Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS

Tamanho: px
Começar a partir da página:

Download "Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS"

Transcrição

1 Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 0 1º Bimestre/013 Aluno(: Número: Turma: EXPRESSÕES NUMÉRICAS 1) Calcule o valor das expressões numéricas: 10 - [ + (3-6) - (9-13)] = [8 - (- + 10) + 6] - (- + 4) = 1 - ( ) - [3 - ( - 13) - 7] = {- [1 + ( - 0) - ( )]} = 0 + (- - 3).(- - ) - [- (6 + ) :(- + 3) ] = 4 f) (- - ) :(- 4-1) + ( ). (- 1-1) 3 = 4 g) 3 + (- 4-3) :(1 + 6) + [(- - 6) :(- + 3) 3 ] = h) 3 - [- 1 + (- 3 - ) - (- - 1) ]:(- 3) = 8 i) 1 - [- 1 + (- + ) + (- 3-1) - (- + 4) 3 ] - (- 3-4) = 6 j).(- 3 - ) + (- 3).(- - ) - [- (8 + ) :( ) ] = 6 ) Calcule o valor das expressões numéricas: = - f) : ,6 - g) + 1 : h) 1 : 4 1 : = = = 1 - j) i) 1+ = : + + = EQUAÇÕES do 1º GRAU 3) Resolva as equações do 1º grau: x - 3 = x + 6 {3} f) x x = - x {4/} x - 9 = 11-3x {4} g) x x = x + 9 {3} 4x + 6 = 18 - x {} h) y y = y + 11 {- 1/4} - 4x = 3-18x + 1 {3} i) x x = 8-3x {4} 7x = 10 + x {4} j) x x = 1 - x - 3 {8} 4) Resolva as equações do 1º grau: 3.(x - ) = 4.(x + 1) {- } f) 10 -.(4x - 1) = x +.(1-4x) {} 3.(x - ) -.(1 - x) = 13 {3} g) - 3.(1 - x) = -.(x + 4) {- 1/4}.(x + ) - 3.( - x) = {} h) x + 4.(x - 1) = 16 -.(x + 3) {}.(x - 1) - 11 = 3.(x - ) {} i) x -.(x - ) = 7-3.(x + ) {- }.(x + 3) + 3.(x + 4) = 7.(x + ) - 6 {} j).(3x - 1) +.(3 - x) = x - {- 3}

2 ) Resolva as equações do 1º grau: x - = 7.(x - 1) -.(x - ) {- } f).(x - 3) - 4.(x + ) = + 3.(1 - x) {4} 4.(x - 3) + 3.(x - 3) =.(x - 3) {- } g) 4.(x - 3) - 3.(x - ) =.(x - ) + 3 {4} 3x -.(4x - 3) = - 3.(x - 1) {1/} h) 3.(x - 3) +.(x + 1) = 3.(x + 6) {} 6.(x - 1) +.(x - 8) - = 8 -.(3x + 10) - x {} i).(x + 1) - 3.(x - ) = 3.(x - 1) {} 3.(x - 1) - (x - 3) +.(x - ) = 18 {4} j).(x - 6) + 3.( - x) - 4.(x - 3) = 9 {- } 6) Resolva as equações do 1º grau: x 7 x 1 {} 4 10 x x x + + = 3 {4} x 1 x = {3} 3 6 3x + 1 x = x {3} 3 x+ 9 x+ x = 8 {3} 3 4 f) p 3 p p + 4 {- 3} 6 g) x+ 4 x 1 x {} h) x + 7 x 3x {} i) 3x + x 1 1 x 8 + {- 4} j) x 6 x x 1+ + = + {} 4 3 7) Resolva as equações do 1º grau: x+ x+ {} x x + 1 3x + 1 x {- 1} 3x x 8 3x 4 x {/9} x 1 x 3 x + 6 3x {- 1}.(x 3) 1.(x 1) + = x {1/} 3 6 f) 3 (x+ ) 3x+ 1 {- } 4 g) (x 3) 1 (x 6) + = {- 3/4} h) (m ) (m+ 4) 3 (m 3) {} 3 4 i) (m+ ) 4 (m+ 4) 1 = 3 3 {- 3/} j) (x+ 1) 3 (x+ ) x {- 4}

3 8) Resolva os problemas: A soma de um número com o seu triplo é 48. Qual é esse número? A soma da idade que eu tenho hoje, com o triplo da idade que eu tinha a 4 anos, é igual ao dobro da idade que eu terei daqui a anos. Qual é minha idade atual? 8 anos Ao triplo de um número foi adicionado 40. O resultado é igual ao quíntuplo do número. Qual é esse número? 0 A diferença entre um número e sua quinta parte é igual a 8. Qual é esse número? 10 O triplo de um número é igual a sua metade mais 0. Qual é esse número? 8 f) A soma das idades de três irmãos é 31 anos. O maior tinha 4 anos quando nasceu o º irmão e este tinha 6 anos quando nasceu o mais novo. Qual é a idade de cada um? 1, 11 e g) Júlio tem 1 anos e Eva tem 17 anos. Daqui a quantos anos a soma de suas idades será 7 anos? 0 anos h) A metade dos objetos de uma caixa mais a terça parte desses objetos é igual a 7. Quantos objetos há na caixa? 90 objetos i) A soma das idades de 4 irmãos é de anos. O caçula é anos mais novo que o 3º filho. O 3º filho é 3 anos mais novo que o º. O mais velho tem 4 anos a mais do que o º. Calcule a idade do primeiro filho. j) Após ter percorrido /7 de um percurso e, em seguida, caminhando /11 do mesmo percurso um atleta verificou que ainda faltavam 600 metros para o final do percurso. Qual o comprimento total do percurso? 310 m 9) Resolva os problemas: O triplo de um número, mais dois, é igual ao próprio número menos quatro. Qual é esse número? O dobro de um número, diminuído de 4, é igual a esse número aumentado de 1. Qual é esse número? O triplo de um número, menos, é igual ao próprio número, mais. Qual é esse número? A diferença entre os dois terços de um número e sua metade é igual a 6. Qual é esse número? A metade dos objetos de uma caixa mais a terça parte desses objetos é igual a. Quantos objetos há na caixa? f) O dobro de um número, menos 10, é igual à sua metade, mais 0. Qual é esse número? g) (FUVEST-SP) O dobro de um número, mais a sua terça parte, mais a sua quarta parte somam 31. Determine o número. h) A soma de um número com a sua terça parte é igual a metade desse número somado com unidades. Calcule o referido número. 30 i) Os três quintos de um número aumentados de doze são iguais aos cinco sétimos desse número. Qual é esse número? j) Dois quintos do meu salário são reservados para o aluguel e a metade é gasta com alimentação, restando ainda R$ 40,00 para gastos diversos. Qual é o meu salário? SISTEMA de EQUAÇÕES do 1º GRAU 10) Resolva os sistemas de equações do 1º grau: x+ y = 17 3x + y = 40. (10, 7) f). (10, ) x y = 3 x 4y = 10 3x 4y = 19 x + 3y =. (1, - 4) g). (4, - ) x + 4y = 11 x y = 4 x y = 9a b = 30. (3, - ) h). (-, - 3) x 4y = 11 7a + b = 41 x+ y = 4 3x y = 19. (3, 1) i). (- 3, ) x 3y = 3 x + 7y = 8 x y = 3x y = 14. j). (4, - 1) 3x + y = 4x 9y =

4 11) Resolva os sistemas de equações do 1º grau: x+ y = x + 3y = 8. f). 3x y = 11 x y = 1 3x y = 1 x+ y = 11. g). (8, 3) x 3y = 10 x y = 3x + 4y = 13 x y = 1. h). (, ) x + y = 11 3x + 7y = 9 x + 4y =.(x + 1) x = 3.(y + ). i). 3x y = 3 x = 4.(y + 1) 3x + y = 7 10x y = x + y 34. j). (-, 6) x 4y = 9x + y = 4x y + 6 1) Resolva os sistemas de equações do 1º grau: x y + 10 x + 3y = (1 x) + 6 =. (, - 4) f) 3. (6, ) 4x + y = x y (x 3) = y 4 x y = (x y) = x y 3. g). (4, ) 4x 3y = 7 4x + 3y 1 = x 4 4 x y x+ y 3x y + = 3 = 3 4. h). (4, ) y x y = 1 x + = 1 0 x y 4 + = x y 3 3. i). (, 1) x y x + y x y x 3y + 3 = x x+ y x+ 3y + = (x ) = 7 (3 y) 3. f) x y x + y 37. (-, ) x + y x 3y = ) Resolva os problemas: A metade de um número adicionada com a terça parte de outro é igual a 10. Calcule esses números, sabendo que sua soma é. 10 e 1 Numa festa junina da escola, compareceram 400 alunos. O ingresso dos meninos custava R$,00 e o das meninas, R$,00. Houve uma arrecadação de R$ 1.0,00. Quantos eram os meninos e quantas as meninas? 0 e 10 Num quintal existem perus e coelhos, ao todo 30 cabeças e 86 pés. Quantos são os perus e quantos os coelhos? P = 17 e C = 13 Uma pessoa retira R$ 70,00 de um banco, recebendo 10 notas, algumas de R$ 10,00 e outras de R$,00. Calcule quantas notas de R$,00 a pessoa recebeu. 6 notas Num pátio há motos e carros num total de 0 veículos e 6 rodas. Determine o número de motos e de carros. f) A soma das idades de um pai e de um filho é, hoje de 7 anos. Há 1 anos passados, a idade do pai era 7 vezes a idade do filho. Calcule o quociente das idades. g) A soma das idades de A e B é 3 anos. Daqui a anos a idade de A será o dobro da de B. Calcular a idade de A e B. e 10

5 h) Daqui a anos a idade de um pai será 3 vezes a idade do filho. Hoje a soma das idades é igual a 46 anos. Qual a idade atual de cada um? P = 37 e F = 9 i) Numa caixa, o número de bolas pretas é o triplo de bolas brancas. Se tirarmos 4 brancas e 4 pretas, o número de bolas de cada cor ficará igual. Qual a quantidade de bolas brancas? 10 j) Uma atacadista vende café do Brasil a R$ 13,00 o kg e café da República Dominicana a R$ 16,00 o kg. Quantos kg de café brasileiro devem ser misturado a café dominicano de modo a se obter 90 kg de uma mistura com preço de R$14,00 o kg? 60 kg de café brasileiro e 30 kg de café dominicano 14) Resolva os problemas: Um retângulo tem 8 cm de perímetro. O comprimento tem cm a mais que a largura. Determine as dimensões do retângulo. Um terreno retangular tem 84 m de perímetro. O comprimento tem 18 m mais que a largura. Qual a área desse terreno? O perímetro de um retângulo mede 0 m. A diferença entre as dimensões desse retângulo é m. Calcule a área desse retângulo. 4 m Dividir o número 100 em duas partes tais que o dobro da primeira mais o triplo da segunda é igual a e 40 Dividir 9 em duas partes tais que o dobro de uma, aumentado dos 4/11 da outra, seja igual a e f) A diferença entre dois números é igual a 4. Dividindo-se o maior por 3 e o menor por 7, a soma dos quocientes obtidos é igual a 48. Determinar esses números. 84 e 108 g) Dividir o número 96 em duas partes tais que uma delas seja 3 da outra. 60 e 36 h) Numa escola existem 00 alunos. A terça parte do número de meninos é igual à metade do número de meninas. Quantos são os meninos e meninas? 10 e 80 i) Dividir o número em duas partes tais que 8 3 da primeira parte mais 10 1 da segunda é igual a e 480 j) Num quintal existem galinhas e perus. O número dos perus é 10 3 do das galinhas. Morreram das galinhas e um peru e, desse modo, restou o mesmo número de perus que de galinhas. 7 Pergunta-se: quantos eram os perus e quantas as galinhas? 70 e 1 EQUAÇÕES do º GRAU 1) Resolva as equações do º grau: x x² = 0 f) x - 8 = 0 x + 6x = 0 g) 3x + 1 = 0 x² - x = 0 h) x + = 0 x - x = 0 i) 10x - 0 = 0 x² + x = 0 j) 9x - 18 = 0 16) Resolva as equações do º grau: x - 8x + 1 = 0 f) x - 6x + = 0 x + x - 8 = 0 g) x + 3x - 8 = 0 x - 4x - = 0 h) x - 7x + 1 = 0 - x + x + 1 = 0 i) x + x + 4 = 0 x + 6 x + 9 = 0 j) x.(x + 3) - 40 = 0

6 17) Determine o conjunto solução das equações do º grau, sendo U = R. x.(x - ) + 10 = 4 {, 3} (x + 1) = x + 7 {- 3, } x + (x + 1) = {- 4, 3} x.(x - ) =.(x + 6) {-, 6} (x - 3).(x + ) - 7 =.(x - 3) {-, 1} f) (x + 3).(x + ) + 3.(x + 3) = 0 {-, - 3} g) (x + 1).(x + ) -.(x - 3) = 10 {-, 1} h) (x + 1) - (x - 1) = 6(x + 1) + 6 {-, } i) x.(x - 1) + 6 = 4.(x + 1) {1/, } j) 3.(x - ) -.(3x + ) = 10-4x.(3 - x) {- 4, - } 18) Resolva a equação do º grau: (x - ).(x + 4) + (x - 3) - (x + ) = (x - 1) - x {0, 6} 19) Determine o conjunto solução das equações do º grau, sendo U = R. x + 3 x 3 {- 1/, 1} 3 1 x x + = 0 {1/4, 1/} 4 3 x x 0 {- 3/4, } x x + = 0 {/3} x x {0, 3/} f) x x x = 3 3 {- 1, 8} g) x x 8 4 {- 3, 3} h) 3x 1 x 1 = {- 1, 7/3} i) x 3 x + 3 x 11 + = {- 1, 8} j) x.(x + 1) x + 1 x {- 1, 4} 0) Resolva os problemas: A soma do quadrado de um número com o próprio número é 1. Calcule esse número. O quadrado menos o dobro de um número é igual a -1. Calcule esse número. A diferença entre o quadrado e o dobro de um mesmo número é 80. Calcule esse número. O quadrado de um número aumentado de é igual a dez vezes esse número. Calcule esse número. A soma do quadrado de um número com o seu triplo é igual a 7 vezes esse número. Calcule esse número. f) O quadrado menos o quádruplo de um número é igual a. Calcule esse número. g) O quadrado de um número é igual ao produto desse número por 3, mais 18. Qual é esse numero? h) O triplo de um número menos o quadrado desse número é igual a. Qual é esse número? i) O quadrado de um número diminuindo de 1 é igual ao seu dobro. Calcule esse número. j) Calcule um número inteiro e positivo tal que seu quadrado menos o dobro desse número seja igual a 48.

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

Lista de exercícios de equações do 1º Grau

Lista de exercícios de equações do 1º Grau IVIDDES 2014 luno(a): Série: 6ª/7 ano Data: / / Lista de exercícios de equações do 1º Grau 1) Resolva as equações a seguir: a)18x - 43 = 65 (R: x = 6) b) 23x - 16 = 14-17x (R: x = ¾) c) 10y - 5 (1 + y)

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

PIBID-MATEMÁTICA Jogo: Vai e vem das equações

PIBID-MATEMÁTICA Jogo: Vai e vem das equações PIBID-MATEMÁTICA Jogo: Vai e vem das equações Regras: Número de participantes: A sala toda irá participar, sendo dividida em 4 grupos que competirão entre si. Objetivo: solucionar situações-problemas envolvendo

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado.

4 Escreva uma expressão algébrica. V perímetro 2 2x 2 3 2(2x 3) base igual a 7. g) O triplo da soma de um número com seu quadrado. Módulo 1: Noções de álgebra d) A 6 C B PÁGINA 10 Atividades para classe AB 6 y 1 Em cada item abaio, escreva uma epressão algébrica, e) y 8 utilizando as letras e y para representar A B esses números.

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos:

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Nome: nº: 6º ano: do Ensino Fundamental Professores: Edilaine e Luiz Carlos TER Área e perímetro O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Área do quadrado: Lado x Lado

Leia mais

Nível B3 SISTEMAS DE EQUAÇÕES

Nível B3 SISTEMAS DE EQUAÇÕES Nível B SISTEMAS DE EQUAÇÕES Equações do º grau com duas incógnitas Equação do º grau com duas incógnitas é uma equação onde figuram eactamente duas letras com epoente, por eemplo: -. Uma solução de uma

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação EQUAÇÃO DO 1º GRAU Toda sentença aberta epressa por uma igualdade é uma equação Interessante : A palavra equação apresenta o prefio equa que em latim quer dizer igual. São Equações + 12 = 21 3 + 7 = 23

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada 06. Observe o quadrinho. Para responder às questões de números 08 a 12, leia o texto. (Folha de S.Paulo, 14.06.2013. Adaptado) Assinale

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

Qual é a média dos salários dessa empresa? R.:

Qual é a média dos salários dessa empresa? R.: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 7º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 0- Assunto: Média aritmética

Leia mais

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente.

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente. Aluno (a): Disciplina MATEMÁTICA Professor ROLANDO Curso FUNDAMENTAL II ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 7º ANO Número: 1 - Conteúdo: Estudo de sistemas de equações do 1º grau Estudo da

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 4 Disciplina: matemática Prova: desafio nota: QUESTÃO Como prêmio de final de ano, o dono de uma loja quer dividir uma

Leia mais

Organização e tratamento d. e dados

Organização e tratamento d. e dados Organização e tratamento d e dados Proposta de cadeia de tarefas para o 7.º ano - 3.º ciclo Equações Setembro de 2009 Equações Página 1 Índice Introdução Proposta de planificação Tarefas 1A Balanças 1B

Leia mais

Um triângulo isósceles tem o lado diferente medindo 12 cm. Calcule as medidas dos outros dois lados, sabendo que o seu perímetro é de 40cm.

Um triângulo isósceles tem o lado diferente medindo 12 cm. Calcule as medidas dos outros dois lados, sabendo que o seu perímetro é de 40cm. EXERÍIO OMPLEMENTRES - MTEMÁTI - 8º NO - ENSINO FUNDMENTL - 2ª ETP ============================================================================================== 01- ssunto: Triângulos Um triângulo isósceles

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo 1 a Questão: Observando, em cada caso, os gráficos apresentados, responda

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

Encontrando o melhor caminho

Encontrando o melhor caminho Reforço escolar M ate mática Encontrando o melhor caminho Dinâmica 8 9º Ano 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Aluno Matemática Ensino Fundamental 9º Geométrico Teorema de Pitágoras Primeira Etapa

Leia mais

4.º Bimestre PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

4.º Bimestre PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO 2012 4.º Bimestre PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

Resolução. = a = 700 cm = 7m; = b = 400 cm = 4 m; perímetro = 2 (7 + 4) = 22; 14 x 22 = 308; área = 7 x 4 = 28; 20 x 28 = 560; 308 + 560 = 868

Resolução. = a = 700 cm = 7m; = b = 400 cm = 4 m; perímetro = 2 (7 + 4) = 22; 14 x 22 = 308; área = 7 x 4 = 28; 20 x 28 = 560; 308 + 560 = 868 1 A figura abaixo é uma representação plana de certo apartamento, feita na escala 1: 00, ou seja, 1 cm na representação plana corresponde a 00 cm na realidade. Vão ser colocados rodapé e carpete no salão.

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2008 / 2009 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2008 / 2009 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2008 / 2009 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Chefe da Subcomissão de Matemática Chefe da CEI Dir Ens CPOR / CMBH PÁGINA 2 RESPONDA

Leia mais

A classificação do teste deve respeitar integralmente os critérios gerais e os critérios específicos a seguir apresentados.

A classificação do teste deve respeitar integralmente os critérios gerais e os critérios específicos a seguir apresentados. Teste Intermédio de Matemática Teste Intermédio Matemática Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 05.06.2012 2.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 006 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO FUNDAMENTAL CONFERÊNCIA: Chefe da Subcomissão de Matemática Chefe da COC Dir Ens CPOR / CMBH 006 PÁGINA:

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

Sessão Prática 19. A resolução de problemas com a folha de cálculo e o desenvolvimento do pensamento algébrico

Sessão Prática 19. A resolução de problemas com a folha de cálculo e o desenvolvimento do pensamento algébrico Sessão Prática 19 A resolução de problemas com a folha de cálculo e o desenvolvimento do pensamento algébrico Sandra Nobre, E. B. 2, 3 Professor Paula Nogueira, Bolseira da FCT e Unidade de Investigação

Leia mais

Prova do Nível 1 (resolvida)

Prova do Nível 1 (resolvida) Prova do Nível (resolvida) ª fase 0 de novembro de 0 Instruções para realização da prova. Verifique se este caderno contém 0 questões e/ou qualquer tipo de defeito. Se houver algum problema, avise imediatamente

Leia mais

REVISÃO E AVALIAÇÃO DA MATEMÁTICA

REVISÃO E AVALIAÇÃO DA MATEMÁTICA 2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK) 000 IT_005267 A figura a seguir é uma representação da localização das principais cidades ao longo de uma estrada, onde está indicada por letras a posição dessas cidades e por números as temperaturas registradas

Leia mais

RELATÓRIO I Data: 23.04.2015

RELATÓRIO I Data: 23.04.2015 RELATÓRIO I Data: 23.04.2015 Discutir conteúdos trabalhados em sala de aula, sucessor, antecessor, oposto, simétrico, módulo, expressões numéricas envolvendo adição e subtração de números inteiros. 1)

Leia mais

MATEMÁTICA. 10 10 t = = t = anos

MATEMÁTICA. 10 10 t = = t = anos MATEMÁTICA 9 d Seja n um número qualquer, inteiro e positivo. Se n é par, divida-o por ; se n é ímpar, multiplique-o por e adicione ao resultado. Esse procedimento deve ser repetido até que se obtenha

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

Colégio Militar de Curitiba

Colégio Militar de Curitiba Colégio Militar de Curitiba Caro aluno Este Caderno de Apoio à Aprendizagem em Matemática foi produzido para você com o objetivo de colaborar com seus estudos. Ele apresenta uma série de atividades a serem

Leia mais

INSTRUÇÕES AOS CANDIDATOS

INSTRUÇÕES AOS CANDIDATOS MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA (Casa de Thomaz Coelho / 1889) CONCURSO DE ADMISSÃO AO 6º ANO DO ENSINO FUNDAMENTAL 2010/2011 17 de outubro de 2010 APROVO DIRETOR DE ENSINO COMISSÃO

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

1 Curso Eduardo Chaves-www.eduardochaves.com

1 Curso Eduardo Chaves-www.eduardochaves.com 1 Curso Eduardo Chaves-www.eduardochaves.com Lista de exercícios de equação do 2º grau, biquadrada e equações irracionais, para estudar para prova do 2º bimestre. 1) Resolva as seguintes equações do 2º

Leia mais

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad.

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad. PROVA DE AFERIÇÃO DO 1.º CICLO DO ENSINO BÁSICO Matemática/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome completo A PREENCHER PELO AGRUPAMENTO

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (ENEM) Para construir um contrapiso, é comum, na constituição do

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

Conjuntos numéricos e Sistemas

Conjuntos numéricos e Sistemas Conjuntos numéricos e Sistemas 1) (Cespe) Três números naturais a, b e c são tais que a + b + c = 131. Na divisão de a por b o quociente é 1 e o resto é 9, e na divisão de c por b, o quociente é 9 e o

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 2º ANO PARTE 1 SISTEMAS LINEARES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 2º ANO PARTE 1 SISTEMAS LINEARES º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/0 º ANO PARTE SISTEMAS LINEARES 0. (FGV/SP) Resolvendo o sistema abaixo, obtém-se para z o valor: x + y + z = 0 x y z = 6y + z = a) - b) - c) 0 d) e) 0. (Mack-007)

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f. Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Benjamim Destinatários: alunos dos 7. o e 8. o anos de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático. Todos

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Matemática 7º ano Atividade nº: 4 Data: 11 de junho de 2008

Matemática 7º ano Atividade nº: 4 Data: 11 de junho de 2008 Matemática 7º ano Data: de junho de 008 Colégio I. L. Peretz - Morá Bete /6 Data: de junho de 008 Resolva as equações ( U Q a 6 6 b - 0 6 c 7 d 9 - e 0 f 7 g,,6 0,9 0,7 h 0, 0,9 7 Resolva as equações (

Leia mais

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%.

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES ÁLGEBRA 7º ANO ENSINO FUNDAMENTAL =========================================================================================== 0- Calcule a razão entre:

Leia mais

Esopo, castanhas... e viva a sopa de letrinhas!

Esopo, castanhas... e viva a sopa de letrinhas! Reforço escolar M ate mática Esopo, castanhas... e viva a sopa de letrinhas! Dinâmica 1 2ª Série 4º Bimestre Professor DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico-Simbólico Sistemas

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matemática Comprimento ou Perímetro Um exemplo claro do uso do conhecimento matemático nessas simples situações é quando precisamos saber

Leia mais

Matemática. Elementar II Caderno de Atividades

Matemática. Elementar II Caderno de Atividades Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 7 o ANO (ENSINO FUNDAMENTAL) DATA: 24/05/2013

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 7 o ANO (ENSINO FUNDAMENTAL) DATA: 24/05/2013 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 7 o ANO (ENSINO FUNDAMENTAL) DATA: 24/05/203 PROFESSORA: CECÍLIA Assim como o Sol empalidece as estrelas com o seu brilho, um homem inteligente eclipsa a glória de

Leia mais

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro.

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro. Matemática 1 17. Uma revista semanal de larga circulação apresentou matéria contendo o seguinte texto: O governo destinou 400.000 reais para a vacinação de 25 milhões de cabeças de gado, ou seja, um centavo

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³

Leia mais

17ª OLIMPÍADA - 2012 1ª fase

17ª OLIMPÍADA - 2012 1ª fase 17ª OLIMPÍADA - 2012 1ª fase 01) Se hoje Rafael tem 20 anos e Patrícia tem 18 anos, então ela terá 92% da idade dele daqui a quantos anos? a) ( ) 6 b) ( ) 5 c) ( ) 4 d) ( ) 3 e) ( ) 2 02) Um terreno retangular,

Leia mais

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matemática Grandezas diretamente proporcionais A definição de grandeza está associada a tudo aquilo que pode ser medido ou contado. Como

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Universidade Federal do Pará - PARFOR Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Lista de Exercícios para Prova Substitutiva Assuntos Abordados: Polinômios, Produtos notáveis

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Nome:... Curso Técnico em... Período:...

Nome:... Curso Técnico em... Período:... TÑÉáà Ät wx `tàxåöà vt Uöá vt Nome:... Curso Técnico em... Período:... Cascavel 01/01 A P O S T I L A D E M A T E M Á T I C A BÁSICA I Operações matemáticas envolvendo apenas números: Há duas situações

Leia mais

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 5º ANO ESPECIALIZADO E CURSO PREPARATÓRIO 4º SIMULADO/2014-2ª ETAPA MATEMÁTICA Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 01) Verifique o total de folhas (09) deste Simulado. Ele contém 20 (vinte)

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

META FINAL 2014-2015 Teste de Preparação Prova Final do 1.º Ciclo do Ensino Básico Soluções de Matemática

META FINAL 2014-2015 Teste de Preparação Prova Final do 1.º Ciclo do Ensino Básico Soluções de Matemática TESTE META FINAL 0-05 Teste de Preparação Prova Final do.º Ciclo do Ensino Básico Soluções de Matemática novo Item. Pinta as figuras: Apresenta uma explicação adequada: Um triângulo é um polígono com três

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

Projeto Pré-Requisitos 6º Ano

Projeto Pré-Requisitos 6º Ano Caro aluno Colégio Militar de Curitiba Este Caderno de Apoio à Aprendizagem em Matemática foi produzido para você com o objetivo de colaborar com seus estudos. Ele apresenta uma série de atividades a serem

Leia mais

Aula 1: Conhecendo a Calculadora

Aula 1: Conhecendo a Calculadora Nome completo do(a) aluno(a): Nº Ano: Turma: Data: / / Aula 1: Conhecendo a Calculadora Nosso objetivo é que vocês consigam identificar os conteúdos matemáticos já aprendidos na sala de aula de uma forma

Leia mais

MATEMÁTICA ANO: 2013 IFPB QUESTÃO 01

MATEMÁTICA ANO: 2013 IFPB QUESTÃO 01 MATEMÁTICA ANO: 2013 IFPB QUESTÃO 01 Os Jogos Olímpicos foram criados pelos gregos por volta de 2500 a.c. e foram retomados por iniciativa do Barão de Coubertin no final do século XIX. Em 1960, foram disputados

Leia mais

Rodrigo Clemente/O Tempo/Folhapress. Temporada 2009/2010 Semifinal Minas 3 Brasília 13/05/2010

Rodrigo Clemente/O Tempo/Folhapress. Temporada 2009/2010 Semifinal Minas 3 Brasília 13/05/2010 Rodrigo Clemente/O Tempo/Folhapress Temporada 009/010 Semifinal Minas 3 Brasília 13/0/010 P_VJ_M7_LA_C0_13A13.indd 13 6/11/11 1:37:07 PM Inequações e equações com duas incógnitas O que você vai aprender

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

A realização de um grande sonho

A realização de um grande sonho Reforço escolar M ate mática A realização de um grande sonho Dinâmica 7 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Colégio dos Santos Anjos Avenida Iraí, 1330 Planalto Paulista www.colegiosantosanjos.g12.br A Serviço da Vida por Amor

Colégio dos Santos Anjos Avenida Iraí, 1330 Planalto Paulista www.colegiosantosanjos.g12.br A Serviço da Vida por Amor Colégio dos Santos Anjos Avenida Iraí, 1330 Planalto Paulista www.colegiosantosanjos.g12.br A Serviço da Vida por Amor Curso: EF II Ano: 9º ano A/B Componente Curricular: Ciências Naturais Professor: Mario

Leia mais

Canguru Matemático sem Fronteiras 2011

Canguru Matemático sem Fronteiras 2011 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. e 6. anos de escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões

Leia mais

ENEM 2012 MATEMÁTICA PROVA AMARELA

ENEM 2012 MATEMÁTICA PROVA AMARELA ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,

Leia mais

Lista de Exercícios de Recuperação do 1 Bimestre

Lista de Exercícios de Recuperação do 1 Bimestre Lista de Exercícios de Recuperação do 1 Bimestre Instruções gerais: Resolver os exercícios à caneta e em folha de papel almaço ou monobloco (folha de fichário). Copiar os enunciados das questões. Entregar

Leia mais

Caderno de Aplicação das Actividades do Manual

Caderno de Aplicação das Actividades do Manual Caderno de Aplicação das do Manual Com vista à reutilização do manual do aluno Eva Lima, Nuno Barrigão, Nuno Pedroso, Susana Santos Matemática 3.º ano Oferta ao aluno Também disponível on-line Oo Este

Leia mais