomar uma decisão D ½ e, tomada a decisão D ½,há y modos de tomar a decisão D ¾, então o número

Leia mais

RETA FINAL TÉCNICO JUDICIÁRIO TRF 2ª Região Disciplina: Matemática e Raciocínio lógico Prof.: Joselias da Silva Data: 17/06/07

RETA FINAL TÉCNICO JUDICIÁRIO TRF 2ª Região Disciplina: Matemática e Raciocínio lógico Prof.: Joselias da Silva Data: 17/06/07 01) Três dados idênticos, nos quais a soma das faces opostas é 7, são colocados em uma mesa, conforme a figura abaixo, de modo que cada par de faces coladas tenha o mesmo número. Sabendo-se que a soma

Leia mais

Probabilidade. Definições, Notação, Regra da Adição

Probabilidade. Definições, Notação, Regra da Adição Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento

Leia mais

Copa Cariri Garden Shopping de Tênis de Mesa - CE

Copa Cariri Garden Shopping de Tênis de Mesa - CE Copa Cariri Garden Shopping de Tênis de Mesa - CE A Federação dos Mesatenistas do Ceará-FMC tem a honra de convidar a todos os Atletas, Técnicos e Dirigentes das Federações e Clubes filiados a CBTM, a

Leia mais

Outras concentram-se em mercados específicos, tais como de produtos agrícolas, médicos e farmacêuticos ou automotivos;

Outras concentram-se em mercados específicos, tais como de produtos agrícolas, médicos e farmacêuticos ou automotivos; Diferentes empresas de pesquisa oferecem diferentes habilidades, experiências e instalações. Por essa razão, não existe uma única empresa que seja a mais apropriada para todos os tipos de problemas de

Leia mais

01) 551 02) 552 03) 553 04) 554 05) 555

01) 551 02) 552 03) 553 04) 554 05) 555 Questão 01 PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA (FUVEST010)

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

VII JOGOS DOS APOSENTADOS FENACEF 2016

VII JOGOS DOS APOSENTADOS FENACEF 2016 REGULAMENTO TÉCNICO CANASTRA Art. 1º. O torneio de Canastra do VII JOGOS FENACEF, será realizado de acordo com as regras estabelecidas pela FENACEF no Regulamento Geral do VII JOGOS FENACEF, combinado

Leia mais

A MATEMÁTICA ESTÁ PRESENTE NA COPA DO MUNDO FIFA

A MATEMÁTICA ESTÁ PRESENTE NA COPA DO MUNDO FIFA Em seis anos, gastos com estádios já aumentaram mais de 200% Em Abril de 2013 na reforma do Maracanã foram aplicados R$ 1,2 bilhão, valor que equivale a 57% do que havia sido previsto em investimento para

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME Exercícios estilo IME PROGRAMA IME ESPECIAL ANÁLISE COMBINATÓRIA PROF. PAULO ROBERTO 01. Em um baile há seis rapazes e dez moças. Quantos pares podem ser formados para a dança: a) sem restrição; b) se

Leia mais

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir. Combinação 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela

Leia mais

BACHARELADO EM SISTEMAS DE INFORMAÇÃO EaD UAB/UFSCar Sistemas de Informação - prof. Dr. Hélio Crestana Guardia

BACHARELADO EM SISTEMAS DE INFORMAÇÃO EaD UAB/UFSCar Sistemas de Informação - prof. Dr. Hélio Crestana Guardia O Sistema Operacional que você usa é multitasking? Por multitasking, entende-se a capacidade do SO de ter mais de um processos em execução ao mesmo tempo. É claro que, num dado instante, o número de processos

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II)

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II) 1 AULA ONZE: Análise Combinatória (Parte II) Olá, amigos! Tudo bem com vocês? Esta é nossa décima primeira aula, e ainda sequer chegamos à metade de nosso curso! Longo é o caminho do Raciocínio Lógico...

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

VII JOGOS DOS APOSENTADOS FENACEF 2016

VII JOGOS DOS APOSENTADOS FENACEF 2016 REGULAMENTO TÉCNICO DAMAS Art. 1º. O torneio de Damas do VII JOGOS FENACEF, será realizado de acordo com as regras estabelecidas pela FENACEF no Regulamento Geral do VII JOGOS FENACEF, combinado com as

Leia mais

2º ano do Ensino Médio

2º ano do Ensino Médio 2º ano do Ensino Médio Instruções: 1. Você deve estar recebendo um caderno com dez questões na 1ª parte da prova, duas questões na 2ª parte e duas questões na 3ª parte. Verifique, portanto, se está completo

Leia mais

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,

Leia mais

Jogo ProvocAção. ProvocAção 5.-

Jogo ProvocAção. ProvocAção 5.- Jogo ProvocAção Aprender brincando! Este foi o objetivo do desenvolvimento desse jogo. É um importante instrumento de aprendizagem, possuiu múltiplos usos e garante muita diversão e conhecimento para crianças,

Leia mais

O princípio multiplicativo

O princípio multiplicativo A UA UL L A O princípio multiplicativo Introdução A palavra Matemática, para um adulto ou uma criança, está diretamente relacionada com atividades e técnicas para contagem do número de elementos de algum

Leia mais

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO Prof. Ilydio Pereira de Sá www.magiadamatematica.com MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO Princípio Fundamental da Contagem

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,

Leia mais

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA QUESTÕES DISCURSIVAS AÁLISE COMBIATÓRIA ) (PUC-SP) O novo sistema de placas de veículos utiliza um grupo de 3 letras(dentre 6 letras ) e um grupo de 4 algarismos (por exemplo: ABC-03). Uma placa dessas

Leia mais

Pergunta e Respostas mais frequentes

Pergunta e Respostas mais frequentes Pergunta e Respostas mais frequentes Pergunta e Respostas mais frequentes 1. Quais os tipos de bolsas do Prouni na Fapcom? Bolsa integral: para estudantes que possuam renda familiar bruta mensal, por pessoa,

Leia mais

Treinamento de Tesouraria Gestão 2013/14

Treinamento de Tesouraria Gestão 2013/14 2 Treinamento de Tesouraria Gestão 2013/14 Willian Vinícius Peixoto Tesoureiro Distrital Gestão 2013/14 Tesoureiro Rotaract de Itaúna Cidade Universitária Gestão 2012/13 Tesoureiro Rotaract de Itaúna Cidade

Leia mais

Página 556 01. a) Porque concordam com o substantivo tarefas (plural). b) Porque concorda com extinção (singular).

Página 556 01. a) Porque concordam com o substantivo tarefas (plural). b) Porque concorda com extinção (singular). Página 556 a) Porque concordam com o substantivo tarefas (plural). b) Porque concorda com extinção (singular). c) Sim, porque concorda com tarefas [uma tarefa das tarefas mais tradicionais e importantes

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico-Matemático das provas para os cargos de Analista

Leia mais

Renê Drezner INTRODUÇÃO

Renê Drezner INTRODUÇÃO A Posição dos blocos continentais no mercado internacional do futebol através da análise da situação dos jogadores que disputaram a Copa do Mundo de 2014 Renê Drezner INTRODUÇÃO Os jogos de futebol representam

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

TRABALHO DE MATEMÁTICA II

TRABALHO DE MATEMÁTICA II TRABALHO DE MATEMÁTICA II Prof. Sérgio Tambellini 2 o Trimestre / 2012 2 o Azul Questão 04 GRUPO 1 (FUVEST2010) Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os

Leia mais

8º Campeonato Nacional de Jogos Matemáticos

8º Campeonato Nacional de Jogos Matemáticos 8º Campeonato Nacional de Jogos Matemáticos Distribuição dos jogos por ciclo 1º 2º 3º Sec Semáforo x Gatos & Cães x x Ouri x x x Hex x x x Rastros x x Avanço x Semáforo Autor: Alan Parr 8 peças verdes,

Leia mais

Seção Técnica de Ensino 2/8

Seção Técnica de Ensino 2/8 Escolha a única respost a certa, conform e o enunciado da quest ão, assinalandoa corretamente no CARTÃO- RESPOSTA. 01. O número natural mais próximo de ( A ) 2 ( B ) 3 ( C ) 4 ( D ) 5 ( E ) 6 3 4 7 3 5

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f. Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

d) 2 e) 3 d) 5 22 e) 15

d) 2 e) 3 d) 5 22 e) 15 PROBABILIDADE E MÉTODOS DE CONTAGEM 1) Nove cartões, com os números de 11 a 19 escritos em um de seus versos, foram embaralhados e postos um sobre o outro de forma que as faces numeradas ficaram para baixo.

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco 1 / 24 Contagem (2) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 24 O princípio da multiplicação de outra forma O princípio da multiplicação

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Considere o produto dos números naturais ímpares, 19 17 15... 3 1: Como pode ser reescrito utilizando fatorial? (a) 19! (b) 19! 20! (c) 19! 18 16... 2 (d) 19! 20 Exercício 2

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

ORIENTAÇÕES PARA O PREENCHIMENTO DO QUESTIONÁRIO POR MEIO DA WEB

ORIENTAÇÕES PARA O PREENCHIMENTO DO QUESTIONÁRIO POR MEIO DA WEB ORIENTAÇÕES PARA O PREENCHIMENTO DO QUESTIONÁRIO POR MEIO DA WEB 1 Com finalidade de auxiliar nas respostas às perguntas formuladas ou de esclarecer alguma dúvida sobre questões que não foram expressas

Leia mais

ingressos, sobrará troco? ( ) sim ( ) não Se sobrar troco, de quanto será?

ingressos, sobrará troco? ( ) sim ( ) não Se sobrar troco, de quanto será? SOCIEDADE MINEIRA DE CULTURA Mantenedora da PUC Minas e do COLÉGIO SANTA MARIA DATA: 26 / 09 / 2014 UNIDADE: II ETAPA AVALIAÇÃO DE RECUPERAÇÃO DE MATEMÁTICA 3.º ANO/EF ALUNO(A): Nº: TURMA: PROFESSOR(A):

Leia mais

Cotagem de dimensões básicas

Cotagem de dimensões básicas Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar

Leia mais

4 A UM PASSO DO TRAÇO

4 A UM PASSO DO TRAÇO 4 A UM PASSO DO TRAÇO Coleção Fascículo 4 A um passo do traço Índice A um passo do traço...05 Capriche na dosagem...09 Rodando o traço... 14 Depois das matérias-primas, os ajustes finais...16 Corrigindo

Leia mais

Veja na imagem acima que ao abrir o programa ele abrirá marcado em lotomania. Se você for jogar 10 números você deverá fazer as seguintes

Veja na imagem acima que ao abrir o programa ele abrirá marcado em lotomania. Se você for jogar 10 números você deverá fazer as seguintes SHOPAPOSTILAS Claudinei David shopapostilas@hotmail.com shop-vendas@hotmail.com Esta apostila é de inteira propriedade de Claudinei David,está proibida cópia ou venda sem autorização do criador,sujeito

Leia mais

Avanço Autor: Dan Troyka, 2000. Rastros Autor: Bill Taylor, 1992. Material Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras.

Avanço Autor: Dan Troyka, 2000. Rastros Autor: Bill Taylor, 1992. Material Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras. Avanço Autor: Dan Troyka, 2000 Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras. posição inicial Um jogador ganha se chegar com uma das suas peças à primeira linha do adversário, ou seja,

Leia mais

Exercícios Análise Combinatória

Exercícios Análise Combinatória Exercícios Análise Combinatória 1. (Uemg 2014) Na Copa das Confederações de 2013, no Brasil, onde a seleção brasileira foi campeã, o técnico Luiz Felipe Scolari tinha à sua disposição 23 jogadores de várias

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

Erros mais freqüentes

Erros mais freqüentes Lição 1 Erros mais freqüentes Extraímos de comunicações empresariais alguns erros, que passamos a comentar: 1. Caso se faça necessário maiores esclarecimentos... Apontamos duas falhas: 1. Caso se faça

Leia mais

Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005

Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005 Teste Anpad Raciocínio Lógico Edição: JUNHO de 2005 01. Cinco pessoas, Flávio, Méricles, Armênio, Clodoaldo e Igor, utilizam um mesmo programa de computador, o qual facilita a comunicação online pela Internet,

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA REABILITAÇÃO PROCESSO SELETIVO 2013 Nome: PARTE 1 BIOESTATÍSTICA, BIOÉTICA E METODOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA REABILITAÇÃO PROCESSO SELETIVO 2013 Nome: PARTE 1 BIOESTATÍSTICA, BIOÉTICA E METODOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA REABILITAÇÃO PROCESSO SELETIVO 2013 Nome: PARTE 1 BIOESTATÍSTICA, BIOÉTICA E METODOLOGIA 1) Um histograma construído a partir de informações amostrais de uma variável

Leia mais

6+3=2 8+2=4 12 + 4 = 3. Nesses exemplos, os resultados podem ser facilmente confirmados pela multiplicação, que é a operação inversa da divisão.

6+3=2 8+2=4 12 + 4 = 3. Nesses exemplos, os resultados podem ser facilmente confirmados pela multiplicação, que é a operação inversa da divisão. Três pequenas associações resolveram organizar uma festa para arrecadar fundos. "Somaremos nossos esforços e dividiremos os lucros", afirmou um dos presidentes. Pois bem, a festa aconteceu e foi um sucesso.

Leia mais