PA Progressão Aritmética

Tamanho: px
Começar a partir da página:

Download "PA Progressão Aritmética"

Transcrição

1 PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0 m. c) 1,5 m. d) 3,5 m.. (Uece 014) Seja (a n) uma progressão aritmética crescente, de números naturais, cujo primeiro termo é igual a 4 e a razão é igual a r. Se existe um termo desta progressão igual a 5, então a soma dos possíveis valores de r é a) 4. b) 8. c) 3. d) (Uerj 014) Admita a realização de um campeonato de futebol no qual as advertências recebidas pelos atletas são representadas apenas por cartões amarelos. Esses cartões são convertidos em multas, de acordo com os seguintes critérios: - os dois primeiros cartões recebidos não geram multas; - o terceiro cartão gera multa de R$ 500,00; - os cartões seguintes geram multas cujos valores são sempre acrescidos de R$ 500,00 em relação ao valor da multa anterior. Na tabela, indicam-se as multas relacionadas aos cinco primeiros cartões aplicados a um atleta. Cartão amarelo Valor da multa (R$) recebido 1º º 3º 500 4º º Considere um atleta que tenha recebido 13 cartões amarelos durante o campeonato. O valor total, em reais, das multas geradas por todos esses cartões equivale a: a) b) c) d) Página 1 de 11

2 4. (Uerj 014) Uma farmácia recebeu 15 frascos de um remédio. De acordo com os rótulos, cada frasco contém 00 comprimidos, e cada comprimido tem massa igual a 0mg. Admita que um dos frascos contenha a quantidade indicada de comprimidos, mas que cada um destes comprimidos tenha 30mg. Para identificar esse frasco, cujo rótulo está errado, são utilizados os seguintes procedimentos: - numeram-se os frascos de 1 a 15; - retira-se de cada frasco a quantidade de comprimidos correspondente à sua numeração; - verifica-se, usando uma balança, que a massa total dos comprimidos retirados é igual a 540mg. A numeração do frasco que contém os comprimidos mais pesados é: a) 1 b) 13 c) 14 d) (Espcex (Aman) 014) Os números naturais ímpares são dispostos como mostra o quadro 1ª linha 1 ª linha 3 5 3ª linha ª linha ª linha O primeiro elemento da 43ª linha, na horizontal, é: a) 807 b) 1007 c) 1307 d) 1507 e) (Cefet MG 013) Durante o mesmo período, dois irmãos depositaram, uma vez por semana, em seus respectivos cofrinhos, uma determinada quantia, da seguinte forma: o mais novo depositou, na primeira semana, R$ 1,00, na segunda, R$,00, na terceira, R$ 3,00 e assim, sucessivamente, enquanto que o mais velho colocou R$ 10,00 semanalmente até que ambos atingissem a mesma quantidade de dinheiro. Não havendo retirada em nenhum dos cofrinhos, a quantia que cada irmão obteve ao final desse período, em R$, foi de a) 19. b) 1. c) 190. d) 10. e) (Uerj 013) Na figura, está representada uma torre de quatro andares construída com cubos congruentes empilhados, sendo sua base formada por dez cubos. Calcule o número de cubos que formam a base de outra torre, com 100 andares, construída com cubos iguais e procedimento idêntico. Página de 11

3 8. (Fgv 013) Um anfiteatro tem 1 fileiras de cadeiras. Na 1Ŗ fileira hį 10 lugares, na Ŗ hį 1, na 3Ŗ hį 14 e assim por diante (isto é, cada fileira, a partir da segunda, tem duas cadeiras a mais que a da frente). O nśmero total de cadeiras é a) 50 b) 5 c) 54 d) 56 e) (Ufmg 013) Dentro dos bloquinhos que formam uma pirâmide foram escritos os números naturais, conforme ilustrado na figura abaixo, de forma que: na primeira linha da pirâmide aparece um número: 1; na segunda linha da pirâmide aparecem dois números: e 3; na terceira linha da pirâmide aparecem três números: 4, 5 e 6; na quarta linha da pirâmide aparecem quatro números: 7, 8, 9 e 10, e assim sucessivamente. Considerando essas informações, a) DETERMINE quantos bloquinhos são necessários para construir as 10 primeiras linhas da pirâmide. b) DETERMINE o último número escrito na trigésima linha da pirâmide. c) DETERMINE a soma de todos os números escritos na trigésima linha da pirâmide. 10. (Fgv 013) Entre 006 e 010, foram cometidos em média 30 crimes por ano em Kripton (entre roubos, estelionatos e assassinatos). Em 007, foram cometidos 40 crimes no total. Entre 006 e 010, o número de crimes evoluiu em uma progressão aritmética. a) Qual é a razão da progressão aritmética em que evoluiu o número de crimes, entre 006 e 010? b) Em 010, houve duas vezes mais roubos que assassinatos e igual número de roubos e estelionatos. Quantos estelionatos ocorreram em 010? c) Em 011, foram cometidos 30 crimes. Qual é o número médio de crimes cometidos entre 007 e 011? 11. (G1 - utfpr 013) A quantidade de números inteiros entre 50 e 100 que sejam múltiplos dos números 3 e 4 ao mesmo tempo é: a) 3. b) 4. c) 5. d) 13. e) (Uepg 013) Um total de n bolas está distribuído em 0 caixas, de modo que a primeira caixa contém 3 bolas, a segunda caixa contém 6 bolas, a terceira caixa contém 9 bolas e assim sucessivamente, formando uma P.A. Sobre o número n de bolas, assinale o que for correto. 01) n é um múltiplo de 6. 0) n > ) n é um múltiplo de 4. 08) n < Página 3 de 11

4 13. (Ufg 013) Pretende-se levar água de uma represa até um reservatório no topo de um morro próximo. A potência do motor que fará o bombeamento da água é determinada com base na diferença entre as alturas do reservatório e da represa. Para determinar essa diferença, utilizou-se uma mangueira de nível, ou seja, uma mangueira transparente, cheia de água e com as extremidades abertas, de maneira a manter o mesmo nível da água nas duas extremidades, permitindo medir a diferença de altura entre dois pontos do terreno. Esta medição fica restrita ao comprimento da mangueira, mas, repetindo o procedimento sucessivas vezes e somando os desníveis de cada etapa, é possível obter a diferença de altura entre dois pontos quaisquer. No presente caso, realizaram-se 50 medições sucessivas, desde a represa até o reservatório, obtendo-se uma sequência de valores para as diferenças de altura entre cada ponto e o ponto seguinte, que formam uma progressão aritmética, sendo h, 1 h, 3 h, 3..., h 0,75 m, h 0,80 m, h, 50 h 0,70 m, e assim sucessivamente. Com base no exposto, calcule a altura do reservatório em relação à represa. 14. (Mackenzie 013) Em uma progressão aritmética o primeiro termo é e a razão é 4. Nessa progressão, a média aritmética ponderada entre o terceiro termo, com peso, e 10% da soma dos cincos primeiros termos, com peso 3, é a) 1 b) 3 c) 5 d) 7 e) (Espcex (Aman) 013) Em uma progressão aritmética, a soma termos é dada pela expressão a) b) 4 c) 8 d) 10 e) 1 Sn 5n 1n, com n. S n 1 de seus n primeiros A razão dessa progressão é 16. (Ufg 013) Participaram de uma reunião 5 pessoas, entre homens e mulheres. Uma a uma, todas as mulheres passaram a convidar alguns dos homens presentes para adicioná-las como contatos em suas redes sociais, de maneira que a primeira mulher convidou sete homens, a segunda convidou oito, a terceira nove, e assim sucessivamente. Cada uma convidou um homem a mais que a anterior, até que a última das mulheres convidou todos os homens presentes. Nestas condições, calcule o número de mulheres e o de homens na reunião. 17. (Pucrj 013) Se a soma dos quatro primeiros termos de uma progressão aritmética é 4, e a razão é 5, então o primeiro termo é: a) 1 b) c) 3 d) 4 e) 5 Página 4 de 11

5 18. (Enem 013) As projeções para a produção de arroz no período de 01 01, em uma determinada região produtora, apontam para uma perspectiva de crescimento constante da produção anual. O quadro apresenta a quantidade de arroz, em toneladas, que será produzida nos primeiros anos desse período, de acordo com essa projeção. Ano Projeção da produção (t) 01 50, , , ,00 A quantidade total de arroz, em toneladas, que deverá ser produzida no período de 01 a 01 será de a) 497,5. b) 500,85. c) 50,87. d) 558,75. e) 563, (Upf 01) Num laboratório está sendo realizado um estudo sobre a evolução de uma população de vírus. A seguinte sequência de figuras representa os três primeiros minutos da reprodução do vírus (representado por um triângulo). Supondo que se mantém constante o ritmo de desenvolvimento da população de vírus, qual o número de vírus após uma hora? a) 140 b) 180 c) 178 d) 40 e) (Unioeste 01) Quantos múltiplos de 13 existem entre 100 e 1000? a) 65. b) 80. c) 69. d) 49. e) 67. Página 5 de 11

6 Gabarito: Resposta da questão 1: Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x 3r. e 5r. 3r, 4r Logo, os lados do triângulo medem Sabendo que o perímetro do triângulo mede 6,0 m, vem 1 3r 4r 5r 6 r. Portanto, a área do triângulo é igual a 3r 4r 1 6 1,5 m. Resposta da questão : an a 1 (n 1) r 3 4 (n 1) r (n 1) r 1 Logo: n 1 = 3 e r = 7 ou n 1 = 7 e r = 3 ou n 1 = 1 e r = 1 ou n 1 = 1 e r = 1 Portanto, a soma dos possíveis valores de m será dada por = 3. Resposta da questão 3: [B] As multas relacionadas formarão uma P.A. de 11 termos e de razão 500 (500, 1000, 1500,..., a 11 ). Onde, a 11 = = 5500 Calculando a soma dos 11 primeiros termos dessa P.A., temos: ( ) 11 S Página 6 de 11

7 Resposta da questão 4: Supondo que todos os comprimidos tivessem massa igual a 0mg, frascos seria igual a a massa total retirada dos (1 15) 0 (1 3 15) mg. Daí, como a diferença entre a massa dos comprimidos é de mg, número do frasco que contém os comprimidos mais pesados é segue que o Resposta da questão 5: [E] Até a 4 a linha, temos: (14) termos. Portanto, o primeiro elemento da 43ª linha será o 904º número natural ímpar. Então: a Resposta da questão 6: Considerando n a quantidade de depósitos, temos: n n Primeiro irmão: n Segundo irmão: Igualando as duas expressões, temos: n n 1 10n n 19n 0 n não convém ou n 19 Portanto, no final do período cada irmão, obteve R$190,00. Resposta da questão 7: O número de cubos que formam a base de uma torre de 100 andares é dado por Página 7 de 11

8 Resposta da questão 8: [B] O número de lugares cresce segundo uma progressão aritmética de primeiro termo igual a 10 e razão. Logo, o número total de cadeiras é Resposta da questão 9: a) O número de bloquinhos para construir as 10 primeiras linhas é igual à soma dos números naturais de 1 até 10. (110) 10 S b) O último número escrito na trigésima linha da pirâmide é igual a soma dos 30 primeiros números naturais S 30 = (1 30) c) O último número escrito na trigésima linha é 465 e o primeiro é = 436. Calculando agora a soma dos 30 termos da P.A. (436, 437, 438,..., 464, 465) Resposta da questão 10: a) Sabendo que a média anual de crimes é igual a 30, segue que foram cometidos crimes entre 006 e 010. Além disso, como temos: a1 a5 a1 a a 30 3 a r 30 r 10. a 40, b) Sejam e, a e r, respectivamente, o número de estelionatos, o número de assassinatos e o número de roubos cometidos em 010. Sabemos que r e a. Do item (a), podemos concluir que o número de crimes cometidos em 010 é a 3r Portanto, e e a r 10 e e 10 e 4. c) Dos itens anteriores, podemos concluir que o número total de crimes cometidos entre 007 e 010 foi de Portanto, o número médio de crimes cometidos entre 007 e 011 é dado por Página 8 de 11

9 Resposta da questão 11: [B] MMC(3,4) = 1 Múltiplos de 1 são múltiplos de 3 e de 4 ao mesmo tempo. Múltiplos de 1 entre 50 e 100 (60, 7,..., 84, 96). Utilizando a fórmula do termo geral da P.A., temos: 96 = 60 + (n 1) 36 n 1 1 n 13 n 4 Resposta da questão 1: = (em que n é o número de múltiplos de 1 entre 50 e 100) Determinando o total de bolas na última caixa: a n = = 60 (termo geral da P.A.) Determinando agora o total n de bolas: n 630 Portanto, estão corretas as afirmações [01], [0] e [08]. Resposta da questão 13: Como a razão da progressão aritmética é 0,05 m, segue que a altura do reservatório em relação à represa é dada por 49 0,05 0, ,5 96,5 m. Resposta da questão 14: [D] O terceiro termo da P.A. será dado por: a 3 = +.4 = 10 O quinto termo da P.A. será dado por: a 5 = = 18 5 A soma dos cinco primeiros termos será dada por: S Logo, a média M pedida será dada por: , M Página 9 de 11

10 Resposta da questão 15: [D] O primeiro termo da progressão aritmética é dado por a1 S Desse modo, o segundo termo da progressão é tal que a S a ( 7) Portanto, a razão da progressão aritmética é Resposta da questão 16: Admitindo n como o número de mulheres, temos: 5 n r a a1 3 ( 7) 10. homens. Se a primeira mulher convidar 7 homens, a segundo mulher convidar 8 homens e assim por diante, a mulher n convidará 5 n homens. Temos então uma P.A de razão 1 e primeiro termo 7. 5 n 7 (n1) 1 n 46 n 3. Então, na reunião havia 3 mulheres e homens. Resposta da questão 17: Seja (a, a 5, a 10, a 15, ) a progressão aritmética cujo primeiro termo calcular. Como S4 4, segue que 4a 30 4 a 3. (a) queremos Resposta da questão 18: [D] Como 51,50 50,5 5,75 51, ,75 1,5, podemos concluir que a sequência é uma progressão aritmética de primeiro termo e 50,5; 51,50; 5,75; 54,00; a 50,5 razão r 1,5. Portanto, queremos calcular a soma dos 10 primeiros termos dessa progressão aritmética, ou seja, a1 9r S ,5 9 1, , Página 10 de 11

11 Resposta da questão 19: A população de vírus desenvolve-se segundo a progressão aritmética 1, 4, 7,. Portanto, o número de vírus após uma hora é 1 (60 1) Resposta da questão 0: Os múltiplos de 13 entre 100 e 1000 formam a P.A. de razão 13 a: (104, 6, 39,..., 988) Admitindo que n é o número de termos da P.A., temos: n n n 1 13 n 1 68 n 69 Página 11 de 11

Progressão Aritmética

Progressão Aritmética Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013.

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013. P.A. 1. (Pucpr 015) Um consumidor, ao adquirir um automóvel, assumiu um empréstimo no valor total de R$ 4.000,00 (já somados juros e encargos). Esse valor foi pago em 0 parcelas, formando uma progressão

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

Progressão Geométrica- 1º ano

Progressão Geométrica- 1º ano Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada Exercícios de Matemática para Concurso Público Média Aritmética (simples) Média Ponderada 1. (Uema 201) Em um seletivo para contratação de estagiários, foram aplicadas duas provas: uma de Conhecimentos

Leia mais

Disciplina: Matemática Data da entrega: 18/04/2015.

Disciplina: Matemática Data da entrega: 18/04/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Turma: 2ª série (ensino médio) Disciplina: Matemática Data da entrega: 18/04/2015. Observação: A lista deverá apresentar capa, enunciados e as

Leia mais

Circunferência e Círculos

Circunferência e Círculos Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios Combinatória 1. (Espcex (Aman) 2015) De uma caixa contendo 50 bolas numeradas de 1 a 50 retiram-se duas bolas, sem reposição. A probabilidade do número da primeira bola ser divisível por 4 e o número da

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Ficha de Actividades

Ficha de Actividades 00/0 Ana Gonçalves Helena Alonso Vânia Torrão Ficha de Actividades. Quantos números se podem representar, no sistema de numeração romana, utilizando exactamente três palitos? (Solução: As hipóteses possíveis

Leia mais

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

ENEM 2012 MATEMÁTICA PROVA AMARELA

ENEM 2012 MATEMÁTICA PROVA AMARELA ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente

Leia mais

Pré-Seleção OBM Nível 3

Pré-Seleção OBM Nível 3 Aluno (a) Pré-Seleção OBM Nível 3 Questão 1. Hoje é sábado. Que dia da semana será daqui a 99 dias? a) segunda-feira b) sábado c) domingo d) sexta-feira e) quinta feira Uma semana tem 7 dias. Assim, se

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

ESFERA. www.nsaulasparticulares.com.br Página 1 de 21. cm 9

ESFERA. www.nsaulasparticulares.com.br Página 1 de 21. cm 9 ESFERA 1. (Espcex (Aman) 014) Considere que uma laranja tem a forma de uma esfera de raio 4 cm, composta de 1 gomos exatamente Iguais. A superfície total de cada gomo mede: a) b) c) 4 π cm 4 π cm 9 4 π

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

UFRJ- VESTIBULAR 2004 PROVA DE MATEMÁTICA.

UFRJ- VESTIBULAR 2004 PROVA DE MATEMÁTICA. UFRJ- VESTIBULAR 00 ROVA DE MATEMÁTICA Resolução e comentário pela rofessora Maria Antônia Conceição Gouveia Apresente suas soluções de forma clara, indicando, em cada caso, o raciocínio que conduziu à

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

Associação de Resistores

Associação de Resistores Associação de Resistores 1. (Pucrj 2013) No circuito mostrado na figura, a diferença de potencial entre os pontos B e A vale, em Volts: a) 3,0 b) 1,0 c) 2,0 d) 4,5 e) 0,75 2. (Uerj 2011) Observe a representação

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Curso Wellington Matemática Arranjo e Combinação Prof Hilton Franco

Curso Wellington Matemática Arranjo e Combinação Prof Hilton Franco 1. A figura abaixo ilustra um bloco de massa igual a 8 kg, em repouso, apoiado sobre um plano horizontal. Um prato de balança, com massa desprezível, está ligado ao bloco por um fio ideal. O fio passa

Leia mais

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota LISTA 04 SEQUÊNCIAS, PROGRESSÕES ARITMÉTICAS, GEOMÉTRICAS E MATEMÁTICA FINANCEIRA. 1 - (UESB) Um estacionamento cobra R$1,50 pela primeira hora. A partir da segunda, cujo valor é R$1,00 até a décima segunda,

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

www.nsaulasparticulares.com.br Página 2 de 20

www.nsaulasparticulares.com.br Página 2 de 20 Hidrostatica Teorema de Stevin Pressão de Líquidos 1. (Unesp 2013) Seis reservatórios cilíndricos, superiormente abertos e idênticos (A, B, C, D, E e F) estão apoiados sobre uma superfície horizontal plana

Leia mais

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e Geometria Espacial 1. (Uerj 015) Um funil, com a forma de cone circular reto, é utilizado na passagem de óleo para um recipiente com a forma de cilindro circular reto. O funil e o recipiente possuem a

Leia mais

x 5x 6 a) b) 1,6 01. Qual é o número cujo dobro somado com sua quinta parte é igual a 121?

x 5x 6 a) b) 1,6 01. Qual é o número cujo dobro somado com sua quinta parte é igual a 121? Nome: ºANO / CURSO TURMA: DATA: / / 0 Professor: Paulo 0. Qual é o número cujo dobro somado com sua quinta parte é igual a? 0. Para impressionar Pedro, Lucas propôs a seguintebrincadeira: - Escolha um

Leia mais

Hidrostática Pascal Prensa Hidráulica

Hidrostática Pascal Prensa Hidráulica Hidrostática Pascal Prensa Hidráulica 1. (Espcex (Aman) 013) Um elevador hidráulico de um posto de gasolina é acionado por um pequeno êmbolo de área igual a 4 4 10 m. O automóvel a ser elevado tem peso

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

Probabilidade. Arrumando-se ao acaso os dez halteres, a probabilidade de que eles formem um armazenamento perfeito equivale a: 1

Probabilidade. Arrumando-se ao acaso os dez halteres, a probabilidade de que eles formem um armazenamento perfeito equivale a: 1 Probabilidade. (Fuvest 0) Francisco deve elaborar uma pesquisa sobre dois artrópodes distintos. Eles serão selecionados, ao acaso, da seguinte relação: aranha, besouro, barata, lagosta, camarão, formiga,

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 5 Ọ ANO EM 2012. Disciplina:

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 5 Ọ ANO EM 2012. Disciplina: Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 5 Ọ ANO EM 2012 Disciplina: MateMática Prova: desafio nota: QUESTÃO 11 A cada quatro anos os gregos da Antiguidade em nome dos deuses

Leia mais

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir. Combinação 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Para divulgar a venda de um galpão retangular

Leia mais

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4 UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Funções. Parte I. www.soexatas.com Página 1

Funções. Parte I. www.soexatas.com Página 1 Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

r 5,8 5 Calcule a área de um trapézio área = altura (base maior + base menor )/ 2 7,2

r 5,8 5 Calcule a área de um trapézio área = altura (base maior + base menor )/ 2 7,2 Primeira parte 1 Faça um algoritmo para calcular a área de um quadrado 12,5...; 156,25 2 Calcular a área de um retângulo - area = comprimento X largura 7,0 5,6...: 39,2 3 Calcule a área de um triangulo

Leia mais

A classificação do teste deve respeitar integralmente os critérios gerais e os critérios específicos a seguir apresentados.

A classificação do teste deve respeitar integralmente os critérios gerais e os critérios específicos a seguir apresentados. Teste Intermédio de Matemática Teste Intermédio Matemática Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 05.06.2012 2.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de

Leia mais

Múltiplos e Divisores- MMC e MDC

Múltiplos e Divisores- MMC e MDC Múltiplos e Divisores- MMC e MDC Múltiplo de um número inteiro é o resultado desse número multiplicado por qualquer número inteiro. Definição: Para qualquer número a є Z, b є Z*, e c є Z, c é múltiplo

Leia mais

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS

3º Ano do Ensino Médio. Aula nº 02. Assunto: JUROS E PORCENTAGENS Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº 02 Assunto: JUROS E PORCENTAGENS 1) Porcentagem Definição: É uma fração que indica a participação de uma quantidade sobre um todo.

Leia mais

Técnicas de Resolução de Problemas - 1 a Parte

Técnicas de Resolução de Problemas - 1 a Parte Curso Preparatório - PROFMAT 2014 Germán Ignacio Gomero Ferrer gigferrer@uesc.br 12 de Agosto de 2013 Raciocínio lógico Problema 25 (Acesso 2011) Numa cidade existe uma pessoa X que sempre mente terças,

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos

Leia mais

Problemas de Jogos e Tabuleiros

Problemas de Jogos e Tabuleiros Problemas de Jogos e Tabuleiros Professor Emiliano Augusto Chagas Para esquentar! 01) Duas crianças se revezam em turnos quebrando uma barra retangular de chocolate, com seis quadrados de altura e oito

Leia mais

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau Exercícios de Matemática para Concurso Público Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau. (G - utfpr 05) A soma de dois números é 64, se um é o triplo do outro

Leia mais

Teorema de Thales. AB 500 m, BC 600 m, CD 700 m e HE 1980 m. 1. (G1 - cftmg 2014) Considere a figura em que r // s // t.

Teorema de Thales. AB 500 m, BC 600 m, CD 700 m e HE 1980 m. 1. (G1 - cftmg 2014) Considere a figura em que r // s // t. Teorema de Thales 1. (G1 - cftmg 2014) Considere a figura em que r // s // t. O valor de x é a) 3. b) 4. c) 5. d) 6. 2. (G1 - cps 2012) Para melhorar a qualidade do solo, aumentando a produtividade do

Leia mais

Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE

Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE 1. Por um trabalho adicional a seu emprego, Álvaro deve descontar

Leia mais

MUV. constante igual a a 2,0 m/s. O veículo B, distando d = 19,2 km do veículo A, parte com aceleração constante igual a veículos, em segundos.

MUV. constante igual a a 2,0 m/s. O veículo B, distando d = 19,2 km do veículo A, parte com aceleração constante igual a veículos, em segundos. MUV 1. (Espcex (Aman) 013) Um carro está desenvolvendo uma velocidade constante de 7 km h em uma rodovia federal. Ele passa por um trecho da rodovia que está em obras, onde a velocidade máxima permitida

Leia mais

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro.

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro. Matemática 1 17. Uma revista semanal de larga circulação apresentou matéria contendo o seguinte texto: O governo destinou 400.000 reais para a vacinação de 25 milhões de cabeças de gado, ou seja, um centavo

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,

Leia mais

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300 01) Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36%

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

Questão 1 Uma circunferência de equação. ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine:

Questão 1 Uma circunferência de equação. ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine: Questão 1 Uma circunferência de equação 2 2 x + y 8x + 8y + 16 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine:

Leia mais

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 1) Qual das planificações abaixo não é a planificação de um cubo? Resposta: I Existem 11 planificações diferentes para o cubo, indicadas pelas letras A, B, C, D, E, F, G,

Leia mais

LISTA EXTRA MRU e MRUV - 2ª SÉRIE

LISTA EXTRA MRU e MRUV - 2ª SÉRIE LISTA EXTRA MRU e MRUV - ª SÉRIE 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência:

Leia mais

Cone (sem outras figuras misturadas)

Cone (sem outras figuras misturadas) Cone (sem outras figuras misturadas) 1. (Pucrj 01) De um disco circular, de raio medindo 6 e centro C, cortamos um setor cujo arco mede 1. Usando o pedaço maior, fazemos um cone reto juntando os lados

Leia mais

LANÇAMENTO OBLÍQUO (PROF. VADO)

LANÇAMENTO OBLÍQUO (PROF. VADO) LANÇAMENTO OBLÍQUO (PROF. VADO) 01) PUCSP- Suponha que em uma partida de futebol, o goleiro, ao bater o tiro de meta, chuta a bola, imprimindo-lhe uma velocidade V 0 cujo vetor forma, com a horizontal,

Leia mais

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam da etiqueta

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Semelhança de Triângulos

Semelhança de Triângulos Semelhança de Triângulos 1. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Assumindo DE = GF =12, EF = DG = 8 e AB =15, a altura do triângulo ABC é: a) 35

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad.

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad. PROVA DE AFERIÇÃO DO 1.º CICLO DO ENSINO BÁSICO Matemática/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome completo A PREENCHER PELO AGRUPAMENTO

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA XI 1 TEOREMA DE TALES No Nivelamento, um dos assuntos abordados foi Razão e Proporção. A proporção aparece em várias situações no dia-a-dia: por exemplo, na leitura

Leia mais

Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos.

Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos. 1) O dono de um pequeno mercado comprou menos de 200 limões e, para vendê-los, poderá fazer pacotes contendo 12, ou 15, ou 18 limões em cada um deles, utilizando, dessa forma, todos os limões comprados.

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA PAG - 1 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 01.

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação. Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 62/2.ª Fase Critérios de Classificação 9 Páginas 2015 Prova 62/2.ª F. CC Página 1/ 9 CRITÉRIOS GERAIS

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas

Leia mais

Gráfico de Funções: Seno, Cosseno e Tangente

Gráfico de Funções: Seno, Cosseno e Tangente Reforço escolar M ate mática Gráfico de Funções: Seno, Cosseno e Tangente Dinâmica 6 1ª Série 4º Bimestre Professor DISCIPLINA Série CAMPO CONCEITO Matemática 1a do Ensino Médio Geométrico Trigonometria

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais