Função Afim Função do 1º Grau

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Função Afim Função do 1º Grau"

Transcrição

1 Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do 1º Grau 1) Escreva a função afim f() = a + b, sabendo que: f(1) = e f(- ) = - 7 f() = + f(- 1) = 7 e f() = 1 f() = - + f(- ) = 9 e f() = - 7 f() = e f(- ) = - e) f(- 1) = 1 e f() = 0 ) Determine o que se pede: a equação da reta que passa pelo ponto (-, 1) e cujo coeficiente angular é - 4. y = a equação da reta que passa pelo ponto (-, - 1) e cujo coeficiente linear é 8. y = + 8 Dada a função f() = a +, determine o valor de a para que se tenha f(4) =. a = Obtenha a função a partir dos pontos A(1, ) e B(, 7), ou seja, f(1) = e f() = 7. e) Dada a função f() = - +, determine f(- 1). ) Determine a função do 1º grau em que f(1) = e f() = 1 e construa seu gráfico. y = - + 4) A função f é definida por f() = a + b. Sabe-se que f(- 1) = e f() = 1, determine o valor de f(1). ) Estudo o sina das funções: f() = + 4 f() = - + f() = - f() = - 6 6) Determine o valor de m para que o gráfico da função f() = + (m - ): Intersecte o eio y no ponto (0, ). Intersecte o eio no ponto (, 0). 7) Dada a função f() = - determine: o zero da função. o ponto onde a função intersecta o eio y. o gráfico da função. 8) Qual é a raiz da função afim cujo gráfico que é uma reta, passa pelos pontos (, ) e (- 1, 6)? 9) Considere a função f: definida por f() = - determine: verifique se a função é crescente ou decrescente, justifique. o zero da função. o ponto onde a função intersecta o eio y. o gráfico da função. e) faça o estudo do sinal. 10) Seja f() = a + b a função que representa a reta que passa pelos pontos A(-, - 1) e B(1, ). Verifique se a função é crescente ou decrescente. A raiz da função. O gráfico da função. Calcule f(- 1). f() = 7

2 11) Represente graficamente as retas dadas por: y = - 4 y = 1 - y = - e) y = - + y = + 6 f) y = + 1) Dadas às funções f e g, construa o gráfico das funções e descubra o ponto de intersecção dessas retas: f() = - + e g() = +. f() = e g() = - 6. f() = 4 e g() = ) Dadas as funções f() = a + 4 e g() = b + 1, calcule a e b de modo que os gráficos das funções se interceptem no ponto (1, 6). 14) A função f é definida por f() = a + b. Sabe-se que f(- 1) = e f() = 1, calcule o valor de f(1). 1) Seja f: uma função tal que f( + 1) =.f() - e f(0) = 6. Calcule f(). 16) Um comerciante teve uma despesa de R$ 0,00 na compra de certa mercadoria. Como vai vender cada unidade por R$,00, o lucro final L será dado em função das unidades vendidas. Responda: Qual a lei dessa função f. f() = - 0 Para que valores de têm f() < 0? Como podemos interpretar esse caso? para > 46 Para que valores de haverá um lucro de R$ 1,00? para = 109 Para que valores de o lucro será maior que R$ 80,00? para > 10 17) Na produção de peças, uma indústria tem um custo fio de R$ 8,00 mais um custo variável de R$ 0,0 por unidade produzida. Sendo o número de unidades produzidas: escreva a lei da função que fornece o custo total de peças. C() = 8 + 0, calcule o custo para 100 peças. R$ 8,00 18) O preço a ser pago por uma corrida de tái inclui uma parcela fia, denominada bandeirada, e uma parcela que depende da distância percorrida. Se a bandeirada custa R$,0 e cada quilômetro rodado custa R$ 0,90, calcule: o preço de uma corrida de 10 km. a distância percorrida por um passageiro que pagou R$ 19,00 pela corrida. 19) O valor de um carro popular decresce linearmente com o tempo, devido ao desgaste. Sabendo-se que o preço de fábrica é R$ 7.00,00 e que, depois de 6 anos de uso, é R$ 1.00,00, qual seu valor após 4 anos de uso, em reais? 0) Uma pessoa vai escolher um plano de saúde entre duas opções A e B. O plano A cobra R$100,00 de inscrição e R$ 0,00 por consulta. O plano B cobra R$180,00 de inscrição e R$ 40,00 por consulta. Sabendo que o gasto total de cada plano é dado em função do numero de consultas determine: A equação da função correspondente a cada plano. A() = ; B() = Em que condições é possível afirmar que: o plano A é mais econômico; o B é mais econômico; os dois são equivalentes. Com 8 consultas A = B, A será mais econômico que B quando são feitas mais de 8 1) O preço de um estacionamento rotativo é cobrado da seguinte maneira: uma taa fia de R$,00 pela entrada mais R$,00 por hora de permanência. Com base nisso, responda: Qual a função matemática que epressa o preço y em função do número de horas de permanência do automóvel no estacionamento? Quanto pagará um cliente que deiou seu automóvel estacionado por horas? Quantas horas permaneceu o carro de um cliente que pagou R$ 1,00?

3 ) Em uma determinada loja, o salário mensal fio de um vendedor é de R$.400,00. Além disso, ele recebe R$ 1,00 por unidade vendida. Epresse o ganho mensal S desse vendedor em função do número (u) de unidades vendidas. Qual será seu salário num mês que ele vender 0 unidades? Quantas unidades ele deve vender para receber um salário de R$ 600,00? ) Uma empresa concessionária de telefonia móvel oferece as seguintes opções de contratos: X: R$ 60,00 pela assinatura mensal e mais R$ 0,0 por minuto de conversação; Y: R$ 40,00 pela assinatura mensal e mais R$ 0,80 por minuto de conversação. Nessas condições, a partir de quantos minutos de conversação em um mês, a opção pelo contrato X se torna mais vantajosa do que a opção por Y? 40 4) Um motorista de tái cobra R$,0 de bandeirada, mais R$ 1,0 por quilômetro rodado. Sabendo que preço a pagar é dado em função do número e quilômetro rodados, responda. Qual é a lei matemática que representa essa situação? Quanto cobrará o taista a pós km? Quanto cobrará o taista por 0 km? Quantos quilômetros foram percorridos se o cliente pagou R$ 1,40. ) Resolva as inequações do 1º grau determinando o conjunto solução: { / } f) - 6 > 1 - { / > 6} < 7-11 g) - < + 1 { / > 1} 7-8 < h) 4-6 > < 1 i) y + 9 > 4y + e) j).( + 4) - > ) Resolva as inequações do 1º grau determinando o conjunto solução:.( + ) < -.( + 1) f) 6.( - 4) -.(4 + ) ( - 4) - 8.( - ) { - } g) ( + )( + 1)( ) < 0.( - ) +.( + 1) >.( + 6) h).( - ) >.( - 7) -.(1 - ) - { < } 9.( - 1) -.( - ) > 7 i) 4.( + ) +.(1 - ) 0 e) 6t - (t + 8) 1 -.( - t) j) 4.( + ) >.( - 1) +.( + 1) 7) Resolva as inequações do 1º grau determinando o conjunto solução: { / < 1/19} f) g) ( 4) h) 4 1 { 0} i) { < 6} e) 1 { < } j) 1 4 { > - 1} 6 4 8) Resolva as inequações: 0 -.( + 14) +.( - ) >.(- + ) -.( + 9) { < - } 9) Resolva as inequações do 1º grau determinando o conjunto solução: - < + 1 < f) < 4 < + 8 { /1 < } g) - < - 1 < < + 1 < { / > 1} h) - - < { / 1} i) < e) - < + 1 j) - 4 < 4 -

4 0) Resolva os sistemas de inequações: (1 4) 4 1 e) 1 4 f) ( ) g) 4 ( ) 4 1 h) 7 4 ( 1) 1) Resolva os sistemas de inequações: 4 4 ( 1) 4 { R/- 4<<1} 6 (1 ) 1 ( 4) ( ) e) f) 4 ( 6) ) Resolva as inequações simultâneas: 4-1 < 8 f) < - 7 < + 8 { } g) - + < + 1 < { > 1} - < + 1 < h) +1 + < 4 < - 1 i) + < e) 4 - < 10 j) + 10 < ) Resolva as inequações do 1º grau determinando o conjunto solução: { 6 / < - 1 ou > } 1 1 4) Resolva as inequação produto do 1º grau: ( + ).( - ) > 0 f) ( + ).( - ) 0 ( - ).( - ) < 0 g) (4 - ).( + 6) > 0 ( - 1).( - ) 0 h) (4-8).( - ) < 0 ( - ).( - 6) < 0 i) (6 - ).( + 1) < 0 e) ( - 4).( + ) > 0 { / < - ou > 4} j) ( - ).( - ) 0 ) Resolva as inequações: ( + ).( - 10) > 0 f) ( + ).( - ) > 0 (4 - ).(6 + ) < 0 g) ( - 1).( - ) 0 ( - ).( - 6) < 0 h) ( - 1).( + 10) > 0 ( - ).( + 1) 0 i) ( - ).(- - 4)( - 4) 0 e) ( - 1).( - ) 0 j) ( - 1).( - ).( + 1) < 0

5 6) Resolva as inequação produto do 1º grau: ( - ).( + 1) 0 { /- 1/ } f) ( + ).(4 - ).( - 6) < 0 ( - ).( + ) 0 { // } g) ( + ).( - 1).( - ) > 0 { /- < < 1} ( + ).( - ).(4 + 8) 0 h) ( - ).( - 1).( + 4) 0.( - ).(9 - ) 0 { 0 ou } i) ( - 1).( - ).( + 4) > 0 e) ( - ).( + ).(8 - ) > 0 { < - ou < < 4} j) ( - ).(- + 1).(4 - ) 0 7) Resolva as inequações quociente do 1º grau: 1 0 { /- < < 1} f) g) { /- < < 4} h) i) 1 0 e) 1 0 { /1 < < } j) 0 1 k) 0 l) m) 0 1 n) 0 o) 1 0 8) Resolva as inequações: 1 1 { / < - ou > } f) { / - 1 ou > 4} 1 0 g) ( 4) ( ) 0 0 h) ( 1) ( ) i) 0 1 ( ) ( 1) e) j) (1 ) ( ) ) Determine o conjunto solução das inequações do 1º grau: ( 4) 0 f) (1 ) ( ) ( ) 0 g) ( 1) ( ) 0 0 { / > 0 e } h) ( 1) ( ) 0 ( ) (4 ) ( 1) ( ) 0 { < - 1 ou 1 < } i) ( 1) ( ) 0 1 e) ( ) ( ) 0 {1/ < ou } j) ( 1) ( ) ) Determine o conjunto solução das inequações do 1º grau: e) ]- 1, ] f) 1 1 g) 1 h) 4 1 i) 4 1

6 41) Determine o domínio das funções: y 4 6 f) f () ( 1) (4 ) g) f () (1 ) ( 8) h) f () f () f () 4 ( 1) ( ) ( 8) ( 6) 4) Resolva as inequações: ( + ) >.(1 - ).(1 - ) <.( + 1) e).( + ) -.( - ) 4) Resolva as inequações: 8 ( ) 10 ( ) ) Resolva as inequações: ( + ).( + 4) > 0 ( - 1).( - ).(1 - ) > 0 ( - 1).( - ) 0 ( + 6).( + 1) > 0 e) ( - 4).(4 + 1) 0 4) Resolva o sistema de inequações: 1 0. ( 6) ( ) 0 46) Resolva a inequação: 7.

7 Testes de Vestibulares 1) (UFV-MG) Uma função f é dada por f() = a + b, em que a e b são números reais. Se f(- 1) = e f(1) = - 1, determine o valor de f(). f() = - ) (UFSC) Seja f() = a + b uma função afim. Sabe-se que f(- 1) = 4 e f() = 7. O valor de f(8) é: 0 X 1 e) ) (FGV-SP) O gráfico da função f() = m + n passa pelos pontos (- 1, ) e (, 7). O valor de m é: e) 4) (PUC-MG) Uma função do 1o grau é tal que f(- 1) = e f() = -. Então f(0) é igual a: 0 4 e) - 1 ) (Unirio-RJ) O gráfico da função y=m+n, onde m e n são constantes, passa pelos pontos A(1,6) e B(,). A taa de variação média da função é: 1-1 e) 4 6) (UFSE) Na figura mostrada tem-se o gráfico da função do 1º grau definida por y = a + b. O valor de a b é igual a: e) 1 7) (PUC-MG) O gráfico da função f() = a + b está representado na figura. O valor de a + b é: - 1 8) (UNICamp-SP) O custo de uma corrida de tái é constituído por um valor inicial Q 0 fio, mais um valor que varia proporcionalmente à distância D percorrida nessa corrida. Sabe-se que, em uma corrida na qual foram percorridos,6 km, a quantia cobrada foi de R$ 8, e que em outra corrida, de,8 km a quantia cobrada foi de R$ 7,. Calcule o valor inicial de Q 0 Se, em um dia de trabalho, um taista arrecadou R$ 7,00 em 10 corridas, quantos quilômetros seu carro percorreu naquele dia?

8 9) (UFPE) Sabendo que os pontos (, - ) e (- 1, 6) pertencem ao gráfico da função f() = a + b, determine o valor de b - a. 6 10) (FUND. CARLOS CHAGAS-SP) Para que os pontos (1, ) e (, - 1) pertençam ao gráfico da função dada por f() = a + b, o valor de b - a deve ser: 7 - e) ) (UEL-PR) Seja f a função de R em R dada por f() = (k - 4). + k, na qual k é uma constante real. Se f é decrescente e se gráfico intersecta o eio das abscissas no ponto (1, 0), então um outro ponto do gráfico de f é: (-, 6) X (-, 9) (- 1, 1) (, ) e) (0, 6) 1) (PUC-SP) A soma dos números inteiros que satisfazem é: 0 1 e) - 1) (PUC-RJ) Quantos números inteiros satisfazem simultaneamente as desigualdades e + + 1? 0 1 e) infinitos 14) (FGV-SP) Uma fábrica de bolsas tem um custo fio mensal de R$.000,00. Cada bolsa fabricada custa R$,00 e é vendida por R$ 4,00. Para que a fábrica tenha um lucro mensal de R$ 4.000,00, ela deverá fabricar bolsas. O valor de é: e) 00 1) (UFRGS) Um grupo de estudantes dedicado à confecção de produtos de artesanato gasta R$ 1,00 em material, por unidade produzida, e, além disso, tem um gasto fio de R$ 600,00. Cada unidade será vendida por R$ 8,00. Quantas unidades terão de vender para obterem um lucro de R$ 800,00? e) 0 16) (UFPE) O preço da corrida de tái na cidade R é calculado adicionando um valor fio de R$,0 a R$ 1,0 por cada quilômetro rodado, enquanto na cidade S o preço é obtido adicionando um valor fio de R$,40 a R$ 1, por quilômetro rodado. A partir de quantos quilômetros rodados, o tái da cidade R deia de ser mais barato que o da cidade S? 17) (UEL-PR) Uma turma de torcedores de um time de futebol quer encomendar camisetas com o emblema do time para a torcida. Contataram com um fabricante que deu o seguinte orçamento: - Arte final mais serigrafia: R$ 90,00, independente do número de camisetas. - Camiseta costurada, fio 0, de algodão: R$ 6,0 por camiseta. Quantas camisetas devem ser encomendadas com o fabricante para que o custo por camiseta seja de R$ 7,00? e) 00 18) (UFRJ) Seja p: dada por p() = ( - 1).( - ).( - ), para que valores de se tem p() 0. 19) (UFRN) Na figura a seguir, tem-se o gráfico de uma reta que representa a quantidade, medida em ml, de um medicamento que uma pessoa deve tomar em função de seu peso, dado em kgf, para tratamento de determinada infecção. O medicamento deverá ser aplicado em seis doses. Assim, uma pessoa que pesa 8 kgf receberá em cada dose: 7 ml X 9 ml 8 ml 10 ml

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

Matemática. Resolução das atividades complementares. M5 Função polinomial do 1 o grau

Matemática. Resolução das atividades complementares. M5 Função polinomial do 1 o grau Resolução das atividades complementares Matemática M5 Função polinomial do o grau p. 8 O perímetro p de um quadrado é função linear de seu lado. Qual a sentença que define essa função? p 5 O perímetro

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO 1º Ano. Aluno(a): Número: Turma:

Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO 1º Ano. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO º Ano Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Sendo f()

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 10B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Função Afim Um vendedor recebe, mensalmente, um salário que é composto por uma parte fixa de R$ 3.000,00 e uma

Leia mais

Matemática. Resolução das atividades complementares. M5 Função Polinomial

Matemática. Resolução das atividades complementares. M5 Função Polinomial Resolução das atividades complementares Matemática M Função Polinomial p. 6 (UFRJ) Uma operadora de celular oferece dois planos no sistema pós-pago. No plano A, paga-se uma assinatura de R$, e cada minuto

Leia mais

ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE

ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Disciplina: Matemática Curso: Ensino Médio Professor: Aguinaldo Série: 1ªSérie Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Número: 1 - Conteúdo: Notação científica Área de polígonos

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações:

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1 FUNÇÕES DE 1º GRAU 0) Determine f() cujo gráfico está ilustrado abaio. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1) O fator a determina o crescimento da função: se y 1, então

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

3 (UFSM-RS) Considere a função f: ς Θ ς definida por. O valor de f( π) a) π 2 0 2 π 2 d) 2π 0 1. X c) π 2 2. Pelos dados, temos: f(π) = π 2 1

3 (UFSM-RS) Considere a função f: ς Θ ς definida por. O valor de f( π) a) π 2 0 2 π 2 d) 2π 0 1. X c) π 2 2. Pelos dados, temos: f(π) = π 2 1 M - Funções (FMU-SP) Considere as funções reais f() e g() a. Sabendo-se que f() g(), deduzimos que f() g() é igual a: a) 9 c) b) 9 d) f( ) g( ) Θ 9 ( 9 a) a a Logo: f() g() 9 9 9 9 9 f() g() e) (UFSM-RS)

Leia mais

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

Matemática. Resolução das atividades complementares. M9 Noções de Matemática Financeira

Matemática. Resolução das atividades complementares. M9 Noções de Matemática Financeira Resolução das atividades complementares Matemática M9 Noções de Matemática Financeira p. 9 1 (Cesesp-PE) Suponha que uma classe constituída de rapazes e moças tenha 0 alunos, dos quais 6 são moças. Assinale

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Matemática. Resolução das atividades complementares. M4 Funções

Matemática. Resolução das atividades complementares. M4 Funções Resolução das atividades complementares Matemática M Funções p. Responda às questões e, tomando por base o teto abaio: (Unama-PA) O ATAQUE DOS ALIENS Caramujos africanos, medindo centímetros de comprimento

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

EXERCÍCIOS DE REVISÃO PFV

EXERCÍCIOS DE REVISÃO PFV COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV www.professorwaltertadeu.mat.br 1) Seja f uma função de N em N definida por f(n) = 10 n. Escreva

Leia mais

2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau)

2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau) 2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau) Problema 01. Determine o coeficiente angular das retas cujos gráficos são dados abaixo: a) b) Problema 02. Através do coeficiente

Leia mais

3 Exercícios. 2 Equação que fornece o custo do aluguel: y = 80 + 0, 75x. 3 Equação que fornece o dinheiro disponível: y = 185

3 Exercícios. 2 Equação que fornece o custo do aluguel: y = 80 + 0, 75x. 3 Equação que fornece o dinheiro disponível: y = 185 Roteiro da aula MA091 Matemática básica Aula 19 Solução de equações e inequações no plano. 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Abril de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática

Leia mais

COLÉGIO MACHADO DE ASSIS. Turma: Data: / /

COLÉGIO MACHADO DE ASSIS. Turma: Data: / / Disciplina: Matemática Professor: Eduardo Nagel COLÉGIO MACHADO DE ASSIS Turma: Data: / / Aluno: ( ) Avaliação ( x ) Exercício / Revisão ( ) Recuperação Bim ª Chamada ( ) 1ª Prova ( ) ª Prova Estude e

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 0 1º Bimestre/013 Aluno(: Número: Turma: EXPRESSÕES NUMÉRICAS

Leia mais

1 2 c) y 2x 2 d) y 2x 2 e) y 2x 2

1 2 c) y 2x 2 d) y 2x 2 e) y 2x 2 ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /05 Obs.: Esta lista deve ser entregue apenas ao professor no dia da aula de Recuperação Valor: 0,0 SETOR A. O gráfico representa a função real

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Matemática Instrumental 2008.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno

Matemática Instrumental 2008.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno Lista de exercícios L08 01) Um automóvel consome 1 litro de combustível a cada 8 km. O consumo, que é função da distância percorrida, pode ser representado por a) y = x+8 b) y = 2x + 8 c) y = x / 4 d)

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO TÓPICOS GERAIS DE FUNÇÕES E FUNÇÃO AFIM

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO TÓPICOS GERAIS DE FUNÇÕES E FUNÇÃO AFIM INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO TÓPICOS GERAIS DE FUNÇÕES E FUNÇÃO AFIM 1. (Enem-MEC) Um estudo sobre o problema do desemprego na Grande São Paulo,

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

{ } PROVA DE RACIOCÍNIO MATEMÁTICO. 1)a)Dê o domínio da função f ( x) = + 12. b)resolva a inequação: 2 + 3 x. 4 + x RESOLUÇÃO.

{ } PROVA DE RACIOCÍNIO MATEMÁTICO. 1)a)Dê o domínio da função f ( x) = + 12. b)resolva a inequação: 2 + 3 x. 4 + x RESOLUÇÃO. )a)dê o domínio da função f ( ) = 7 + b)resolva a inequação: + 3 4 a)devemos ter 0 7 + Fazendo N = e D = 7 +, teremos o seguinte quadro de sinais: 3 4 N - + + + D + + - + N/D - + - + Tendo em conta que

Leia mais

PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO

PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO PUERI DOMUS ENSINO MÉDIO MATEMÁTICA Saber fazer saber fazer + MÓDULO Saber fazer Função do Primeiro Grau. (Cefet-MG) Sabendo-se que f() = a + b, que f( ) = 4 e que f() = 7, deduz-se que f(8) vale: a) 0

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 0/ SUMÁRIO. FUNÇÕES REAIS DE UMA VARIÁVEL..... CONCEITO..... ZEROS DE UMA

Leia mais

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei

Leia mais

Bolsistas: Guimara Bulegon, Maiara Ghiggi e Viviane Polachini. Recursos: Sala de informática, Software GeoGebra, folha de atividades.

Bolsistas: Guimara Bulegon, Maiara Ghiggi e Viviane Polachini. Recursos: Sala de informática, Software GeoGebra, folha de atividades. COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO Plano de aula 10 Funções do 1º Grau Bolsistas: Guimara Bulegon, Maiara Ghiggi e Viviane Polachini Supervisora: Raquel Marchetto Disciplina: Matemática Série: 1º

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 01. Dadas as funções definidas por f(x) = 1 2 x 2 x + e g(x) = + 1 2 5, determine o valor de f(2) + g(5). 02. Dada a função

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano Módulo de Juros e Porcentagem Juros Simples e Compostos Sétimo Ano Juros Simples e Compostos 1 Eercícios Introdutórios Eercício 1. Um investidor quer aplicar a quantia de R$ 800, 00 por 3 meses, a uma

Leia mais

Matemática Exercícios sobre Funções AFA/EFOMM

Matemática Exercícios sobre Funções AFA/EFOMM Matemática Exercícios sobre Funções AFA/EFOMM p 8 01 - A fórmula N dá o valor aproximado do 4 número do calçado (N) em função do comprimento (p), em centímetros, do pé de qualquer pessoa. De acordo com

Leia mais

1. (Fgv 2005) a) Mostre que existem infinitas triplas ordenadas (x,y,z) de números que

1. (Fgv 2005) a) Mostre que existem infinitas triplas ordenadas (x,y,z) de números que SISTEMAS LINEARES 2 1. (Fgv 2005) a) Mostre que existem infinitas triplas ordenadas (x,y,z) de números que satisfazem a equação matricial: b) Resolva o sistema linear abaixo, nas incógnitas x e y, usando

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

COLÉGIO ESTADUAL DONA ISABEL - PIBID. Bolsistas: Darlã Nogara Oliveira, Leidi Simonin, Maiara Ghiggi e Pitias Beckestein Paz

COLÉGIO ESTADUAL DONA ISABEL - PIBID. Bolsistas: Darlã Nogara Oliveira, Leidi Simonin, Maiara Ghiggi e Pitias Beckestein Paz COLÉGIO ESTADUAL DONA ISABEL - PIBID Bolsistas: Darlã Nogara Oliveira, Leidi Simonin, Maiara Ghiggi e Pitias Beckestein Paz Supervisora: Daiane Passari Disciplina: Matemática Série: 1º Ensino Médio Turmas:

Leia mais

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

Aula 1 (3 períodos): Convidando os alunos a participarem do projeto

Aula 1 (3 períodos): Convidando os alunos a participarem do projeto Disponibilizo aqui os planos de aula por mim elaborados, colocados em prática e reestruturados naquilo que percebi necessário, para futura utilização por professores que se interessarem em trabalhar utilizando

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES Prof. ANTONIO ROBERTO GONÇALVES Aprendizagem de Conceitos Se você precisa encontrar o volume de um silo de milho, a distância percorrida por um carro

Leia mais

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões: Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho Questões: 01.(UNESP) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fixa de 0 C.

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro.

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro. Avaliação Trimestral Amanda Marques Adm-Manhã 1. Uma empresa produz um tipo de peça para automóveis. O custo de produção destas peças é dado por um custo fixo de R$10,00 mais R$5,00 por peça produzida.

Leia mais

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Aula: 02/10 Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

Geogebra, uma ferramenta genial

Geogebra, uma ferramenta genial Geogebra, uma ferramenta genial Eduardo Antônio Soares Júnior Jéssica Amorim Mamed Paulo Tarso Farias Teixeira Roberta Layra Faragó Jardim Jaime Batista de Souza Deborah Faragó Jardim 3 de julho de 2013

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra. Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

Guião Revisões: Funções ESA-IPVC. Funções

Guião Revisões: Funções ESA-IPVC. Funções GUIÃO REVISÕES Funções Conceito de função Quatro amigos decidiram apostar no totoloto, tendo cada um deles preenchido o seu boletim da seguinte forma: Boletim do Hugo Boletim do João Jogos Apostas Jogos

Leia mais

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial Grandezas, Unidades de Medidas e Escala 1) (Enem) Um mecânico de uma equipe de corrida necessita que as seguintes medidas realizadas em um carro sejam obtidas em metros: a) distância a entre os eixos dianteiro

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado.

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado. Módulo 1: Noções de álgebra d) A 6 C B PÁGINA 10 Atividades para classe AB 6 y 1 Em cada item abaio, escreva uma epressão algébrica, e) y 8 utilizando as letras e y para representar A B esses números.

Leia mais

Unidade II MATEMÁTICA APLICADA. Profa. Maria Ester Domingues de Oliveira

Unidade II MATEMÁTICA APLICADA. Profa. Maria Ester Domingues de Oliveira Unidade II MATEMÁTICA APLICADA À CONTABILIDADE Profa. Maria Ester Domingues de Oliveira Receita Total A receita é o valor em moeda que o produtor recebe pela venda de x unidades do produto produzido e

Leia mais

EXERCÍCIOS DE GEOMETRIA

EXERCÍCIOS DE GEOMETRIA EXERCÍCIOS DE GEOMETRIA 1. Uma construtora, para construir o novo prédio da biblioteca de uma universidade, cobra um valor fixo para iniciar as obras e mais um valor, que aumenta de acordo com o passar

Leia mais

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Eemplos de Itens TEMA III NÚMEROS E OPERAÇÕES/ÁLGEBRA E FUNÇÕES Nesse tema abordam-se essencialmente

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 2º ANO PARTE 1 SISTEMAS LINEARES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 2º ANO PARTE 1 SISTEMAS LINEARES º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/0 º ANO PARTE SISTEMAS LINEARES 0. (FGV/SP) Resolvendo o sistema abaixo, obtém-se para z o valor: x + y + z = 0 x y z = 6y + z = a) - b) - c) 0 d) e) 0. (Mack-007)

Leia mais

2ª Lista de exercícios

2ª Lista de exercícios 2ª Lista de exercícios NOTA: Por favor tente resolver todos os exercícios sozinho, caso tente e não consiga entre em contato no email: suporte@mjailton.com.br. Após a resolução envie as respostas para

Leia mais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais PARTE 3 FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS 3. Funções Reais de Várias Variáveis Reais Vamos agora tratar do segundo caso particular de funções vetoriais de várias variáveis reais, F : Dom(F) R n R

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 2ª Etapa 2013 Disciplina: Matemática Ano: 3 Professor (a): Ana Cristina Turma: FG/AD Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

UM ESTUDO DAS FUNÇÕES DE 1º E 2º GRAUS APLICADAS À ECONOMIA

UM ESTUDO DAS FUNÇÕES DE 1º E 2º GRAUS APLICADAS À ECONOMIA ISSN 794 UM ESTUDO DAS FUNÇÕES DE º E º GRAUS APLICADAS À ECONOMIA Valeria Ap. Martins Ferreira, Viviane Carla Fortulan Mestre em Ciências pela Universidade de São Paulo- USP. Professora da Faculdade de

Leia mais

Matemática Financeira II

Matemática Financeira II Módulo 3 Unidade 8 Matemática Financeira II Para início de conversa... Passagens de ônibus ficam mais caras este mês Vitor Ferri (vferri@redegazeta.com.br)_ Redação Multimídia A Agência Nacional de Saúde

Leia mais

Lista de exercícios 1º Ensino médio

Lista de exercícios 1º Ensino médio 1. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$800,00 mais uma comissão de 5% sobre as vendas do mês. Em geral, cada duas horas e meia de trabalho, ele vende o equivalente a R$500,00. a)

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

DISCURSIVAS SÉRIE AULA AULA 01

DISCURSIVAS SÉRIE AULA AULA 01 ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M 4800 35 M120 1200M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos.

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Professor Manuel MATEMÁTICA FINANCEIRA 01. (UNEB-2008) O proprietário de um imóvel contratou uma imobiliária para vendê-lo, pagando-lhe 5% do valor obtido na transação. Se a imobiliária recebeu R$ 5.600,00,

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais