Matemática. Resolução das atividades complementares. M4 Funções

Tamanho: px
Começar a partir da página:

Download "Matemática. Resolução das atividades complementares. M4 Funções"

Transcrição

1 Resolução das atividades complementares Matemática M Funções p. Responda às questões e, tomando por base o teto abaio: (Unama-PA) O ATAQUE DOS ALIENS Caramujos africanos, medindo centímetros de comprimento e pesando gramas na fase adulta, trazidos para substituir o caro e requintado escargot, viraram praga em estados do Brasil. Têm uma capacidade reprodutiva impressionante, pois são hermafroditas e botam ovos por ano cada um. Em Casimiro de Abreu, no estado do Rio, onde também se tentou criar o caramujo para fins alimentícios, a prefeitura chegou a oferecer real para cada quilo de molusco recolhido. O alienígena da vez é o caramujo africano. Adaptado da revista Veja, set.. Considerando a oferta da prefeitura de Casimiro de Abreu, a epressão que representa a receita (R), em reais, em função do número (N) de caramujos adultos recolhidos, é: a) R 5,N b) R 5 N c) R 5 5N d) R 5 N Se g 5, kg, temos: R 5, N Se dois moradores de Casimiro de Abreu ganharam juntos R$ 9, num dia, recolhendo caramujos africanos adultos, e a razão entre o número de caramujos recolhidos por esses dois moradores é de 5 para, então o morador que mais recolheu conseguiu: a) 5 kg b) 5 kg c) 6 kg d) 65 kg R R 5 9 N N 5 5 De, vem:, N, N 5 9 N N 5 5 N 5 5 N Substituindo em, vem: 5 N 5 5 N 5 caramujos N Logo: N caramujos. Daí, vem: 5?, 5 5 kg

2 p. 5 (Mack-SP) Uma empresa de telefonia faz, a seus clientes, a seguinte promoção: a cada minutos de conversação, o minuto seguinte, na mesma ligação, é gratuito. Se o custo de cada segundo de ligação é R$,, o valor, em reais, de uma ligação de 6 minutos, durante a promoção, é: a) 5,8 b) 6, c) 6,6 d) 7, e) 6, O custo, em R$, de cada minutos de conservação é? 6?, 5,, pois se paga apenas por minutos. Assim, o custo, em R$, de 5 minutos de conservação é 5?, 5 6,. O custo do décimo seto minuto de conservação é, em R$, 6?, 5,6. Portanto, o valor, em reais, de uma ligação de 6 minutos, durante a promoção, é 6,6. Nas duas relações dadas a seguir, faça o diagrama e verifique se elas são ou não funções, justificando sua resposta. Não é função. a) f é uma relação de A = {,,, } em B = {,,, 6, 8}, epressa pela fórmula =, com A e B. b) g é uma relação de A = {,,, } em B = {8,,,,,, 8}, epressa pela fórmula =, com A e B. É função. a) A 5 {,,, } em B 5 {,,, 6, 8} e 5 b) A 5 {,,, } em B 5 {8,,,,,, 8} e 5 A Não é função, pois o elemento de A não tem representante em B. 6 8 B A 8 B 8 É função, pois a todo elemento de A corresponde um único elemento de B. p. 7 5 Dado o conjunto A 5 {,,, }, determine o conjunto imagem da função f: A R quando f for definida por: a) f() 5 Im 5 {8,,, } b) f() 5 Im 5 {,,, 5} c) f() 5 Im 5 {,, } A 5 {,,, } f: A R a) f() 5 f() 5 () 5 8 f() 5 () 5 f() 5 () 5 f() 5 () 5 Im 5 {8,,, } b) f() 5 f() 5 () 5 5 f() 5 () 5 f() 5 5 f() 5 5 Im 5 {,,, 5} c) f() 5 f() 5 () 5 f() 5 () 5 f() 5 () 5 f() 5 () 5 Im 5 {,, }

3 6 (PUC-SP) Seja a função f de D 5 {,,,, 5} em R definida por f() 5 ( ) ( ). Determine o seu conjunto imagem. Im 5 {,, } D 5 {,,,, 5} f() 5 ( ) ( ) 5 f() 5 5 f() 5 5 f() f(5) 5 5 f() 5 Im 5 {,, } 7 (UERN) Dada a função f() 5, o valor de f() f() f() é: a) b),5 c) 5,5 d),5 e),5 f() 5 f() f() f() 5 5 f() f() f() 5 5 5,5 8 (Unesp-SP) Considere a função f: R R, definida por f() 5. Determine todos os valores de m R para os quais é válida a igualdade f(m ) f(m) f(m) 5 m. ou f() 5 f(m ) f(m) f(m) 5 m (m ) (m ) (m ) 5 m m m m 5 m 5 m m 5 m 5 m 5 9 (UFSC) Considere a função f() real, definida por f() 5 e f( ) 5 f() 5. Determine o valor de f(). 9 f() 5 f( ) 5 f() 5 f( ) 5 f() 5 f( ) 5 f() 5 5 f() 5 f() 5 5 f() 5 58 f() 5 9

4 (UNI-RIO)/Ence-RJ) Seja f a função real na variável definida por f() 5 a) Determine o domínio de definição D da função. D 5 { R <, ou < } b) Mostre que, para todo D, tem-se f() 5. a) Devemos ter: > > > <. Logo: D 5 { R < ou < } b) Racionalizando f() em D, obtemos: f() 5 f() 5? ( ) 5 ( ) ( ) (UFPel-RS) Qual é o domínio de 7? a) R b), Ü c), Ü d) ] [ [ ] ] [ 7 D 5, (, 5) e) Ö (UERN) Seja f: D R, D R, a função definida por f() 5 5 da função pode ser descrito como:. O domínio D a) [,5] b) [5, ] c) ]5, [ d) ], 5] e) ]5, [ {} 5 > e. < 5 e. A 5 B A B 5 D 5 ], 5]

5 (UFRN) Dada a função f:, definida para todo inteiro n, tal que f() 5 e f(n ) 5 f(n), podemos afirmar que o valor de f() é: a) b) c) d) e) 6 f() 5 f() 5 f() 5 f() 5 f() 5 5 f() 5 f() f(n) é uma seqüência de números ímpares, ou seja, f(n) 5 n f() 5? 5. (UEL-PR) Seja a função f() 5 a b. Se f() 5 e f() 5, então a e b valem, respectivamente: a) e b) e c) e d) e e) e f() 5 a b f() 5 a b 5 f() 5 a b 5 a b 5 Resolvendo o sistema a b 5, obtemos a 5 e b 5. 5 Qual o domínio da função h() 5? D 5 R h() 5 D 5 R p. 5 6 Determine as coordenadas dos pontos indicados na figura: A(, ) F(, ) B(, ) G(, ) C(5, ) H(, ) D(, ) I(5, ) E(, ) J(5, ) 6 G D A J E B C F I H

6 7 (FGV-SP) Chama-se custo médio de produção o custo total dividido pela quantidade produzida. a) Uma fábrica de camisetas tem um custo total mensal dado por C = F 8, em que é a quantidade produzida, e F o custo fio mensal. O custo médio de fabricação de 5 unidades é R$,. Se o preço de venda for R$ 5, por camiseta, qual o lucro mensal de fabricar e vender 6 unidades? R$, b) Esboce o gráfico do custo médio de produção de unidades, em função de, se a função custo total for C =. a) O custo total mensal de fabricação de 5 camisetas é 5? 5 6. De C 5 F 8, temos: 6 5 F 8? 5 F 5 O custo total mensal de fabricação de 6 camisetas é, em R$: C 5 8? 6 C A venda total mensal de 6 camisetas é, em R$: 6? O lucro mensal é b) Sendo o custo médio de produção de unidades, temos: 5 C, ou seja, 5, com N*. (, ) 8 Sendo a R e b R, determine a e b para que se tenha: a) (a, b ) 5 (5, ) b) (a b, a b) 5 (, 5) c) (a b, 7) 5 (6, a b) a 5 5; b 5 a 5 ; b 5 a 5 8; b 5 a) (a, b ) 5 (5, ) a 5 5 b 5 b 5 b) (a b, a b) 5 (, 5) a b 5 a b 5 a b 5 5 b 5 c) (a b, 7) 5 (6, a b) a b 5 6 a b 5 7 () a b 5 6 a b 5 7 b 5 a b 5 7 a 5 7 a 5 8 a 5 8 a 5 b 5

7 9 Dados A 5 {,, } e B 5 {,,,,,, }, construa, num sistema de coordenadas cartesianas ortogonais, os gráficos: a) da função f: A B, dada por f() 5 Im f() 5 {,, } b) da função g: A B, dada por g() 5 Im g() 5 {, } Em ambos os itens escreva o conjunto imagem da função. A 5 {,, } B 5 {,,,,,, } a) f: A B dada por f() 5 f() 5? () 5 f() 5? 5 f() 5? () 5 Im f() 5 {,, } b) g: A B dada por g() 5 f() 5 () 5 f() 5 5 f() 5 5 Im g() 5 {,} Seja a função f dada por f() 5. Construa, num sistema de coordenadas cartesianas, o gráfico de f quando: a) D 5 {,,,, } b) D 5 [, ] c) D 5 R f() 5 a) f() 5 f() 5 f() 5 f() 5 f() 5 b) f() 5 f() 5 c) R f() 5 f() 5

8 Construa, num sistema de coordenadas cartesianas, os gráficos das funções f: R R, dadas por: a) f() 5 b) f() 5 5 c) f() 5 d) f() 5 f: R R a) f() 5 f() 5 f() 5 b) f() 5 5 f() 5 5 f() c) f() 5 f() 5 f() 5 f() 5 d) f() 5 f() 5 f() 5 f() 5 f() 5 f() 5

9 p. 5 (Mack-SP) Considere as sentenças abaio, relativas à função = f(), definida no intervalo, e representada, graficamente, na figura. I. Se,, então f(),. II. f() f() 5 f() III. A imagem de f é o intervalo [, ]. É correto afirmar que: a) apenas III é verdadeira. b) apenas I e II são verdadeiras. c) apenas I e III são verdadeiras. d) apenas II e III são verdadeiras. e) todas as sentenças são verdadeiras. Do gráfico, temos que f.. Como, e f., a afirmação I é falsa. Do gráfico, temos f() 5, f() 5 e f() 5. Como f() f() 5 f(), a afirmação II é verdadeira. Podemos afirmar que, para < <, eistem constantes a e b, tais que f() 5 a b. De f() 5, temos b 5 e, portanto, f() 5 a. De f() 5, temos a 5 e, portanto, a 5. Logo, para < <, temos f() 5 e, portanto, f() 5 (), isto é, f() 5. A projeção do gráfico de f sobre o eio corresponde ao intervalo [, ]. Logo, a imagem de f é o intervalo [, ], e a afirmação III é verdadeira. Portanto, apenas as afirmações II e III são verdadeiras.

10 (UFPR) Um estudo feito com certo tipo de bactéria detectou que, no decorrer de uma infecção, a quantidade dessas bactérias no corpo de um paciente varia aproimadamente segundo uma função q(t) que fornece o número de bactérias em milhares por mm de sangue no instante t. O gráfico da função q(t) encontra-se esboçado ao lado. O tempo é medido em horas, e o instante t 5 corresponde ao momento do contágio. Com base nessas informações, considere as seguintes afirmativas: I. A função q(t) é crescente no intervalo [, 8]. II. A quantidade máima de bactérias é atingida horas após o contágio, aproimadamente. III. 6 horas após o contágio, a quantidade de bactérias está abaio de 5 por mm. Assinale a alternativa correta: a) Somente as afirmativas II e III são verdadeiras. b) Somente as afirmativas I e II são verdadeiras. c) Somente as afirmativas I e III são verdadeiras. d) Somente a afirmativa I é verdadeira. e) Somente a afirmativa III é verdadeira. q(t) 8 t I. (Falsa) No intervalo [, ] a função q(t) é crescente e no intervalo [, 8] ela é decrescente. III. (Verdadeira) Quando t 5 h, obtemos q(t) 5 bactérias, que representa a quantidade máima de bactérias. III (Verdadeira) Quando t 5 6 h, obtemos q(t) aproimadamente igual a 5 bactérias. (Unoesc-SC) Considerando a função 5 f(), com 8 < <, representada na figura ao lado, é correto afirmar que: a) f() f() 5 b) f()? f()? f() 5 c) f() 5 d) f() e) imagem de f é [, ] a) f() 5 ; f() 5 f() f() b) f()? f()? f() 5 f()?? f() 5 c) f() e não f() 5 d) f() 5 e não f() e) Im f 5 [, ] [, ]

11 5 (Mack-SP) O número de indivíduos de um certo grupo é dado por f() =?, sendo o tempo medido em dias. Desse modo, entre o o e o o dias, o número de indivíduos do grupo: a) aumentará em eatamente unidades. d) aumentará em eatamente 9 unidades. b) aumentará em eatamente 9 unidades. e) diminuirá em eatamente 9 unidades. c) diminuirá em eatamente 9 unidades. f() 5? f() f() 5? f() Logo, entre o o e o o dias, o número de indivíduos aumentará em eatamente 9 unidades. 6 Determine se cada uma das seguintes funções f: R R é crescente ou decrescente. a) 5 crescente c) 5 decrescente e) 5 crescente b) 5 crescente d) 5 5 decrescente f) 5 crescente p. 58 R e tem imagem ; R e tem imagem ;, a),, a função é crescente. b),,, a função é crescente. c),.. a função é decrescente. d), a função é decrescente. e),,, a função é crescente. f),,, a função é crescente. 7 Uma fecularia (empresa que produz farinha de milho, mandioca etc.) compõe os seus preços por duas funções: a primeira, dos custos e manipulação de matéria-prima, dada por f() 5, em que é a quantidade de produto; a segunda, g() 5, que diz respeito ao processamento, embalagem e entrega às revendas. Então, o custo total é composto de custos de processamento, embalagem e entrega, além do custo e manipulação da matéria-prima. Nessas condições, qual o preço de venda de uma unidade em reais? R$ 6, Pelos dados, temos: g (f()) 5 g( ) g(f()) 5 ( ) g (f()) 5 6 g (f()) 5 6 Para 5, temos: g(f()) 5 6? 5 6

12 8 (FGV-SP) Sejam f e g duas funções de R em R, tais que f() 5 e g() 5. Então, o gráfico cartesiano da função f[g()] g[f()]: a) passa pela origem. d) tem declividade positiva. b) corta o eio no ponto (, ). e) passa pelo ponto (, ). c) corta o eio no ponto (6, ). O gráfico cartesiano de h() 5 f(g()) g(f()) 5 f( ) g() 5 5 ( ) 5 6 passa pelo ponto (, ), pois h() 5 6? 5 9 (UERN) As funções f e g são definidas por f() 5 e g() 5. Calculando-se g(f()), tem-se: a) b) c) d) 5 6 e) 5 5 g(f()) 5 g( ) 5 ( ) ( ) g(f()) 5 5 g(f()) (UFES) Seja f a função dada por f() 5, para real, diferente de que g(f()) 5 para todo do domínio de f, então g() vale:. Se g é a função, tal a) 5 b) c) d) 8 e) 5 5 f() 5 f() 5 5 g(f()) g(f()) (PUC-MG) Considere f() 5 e f(g()) 5. Valor de g() é: a) 6 b) 8 c) d) e) 6 f() 5 f(g()) 5 g() 5 g() 5 g() 5

13 (Uniube-MG) Seja K uma constante real, f e g funções definidas em R tais que f() 5 K e g() 5 K. Os valores de K que tornam a igualdade f g 5 g f verdadeira são: a) ou b) ou c) ou d) ou e) ou f(g()) 5 g(f()) K( K) 5 (K ) K K K 5 K K K K 5 K 5 K 5 (UERN) Seja a função f: R R definida por f() 5 8. A sua inversa f é definida por: a) 8 b) c) 8 d) 8 e) (UNI-RIO) A função inversa da função bijetora f: R {} R {} definida por f() 5 é: a) f ( ) 5 c) e) f ( ) 5 f ( ) 5 b) f ( ) 5 d) f ( ) 5 5 ; 5 ( ) 5 5 ( ) Logo, f () 5 5 (UFRJ) Determine o valor real de a para que f() 5 possua como inversa a função a f ( ) 5. f ( ) 5 Trocando as variáveis, 5 a a. Logo, f 5 a 5 () 5 a. a ( ) 5 a 5 a Comparando com a epressão de f () dada, concluímos que a 5.

14 6 Construa, em um mesmo sistema cartesiano, os gráficos da função f e da sua inversa f, dados por: a) f() 5 b) f() 5 c) f() 5 A seguir, escreva o que você pode observar em cada caso sobre os gráficos da função f e da inversa f. a) f() 5 f () 5 f f b) f f c) 5 5 f f Os gráficos de f e f são simétricos em relação à bissetriz do o e do o quadrantes. 7 Sejam f: R R e g: R R definidas por f() 5 e g() 5 m. Sabendo-se que f(g()) 5, calcule m. ou 9 Se f(g()) 5, temos: g() 5? () m 5 m f(g()) 5 f(m) 5 (m )? (m ) 5 m 8m 6 m 8 5 m m Portanto: m m 5 m m m ( ) ± ? m m , ou seja: m 5 ou m

15 8 Dadas as funções f() e g() 5, pede-se: a), de modo que f(g()) 5 {, } b), para que f() g() 5 g(f()) {} f() g() 5 a) f(g()) 5 f( ) 5 ( ) 5( ) < 5 b) f() g() 5 g(f()) f() f() 5 5? g() (Unifor-CE) Considere as afirmações seguintes: I. A função f, de R* em R*, dada por f() 5, é igual à sua inversa. II. O domínio da função real definida por f() 5 é o intevalo [, [. III. A função f, de R em R, dada por f() 5, é ímpar. É verdade que SOMENTE: a) III é verdadeira. b) II e III são verdadeiras. c) I e III são verdadeiras. d) I é verdadeira e) II é verdadeira. I. (Verdadeira) ou f ( ) 5 II. (Falsa).. ], [ III (Verdadeira) f() 5 f() 5 f() 5 f() f é impar 5

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO 1º Ano. Aluno(a): Número: Turma:

Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO 1º Ano. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Funções Composta e Inversa APROFUNDAMENTO/REFORÇO º Ano Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Sendo f()

Leia mais

02. No intervalo [0, 1], a variação de f é maior que a variação de h.

02. No intervalo [0, 1], a variação de f é maior que a variação de h. LISTA DE EXERCÍCIOS FUNÇÕES: CONCEITOS INICIAIS PROFESSOR: Claudio Saldan CONTATO: saldanmat@gmailcom 0 - (UEPG PR) Sobre o gráfico abaio, que representa uma função = f() definida em R, assinale o que

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

3 (UFSM-RS) Considere a função f: ς Θ ς definida por. O valor de f( π) a) π 2 0 2 π 2 d) 2π 0 1. X c) π 2 2. Pelos dados, temos: f(π) = π 2 1

3 (UFSM-RS) Considere a função f: ς Θ ς definida por. O valor de f( π) a) π 2 0 2 π 2 d) 2π 0 1. X c) π 2 2. Pelos dados, temos: f(π) = π 2 1 M - Funções (FMU-SP) Considere as funções reais f() e g() a. Sabendo-se que f() g(), deduzimos que f() g() é igual a: a) 9 c) b) 9 d) f( ) g( ) Θ 9 ( 9 a) a a Logo: f() g() 9 9 9 9 9 f() g() e) (UFSM-RS)

Leia mais

www.cursoavancos.com.br

www.cursoavancos.com.br LISTA DE EXERCÍCIOS DE FIXAÇÃO - PROF.: ARI 0) (ANGLO) Sendo FUNÇÕES INVERSAS f a função inversa de f() = +, então f (4) é igual a : 2 a) 4 b) /4 c) 4 d) 3 e) 6 02) (ANGLO) Sejam f : R R uma função bijetora

Leia mais

Matemática. Resolução das atividades complementares. M5 Função polinomial do 1 o grau

Matemática. Resolução das atividades complementares. M5 Função polinomial do 1 o grau Resolução das atividades complementares Matemática M5 Função polinomial do o grau p. 8 O perímetro p de um quadrado é função linear de seu lado. Qual a sentença que define essa função? p 5 O perímetro

Leia mais

Matemática. Resolução das atividades complementares. M5 Função Polinomial

Matemática. Resolução das atividades complementares. M5 Função Polinomial Resolução das atividades complementares Matemática M Função Polinomial p. 6 (UFRJ) Uma operadora de celular oferece dois planos no sistema pós-pago. No plano A, paga-se uma assinatura de R$, e cada minuto

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

EXERCÍCIOS DE REVISÃO PFV

EXERCÍCIOS DE REVISÃO PFV COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV www.professorwaltertadeu.mat.br 1) Seja f uma função de N em N definida por f(n) = 10 n. Escreva

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO

PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO PUERI DOMUS ENSINO MÉDIO MATEMÁTICA Saber fazer saber fazer + MÓDULO Saber fazer Função do Primeiro Grau. (Cefet-MG) Sabendo-se que f() = a + b, que f( ) = 4 e que f() = 7, deduz-se que f(8) vale: a) 0

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 008/ . CONCEITO DE FUNÇÃO As funções são as melhores ferramentas para descrever

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 00/ SUMÁRIO. LIMITES E CONTINUIDADE..... NOÇÃO INTUITIVA DE LIMITE..... FUNÇÃO CONTÍNUA NUM

Leia mais

r 5 200 m b) 1 min 5 60 s s t a 5

r 5 200 m b) 1 min 5 60 s s t a 5 Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 0 Um atleta desloca-se à velocidade constante de 7,8 m/s numa ista circular de raio 00 m. Determine as medidas, em radianos e

Leia mais

Guião Revisões: Funções ESA-IPVC. Funções

Guião Revisões: Funções ESA-IPVC. Funções GUIÃO REVISÕES Funções Conceito de função Quatro amigos decidiram apostar no totoloto, tendo cada um deles preenchido o seu boletim da seguinte forma: Boletim do Hugo Boletim do João Jogos Apostas Jogos

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS 1 MATEMÁTICA PROF. ILYDIO PEREIRA DE SÁ ESTUDO DAS DERIVADAS (CONCEITO E APLICAÇÕES) No presente capítulo, estudaremos as

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2010/2

1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2010/2 Número de pontos Dívida ($ bilhão) 1ª LISTA DE EXERCÍCIOS - FUNÇÕES 010/ 1. A dívida pública dos EUA (em bilhões de dólares) para alguns anos encontra-se no gráfico abaio. 400 300 00 100 000 1900 1800

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações:

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1 FUNÇÕES DE 1º GRAU 0) Determine f() cujo gráfico está ilustrado abaio. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1) O fator a determina o crescimento da função: se y 1, então

Leia mais

FUNÇÕES E FUNÇÕES COMPOSTAS

FUNÇÕES E FUNÇÕES COMPOSTAS MATEMÁTICA FUNÇÕES E FUNÇÕES COMPOSTAS Para responder as duas questões seguintes, leia o teto abaio.... Por quase um século antes de seu tempo os filósofos escolásticos vinham discutindo a quantificação

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1 APOSTILA 015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 015 1 Sumário 1.Conjuntos...5 1.1 Representação de conjuntos...5 1. Operações com conjuntos...6 1. Propriedades

Leia mais

Não importa com quem estejamos, sempre pensamos algo parecido com:

Não importa com quem estejamos, sempre pensamos algo parecido com: 0 76 MENSAGEM FINAL Não importa com quem estejamos, sempre pensamos algo parecido com: Eu sou mais forte do que ele, Eu sou mais bonita do que ela, Eu sou mais inteligente, Eu sou mais rico, Sou melhor

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 01. Dadas as funções definidas por f(x) = 1 2 x 2 x + e g(x) = + 1 2 5, determine o valor de f(2) + g(5). 02. Dada a função

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1 Prof. William Mascia Resende Engenharia Elétrica ITAJUBÁ 2013 CENTRO UNIVERSITÁRIO DE ITAJUBÁ Curso: Engenharia

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 0/ SUMÁRIO. FUNÇÕES REAIS DE UMA VARIÁVEL..... CONCEITO..... ZEROS DE UMA

Leia mais

(Testes intermédios e exames 2010/2011)

(Testes intermédios e exames 2010/2011) (Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

UM ESTUDO DAS FUNÇÕES DE 1º E 2º GRAUS APLICADAS À ECONOMIA

UM ESTUDO DAS FUNÇÕES DE 1º E 2º GRAUS APLICADAS À ECONOMIA ISSN 794 UM ESTUDO DAS FUNÇÕES DE º E º GRAUS APLICADAS À ECONOMIA Valeria Ap. Martins Ferreira, Viviane Carla Fortulan Mestre em Ciências pela Universidade de São Paulo- USP. Professora da Faculdade de

Leia mais

Lista de exercícios: Funções Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Funções Problemas Gerais Prof ºFernandinho Questões: 01.(Unesp) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fia de 0 C. Baseado nos

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Matemática. Resolução das atividades complementares. M9 Noções de Matemática Financeira

Matemática. Resolução das atividades complementares. M9 Noções de Matemática Financeira Resolução das atividades complementares Matemática M9 Noções de Matemática Financeira p. 9 1 (Cesesp-PE) Suponha que uma classe constituída de rapazes e moças tenha 0 alunos, dos quais 6 são moças. Assinale

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

MATEMÁTICA RETAS. ( ) Se A for uma matriz tal que a inversa de 2A é

MATEMÁTICA RETAS. ( ) Se A for uma matriz tal que a inversa de 2A é MATEMÁTICA RETAS. F.I.Anápolis-GO Uma das diagonais de um quadrado está contida na reta: =. A equação da reta suporte da outra diagonal e que passa pelo ponto V(4, ) é: a) = b) + = c) = 6 d) = 6 e) + =.

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 12º ano Cálculo Diferencial II - Exercícios saídos em Exames (séc XX)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 12º ano Cálculo Diferencial II - Exercícios saídos em Exames (séc XX) Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 1º ano Cálculo Diferencial II - Eercícios saídos em Eames (séc XX) 1. Seja f a função real de variável real tal que f()= - /. Quanto ao limite

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA Prof. Francisco Leal Moreira / SUMÁRIO. FUNÇÕES DE DUAS VARIÁVEIS.. FUNÇÕES HOMOGÊNEAS.. CURVAS

Leia mais

O gráfico de. Freqüentemente você se depara com tabelas. Nossa aula

O gráfico de. Freqüentemente você se depara com tabelas. Nossa aula O gráfico de uma função A UUL AL A Freqüentemente você se depara com tabelas e gráficos, em jornais, revistas e empresas que tentam transmitir de forma simples fatos do dia-a-dia. Fala-se em elevação e

Leia mais

M 9 - Noções de Matemática Financeira

M 9 - Noções de Matemática Financeira M 9 - Noções de Financeira (ESPM-SP) Observe as proposições abaixo: I. (0%) % III. 3% 0 % 8% II. 9% 3% IV. 3% 9 % % Estão corretas: a) Apenas I e II d) Apenas II, III e IV b) Apenas II e III e) Nenhuma

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDAMENTAL 6- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 6 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA Apontamentos: Curso de Conhecimentos Básicos de Matemática Cursos do Departamento de Gestão Maria Cristina

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

LISTA BÁSICA MATEMÁTICA

LISTA BÁSICA MATEMÁTICA LISTA BÁSICA Professor: ARGENTINO FÉRIAS: O ANO DATA: 0 / 06 / 0 MATEMÁTICA 6 0 6 +, + 4 é:. O valor de ( ) ( ) ( ) a) b) c) 7 d) 9 e). Considere a epressão numérica a) 9 b) 0 c) 8,00 d) 69 e) 9,00000

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina0.com.br Funções Reais CÁLCULO VOLUME ZERO - Neste capítulo, estudaremos as protagonistas do longa metragem

Leia mais

MATERIAL DIDÁTICO DE CÁLCULO I

MATERIAL DIDÁTICO DE CÁLCULO I MATERIAL DIDÁTICO DE CÁLCULO I Acadêmico(a): Turma: 9/ Capítulo : Funções Cálculo I. ANÁLISE GRÁFICA DAS FUNÇÕES.. EXERCÍCIOS Abaio estão representadas graficamente algumas funções. Analise cada uma dessas

Leia mais

FUNÇÕES E GRÁFICOS. 5 f (x) = x + 6 a = 1 b = 6 BANCO DO BRASIL E CAIXA ECONÔMICA FEDERAL. Prof. Daniel Almeida Matemática(Parte 03) Introdução

FUNÇÕES E GRÁFICOS. 5 f (x) = x + 6 a = 1 b = 6 BANCO DO BRASIL E CAIXA ECONÔMICA FEDERAL. Prof. Daniel Almeida Matemática(Parte 03) Introdução FUNÇÕES E GRÁFICOS Introdução Par ordenado Par ordenado dentro das funções será o par formado pelo representante do conjunto domínio com seu respectivo elemento do conjunto imagem. Veja no eemplo. Repare

Leia mais

TESTE INTERMÉDIO DE MATEMÁTICA B 10.º ANO RESOLUÇÃO

TESTE INTERMÉDIO DE MATEMÁTICA B 10.º ANO RESOLUÇÃO TESTE INTERMÉDIO DE MATEMÁTICA B 10.º ANO RESOLUÇÃO GRUPO I 1. Apresentamos dois exemplos de resposta. 1.º Exemplo: O hexágono regular [ABCDEF] está dividido em seis triângulos equiláteros, geometricamente

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

Capítulo 4. 4.1.1 O problema da caixa

Capítulo 4. 4.1.1 O problema da caixa Capítulo Funções e Gráficos. Motivação Vimos no capítulo anterior que problemas onde é necessário a determinação dos valores máimos e/ou mínimos de uma função aparecem comumente no nosso dia a dia e que,

Leia mais

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Eemplos de Itens TEMA III NÚMEROS E OPERAÇÕES/ÁLGEBRA E FUNÇÕES Nesse tema abordam-se essencialmente

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

Progressão Geométrica- 1º ano

Progressão Geométrica- 1º ano Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os

Leia mais

PREFÁCIO BOM TRABALHO!

PREFÁCIO BOM TRABALHO! PREFÁCIO Este volume corresponde ao primeiro livro virtual lançado pelo Sistema de Ensino Interativo SEI. O livro trata de lógica, teoria dos conjuntos, relação, produto cartesiano, funções reais, função

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

11. Problemas de Otimização

11. Problemas de Otimização 11. Problemas de Otimização Nesta seção veremos vários eemplos de problemas cujas soluções eigem a determinação de valores máimos e/ou mínimos absolutos das funções que os representam. São chamados de

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO TÓPICOS GERAIS DE FUNÇÕES E FUNÇÃO AFIM

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO TÓPICOS GERAIS DE FUNÇÕES E FUNÇÃO AFIM INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO TÓPICOS GERAIS DE FUNÇÕES E FUNÇÃO AFIM 1. (Enem-MEC) Um estudo sobre o problema do desemprego na Grande São Paulo,

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo TIPO F P- tipo D-8 Matemática (P-) Ensino Fundamental 8º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avaliar o desempenho dos alunos do 8 o

Leia mais

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013)

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) I N T E G R A L ac C Á L C U L O Prof. ADRIANO CATTAI 03 Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) NOME: DATA: / / Não há ciência que fale das harmonias da natureza

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC DO VESTIBULR 0 D UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. Em de outubro de 0, Feli Baumgartner uebrou o recorde de velocidade em ueda livre. O salto foi monitorado oficialmente

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Problemas de Máximo e Mínimos em Intervalos quaisquer

Problemas de Máximo e Mínimos em Intervalos quaisquer Capítulo 18 Problemas de Máimo e Mínimos em Intervalos quaisquer 18.1 Introdução No Cap. 15 estudamos o problema de determinar máimos e mínimos globais para funções contínuas definidas em intervalos fechados.

Leia mais

MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/013 Aluno(a): Número: Turma: 1) Determine

Leia mais

Estudo de funções parte 2

Estudo de funções parte 2 Módulo 2 Unidade 13 Estudo de funções parte 2 Para início de conversa... Taxa de desemprego no Brasil cai a 5,8% em maio A taxa de desempregados no Brasil caiu para 5,8% em maio, depois de registrar 6%

Leia mais

Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Problemas de O-mização Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para resolver problemas de o-mização 1. Compreenda o problema a) O que é desconhecido? b) Quais as

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Prof AULA 0 - FUNÇÕES.

Leia mais

Estudo de funções parte 2

Estudo de funções parte 2 Módulo 2 Unidade 3 Estudo de funções parte 2 Para início de conversa... Taxa de desemprego no Brasil cai a 5,8% em maio A taxa de desempregados no Brasil caiu para 5,8% em maio, depois de registrar 6%

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

Exercícios de Matemática Equações e Inequações

Exercícios de Matemática Equações e Inequações Eercícios de Matemática Equações e Inequações ) (FATEC-008) Teodoro coleciona cartões de telefone e, ao adquirir o milésimo cartão, resolveu colá-los em folhas de papel para facilitar o manuseio Para tal,

Leia mais

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4 MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()

Leia mais

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios Grandezas e Medidas no CAp UFRJ Introdução Exercícios 1) Indique três aspectos diferentes que podem ser medidos num carro. Para cada aspecto identificado, informe a grandeza e a unidade de medida correspondente

Leia mais

Máximos e Mínimos em Intervalos Fechados

Máximos e Mínimos em Intervalos Fechados Capítulo 5 Máimos e Mínimos em Intervalos Fechados 5. Motivação Na Seção.., estudamos o problema da caia, onde queríamos montar uma caia recortando retângulos nos quatro cantos de uma lâmina de plástico

Leia mais

2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau)

2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau) 2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau) Problema 01. Determine o coeficiente angular das retas cujos gráficos são dados abaixo: a) b) Problema 02. Através do coeficiente

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais