Inequação do Primeiro Grau

Tamanho: px
Começar a partir da página:

Download "Inequação do Primeiro Grau"

Transcrição

1 Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras da inequação f(x)g(x) 0. b) Encontre o valor de a tal que f(g(x)) g(f(x)) para todo número real x.. (Acafe 014) Uma pequena fábrica de tubos de plástico calcula a sua receita em milhares de reais, através da função R(x) 3,8x, onde x representa o número de tubos vendidos. Sabendo que o custo para a produção do mesmo número de tubos é 40% da receita mais R$ 570,00. Nessas condições, para evitar prejuízo, o número mínimo de tubos de plástico que devem ser produzidos e vendidos pertence ao intervalo: a) [40 ; 48]. b) [48 ; 60]. c) [5 ; 58]. d) [55 ; 60]. 3. (Enem 014) Conforme regulamento da Agência Nacional de Aviação Civil (Anac), o passageiro que embarcar em voo doméstico poderá transportar bagagem de mão, contudo a soma das dimensões da bagagem (altura + comprimento + largura) não pode ser superior a 115cm. A figura mostra a planificação de uma caixa que tem a forma de um paralelepípedo retângulo. O maior valor possível para x, em centímetros, para que a caixa permaneça dentro dos padrões permitidos pela Anac é a) 5. b) 33. c) 4. d) 45. e) 49. Página 1 de 11

2 4. (Fuvest 014) Um apostador ganhou um prêmio de R$ ,00 na loteria e decidiu investir parte do valor em caderneta de poupança, que rende 6% ao ano, e o restante em um fundo de investimentos, que rende 7,5% ao ano. Apesar do rendimento mais baixo, a caderneta de poupança oferece algumas vantagens e ele precisa decidir como irá dividir o seu dinheiro entre as duas aplicações. Para garantir, após um ano, um rendimento total de pelo menos R$ 7.000,00, a parte da quantia a ser aplicada na poupança deve ser de, no máximo, a) R$ ,00 b) R$ ,00 c) R$ ,00 d) R$ ,00 e) R$ ,00 5. (G1 - cftmg 014) O conjunto solução S, em, da inequação: x 4 x é S x / 1 x. a) 1 b) S x / x 3. S x / x 1 ou x. c) 1 d) S x / x ou x (Unifor 014) Com o objetivo de melhorar a sua arrecadação no recolhimento do Imposto Predial Territorial e Urbano (IPTU), a prefeitura de uma cidade do interior cearense lançou uma promoção que consta de dois planos. Pelo plano A, o proprietário do imóvel pagará R$ 100,00 mais 5% do valor do imóvel; no plano B, o proprietário pagará R$ 900,00 mais % do valor do imóvel. Com base nesses dados podemos afirmar que: (Veja a observação sobre a resposta correta no gabarito) a) Se o valor do imóvel é maior que R$ ,00, então o proprietário desse imóvel deve escolher o plano A. b) Se o valor do imóvel é menor que R$ ,00, então o proprietário desse imóvel deve escolher o plano A. c) Se o valor do imóvel é menor que R$ ,00, então o proprietário desse imóvel deve escolher o plano B. d) Se o valor do imóvel é R$ ,00, então o proprietário desse imóvel deve escolher o plano B. e) Se o valor do imóvel é R$ ,00, então o proprietário pagará o mesmo valor para os planos A e B. Página de 11

3 7. (Enem 014) Ao final de uma competição de ciências em uma escola, restaram apenas três candidatos. De acordo com as regras, o vencedor será o candidato que obtiver a maior média ponderada entre as notas das provas finais nas disciplinas química e física, considerando, respectivamente, os pesos 4 e 6 para elas. As notas são sempre números inteiros. Por questões médicas, o candidato II ainda não fez a prova final de química. No dia em que sua avaliação for aplicada, as notas dos outros dois candidatos, em ambas as disciplinas, já terão sido divulgadas. O quadro apresenta as notas obtidas pelos finalistas nas provas finais. Candidato Química Física I 0 3 II X 5 III 1 18 A menor nota que o candidato II deverá obter na prova final de química para vencer a competição é a) 18. b) 19. c). d) 5. e) (Pucrj 014) A soma das soluções da inequação dos números naturais é: a) 3 b) 4 c) 5 d) 6 e) 8 x3 0 x 1 onde x pertence ao conjunto 9. (G1 - ifsp 013) O preço de venda de uma mercadoria é obtido através da expressão 5p 7, em que p é a quantidade de produtos vendidos. Já, o preço de custo para produzi-la é obtido através da expressão p 11, em que p é a quantidade de produtos produzidos. A quantidade mínima de itens produzidos e vendidos para que não se tenha prejuízo é a) 4. b) 5. c) 6. d) 7. e) (Fgv 013) Laura caminha pelo menos 5 km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias percorridas por Laura e Rita em suas caminhadas não ultrapassa 1 km. A distância máxima diária percorrida por Rita, em quilômetros, é igual a a) 4. b) 5. c) 6. d) 7. e) (G1 - cftmg 013) O número de soluções inteiras da inequação x 1 3x 5 x 1, é a) 4. b) 3. c). d) 1. Página 3 de 11

4 1. (Ufg 013) Um comerciante comprou um lote de um produto A por R$ 1.000,00 e outro, de um produto B, por R$ 3.000,00 e planeja vendê-los, durante um certo período de tempo, em kits contendo um item de cada produto, descartando o que não for vendido ao final do período. Cada kit é vendido ao preço de R$ 5,00, correspondendo a R$ 10,00 do produto A e R$ 15,00 do B. Tendo em vista estas condições, o número mínimo de kits que o comerciante precisa vender, para que o lucro obtido com o produto B seja maior do que com o A, é: a) 398 b) 399 c) 400 d) 401 e) (Udesc 013) Se n é um número inteiro, então a quantidade de números racionais da n forma, 3n 15 a) 1 b) 5 c) 0 d) infinita e) 7 que são estritamente menores que 7, 13 é: 14. (Udesc 01) Seja r(x) o resto da divisão do polinômio px 4x 3x 5 por qx x x 1. Se f x x k e f gx rx, conjunto solução da inequação gx 10 seja x x 3 é: a) 1 b) c) 1 d) 3 e) 5 então o valor da constante k para que o 15. (G1 - ifce 01) Tomando-se R, o conjunto dos números reais, como universo, a 3x 3x 4 inequação x tem como solução a) x R; x. 5 7 b) x R; x. 5 5 c) x R; x. d) x R; x. 5 e) x R; x. 5 Página 4 de 11

5 16. (G1 - ifba 01) Considere estas desigualdades 5x 7x 5 3 x A quantidade de números inteiros x que satisfaz simultaneamente às duas desigualdades é: a) 11 b) 10 c) 9 d) 8 e) (Fgv 01) O número de soluções inteiras da inequação x x a) 8 b) 9 c) 10 d) 11 e) infinito é: 18. (Uern 01) A soma de todos os números inteiros que satisfazem simultaneamente a inequação-produto (3x 7) (x + 4) < 0 e a inequação-quociente x 1 0 é 5 x a) 3. b) 5. c) 6. d) (Enem 011) Uma indústria fabrica um único tipo de produto e sempre vende tudo o que produz. O custo total para fabricar uma quantidade q de produtos é dado por uma função, simbolizada por CT, enquanto o faturamento que a empresa obtém com a venda da quantidade q também é uma função, simbolizada por FT. O lucro total (LT) obtido pela venda da quantidade q de produtos é dado pela expressão LT(q) FT(q) CT(q). Considerando-se as funções FT(q) 5q e CT(q) q 1 como faturamento e custo, qual a quantidade mínima de produtos que a indústria terá de fabricar para não ter prejuízo? a) 0 b) 1 c) 3 d) 4 e) 5 0. (G1 - cftmg 010) Um comerciante vende arroz dos tipos I e II, cujos preços, por quilo, são, respectivamente, R$ 3,00 e R$ 4,00. Ele decide negociar parte desse estoque, compondo 75 quilos de uma mistura com x quilos do arroz tipo I e y quilos do arroz tipo II. Se o preço, por quilo, dessa mistura for, no máximo, R$ 3,40, então, é INCORRETO afirmar que ela a) deve ter, no máximo, 30 kg de arroz tipo II. b) deve ter, no mínimo, 44 kg de arroz tipo I. c) pode ser composta por 50 kg de arroz tipo I e 5 kg do tipo II. d) pode ser composta por 47 kg de arroz tipo I e 8 kg do tipo II. Página 5 de 11

6 Gabarito: Resposta da questão 1: a) Sendo a 0, temos 9 f(x)g(x) 0 a(x 3) x x. Portanto, segue que x {, 1, 0,1,, 3, 4}, ou seja, a inequação possui 7 soluções inteiras. b) Tem-se que f(g(x)) ag(x) 3a a(9 x) 3a ax 1a e g(f(x)) 9 f(x) 9 (ax 3a) ax 6a 9. Logo, vem f(g(x)) g(f(x)) ax 1a ax 6a 9 1 a. Resposta da questão : [B] Para evitar prejuízo, deve-se ter 3,8x (0,4 3,8x 570) 0,8x 570 x 50. Portanto, o número mínimo de tubos de plástico que devem ser produzidos e vendidos é igual a 51. Daí, segue que 51 [48, 60]. Resposta da questão 3: [E] De acordo com a figura, tem-se que a altura da caixa mede 4cm. Além disso, a largura mede cm. Daí, o comprimento x, em centímetros, deve ser tal que 0 x x 49. Portanto, o maior valor possível para x, em centímetros, é 49. Página 6 de 11

7 Resposta da questão 4: [A] Seja x a parte do capital a ser investida na poupança. Logo, 0,06 x ( x) 0, ,015 x x 0,015 x 00000, ou seja, a parte do capital a ser aplicada na poupança deve ser de, no máximo, R$ ,00. Resposta da questão 5: [B] Tem-se que x (x 1) 1 0 x (x 3) x 3. Portanto, 1 S x x 3. Resposta da questão 6: Sem resposta. Gabarito Oficial: [B] Gabarito SuperPro : Sem resposta. Seja V o valor do imóvel. Tem-se que o plano A é mais vantajoso do que o plano B se, e somente se, 100 0,05V 900 0,0V 0,03V 800 V R$ 6.666,67. Observação: Não há alternativa correta. De fato, se, por exemplo, o valor do imóvel for R$ 9.000,00, então o plano B é mais vantajoso para o proprietário. Resposta da questão 7: [A] Tem-se que xp I 1,8 4 6 e xp III 19,. 4 6 Logo, deve-se ter 4 x 6 5 xp II 1,8 1,8 4x x Portanto, a menor nota que o candidato [II] deverá obter na prova de química é 18. Página 7 de 11

8 Resposta da questão 8: [A] Tem-se que x 3 x x 1 1 x 1 x 3. Logo, as soluções naturais da inequação são x 1 e x. Em consequência, o resultado pedido é igual a 1 3. Resposta da questão 9: [C] Preço de venda: V = 5p 7 Preço de custo: C = p + 11 Para que não se tenha prejuízo: V C Logo, 5p 7 p p 18 p 6 A quantidade mínima de itens produzidos e vendidos para que não se tenha prejuízo é 6. Resposta da questão 10: [D] Sejam e r, respectivamente, as distâncias percorridas diariamente, em km, por Laura e Rita. Temos 5 e r 1. Portanto, a distância percorrida por Rita será máxima quando a distância percorrida por Laura for mínima, ou seja, r 1 5 7km. Resposta da questão 11: [B] Temos x 1 3x 5 x 1 3x 5 x 1 3x 5 x 1 x 6. Portanto, se α é uma solução inteira de x 1 3x 5 x 1, então α {3, 4, 5}. Página 8 de 11

9 Resposta da questão 1: [D] Segundo os dados do problema, temos: Lucro com o produto A: 10x 1000 Lucro com o produto B: 15x 3000 Portanto, 15x x x 000 x 400 Logo, o número mínimo de kits será 401. Resposta da questão 13: [B] Sendo n um número inteiro, temos n 7 n 7 0 3n (n 5) 13 6n 1(n 5) 0 39(n 5) 5(n 1) 0 39(n 5) 5 n 1. n Portanto, a quantidade de números racionais da forma, 3n 15 que são estritamente menores do que 7, 13 é igual a 1 ( 5) 1 5. Resposta da questão 14: [D] Dividindo p por q, obtemos 4x 3x 5 x x 1 4x x 5x 7 Assim, r(x) 5x 7. Desse modo, temos que f(g(x)) r(x) g(x) k 5x 7 5x 7 k g(x). Sabendo que o conjunto solução da inequação g(x) 10 é {x x 3}, vem Página 9 de 11

10 5x 7 k 10 5x k 13 k 13 x, 5 ou seja, k 13 3 k. 5 Resposta da questão 15: [E] 3x 3x 4 3x 3x x x -x x x S= x R; x. 5 Resposta da questão 16: [C] 5x 7x 5 15x 14x 10 x 10 3 x 6 1 x 6 4 x 4 Temos então, nove números inteiros que verificam as condições acima:, 3, 4, 5, 6, 7, 8, 9 e 10. Resposta da questão 17: [C] Fazendo o estudo do sinal, temos: Logo, a solução da equação será dada por S x R / 3 x 7 inteiros: -3, -, -1, 0, 1,, 3, 4, 5 e 6. Dez no total. com os seguintes números Página 10 de 11

11 Resposta da questão 18: [A] Temos que 7 (3x 7) (x 4) 0 3 x (x 4) x 3 e 1 x x x (x 5) 1 x 0 x 5 1 x 5. Logo, os números reais x que satisfazem simultaneamente as inequações são tais que 1 7 x, e, portanto, a soma pedida é igual a Resposta da questão 19: [D] 5q q 1 5q 3q 1 3q 1 q 4 Portanto, a quantidade mínima deverá ser 4 unidades. Resposta da questão 0: [B] 300 x 3,40 x x 35 1 x Logo, deverá ter no mínimo 45 kg de arroz tipo I e no máximo 30 kg de arroz tipo II. Página 11 de 11

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013.

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013. P.A. 1. (Pucpr 015) Um consumidor, ao adquirir um automóvel, assumiu um empréstimo no valor total de R$ 4.000,00 (já somados juros e encargos). Esse valor foi pago em 0 parcelas, formando uma progressão

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

Matemática. Resolução das atividades complementares. M9 Noções de Matemática Financeira

Matemática. Resolução das atividades complementares. M9 Noções de Matemática Financeira Resolução das atividades complementares Matemática M9 Noções de Matemática Financeira p. 9 1 (Cesesp-PE) Suponha que uma classe constituída de rapazes e moças tenha 0 alunos, dos quais 6 são moças. Assinale

Leia mais

Gráficos de uma função para análise e interpretação

Gráficos de uma função para análise e interpretação Gráficos de uma função para análise e interpretação 1. (Insper 014) Um leitor enviou a uma revista a seguinte análise de um livro recém-lançado, de 400 páginas: O livro é eletrizante, muito envolvente

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau Exercícios de Matemática para Concurso Público Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau. (G - utfpr 05) A soma de dois números é 64, se um é o triplo do outro

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 1. (Uerj) Com o intuito de separar o lixo para fins de reciclagem, uma instituição colocou em suas dependências cinco lixeiras, de acordo com o tipo de resíduo a que se destinam:

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

Matemática (UENF Grupo I)

Matemática (UENF Grupo I) 2 a fase exame discursivo 01/12/2002 Matemática (UENF Grupo I) Neste caderno você encontrará um conjunto de 05 (cinco) páginas numeradas seqüencialmente, contendo 10 (dez) questões de Matemática. Leia

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

Matemática Exercícios sobre Funções AFA/EFOMM

Matemática Exercícios sobre Funções AFA/EFOMM Matemática Exercícios sobre Funções AFA/EFOMM p 8 01 - A fórmula N dá o valor aproximado do 4 número do calçado (N) em função do comprimento (p), em centímetros, do pé de qualquer pessoa. De acordo com

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então 1. (Uerj 2015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,256 kg de peito de peru. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional

Leia mais

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

FUNÇÃO GERAL. Texto para as questões 1 e 2.

FUNÇÃO GERAL. Texto para as questões 1 e 2. FUNÇÃO GERAL Texto para as questões 1 e 2. (ENEM) No quadro abaixo estão as contas de luz e água de uma mesma residência. Além do valor a pagar, cada conta mostra como calculá-lo, em função do consumo

Leia mais

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I MATEMÁTICA Prof. Paulo Roberto MÓDULO I ENCONTRO 01---------------Função, Domínio e Imagem, Tipos, composição e inversibilidade. ENCONTRO 0 ---------------Função (função do primeiro grau). ENCONTRO 03---------------Função

Leia mais

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES Prof. ANTONIO ROBERTO GONÇALVES Aprendizagem de Conceitos Se você precisa encontrar o volume de um silo de milho, a distância percorrida por um carro

Leia mais

Arcos na Circunferência

Arcos na Circunferência Arcos na Circunferência 1. (Fuvest 013) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 75 a.c. e 195 a.c. Sabendo que em Assuã,

Leia mais

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DICIPLINA MATEMÁTICA

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DICIPLINA MATEMÁTICA 19) Leia o texto a seguir. VESTIBULAR DE VERÃO - 0 de dezembro de 010 Índice de Massa orporal e ingestão alimentar Segundo a recomendação da OMS (Organização Mundial de Saúde) de 1998 deve-se utilizar

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 PROVA DE MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO POR: PROFA. MARIA ANTÔNIA GOUVEIA QUESTÃO 21 ; O valor da expressão ( )( ; ; ) ; para x 101 é: a) 100; b) 10; c) 10,1;

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

Função do 1º grau ou Afim

Função do 1º grau ou Afim Função do 1º grau ou Afim 1. (Espm 2014) A função f(x) ax b é estritamente decrescente. Sabe-se que f(a) 2b e f(b) 2a. O valor de f(3) é: a) 2 b) 4 c) 2 d) 0 e) 1 2. (Fgv 2014) Uma fábrica de panelas opera

Leia mais

Estatística. x = 1, o ano 2011, e assim por diante, e y representa o índice de perdas expresso em porcentagem. Determine as duas funções.

Estatística. x = 1, o ano 2011, e assim por diante, e y representa o índice de perdas expresso em porcentagem. Determine as duas funções. Estatística 1. (Uem 2012) Em uma área de preservação ambiental, pesquisadores estudaram uma população de macacos-prego. A área em questão é de 84 ha (1 ha = 10000 m 2 ). Considerando o tamanho inicial

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro.

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro. Matemática 1 17. Uma revista semanal de larga circulação apresentou matéria contendo o seguinte texto: O governo destinou 400.000 reais para a vacinação de 25 milhões de cabeças de gado, ou seja, um centavo

Leia mais

Função polinomial Seja dado um número inteiro não negativo n, bem como os coeficientes reais a 0, a 1,,a n, com a n 0. A função definida por

Função polinomial Seja dado um número inteiro não negativo n, bem como os coeficientes reais a 0, a 1,,a n, com a n 0. A função definida por Funções polinomiais 4 Antes de ler o capítulo Esse capítulo trata de um grupo particular de funções, de modo que, antes de lê-lo, o leitor precisa dominar o conteúdo do Capítulo 1. Depois de tratarmos

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Funções. Parte I. www.soexatas.com Página 1

Funções. Parte I. www.soexatas.com Página 1 Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,

Leia mais

a c (com a, b, c e d 0) é chamada de a b c d

a c (com a, b, c e d 0) é chamada de a b c d PROFESSOR: Sebastião Geraldo Barbosa MARÇO - 304 M A T E M Á T I C A C O M E R C I A L. RAZÕES E PROPORÇÕES.. RAZÃO: Razão de dois números a e b (com b 0) é o quociente de a por b. Indica-se b a ou a :

Leia mais

1 2 c) y 2x 2 d) y 2x 2 e) y 2x 2

1 2 c) y 2x 2 d) y 2x 2 e) y 2x 2 ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /05 Obs.: Esta lista deve ser entregue apenas ao professor no dia da aula de Recuperação Valor: 0,0 SETOR A. O gráfico representa a função real

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

COLÉGIO MONS. JOVINIANO BARRETO

COLÉGIO MONS. JOVINIANO BARRETO GABARITO ª CHAMADA 3ª ETAPA MATEMÁTICA COLÉGIO MONS. JOVINIANO BARRETO 5 ANOS DE HISTÓRIA ENSINO E DISCIPLINA Rua Frei Vidal, 161 São João do Tauape/Fone/Fax: 37-195 www.jovinianobarreto.com.br º ANO Nº

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos:

Área e perímetro. O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Nome: nº: 6º ano: do Ensino Fundamental Professores: Edilaine e Luiz Carlos TER Área e perímetro O cálculo de área é feito, multiplicando os valores dos lados dos polígonos: Área do quadrado: Lado x Lado

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

= = η ϕ = Fator de demanda A demanda varia durante um dia, de acordo com a atividade diária da indústria. = = Fator de simultaneidade

Leia mais

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota LISTA 04 SEQUÊNCIAS, PROGRESSÕES ARITMÉTICAS, GEOMÉTRICAS E MATEMÁTICA FINANCEIRA. 1 - (UESB) Um estacionamento cobra R$1,50 pela primeira hora. A partir da segunda, cujo valor é R$1,00 até a décima segunda,

Leia mais

Função Trigonométrica

Função Trigonométrica Função Trigonométrica 1. (Ufpr 013) O pistão de um motor se movimenta para cima e para baixo dentro de um cilindro, como ilustra a figura. Suponha que em um instante t, em segundos, a altura h(t) do pistão,

Leia mais

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido.

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Atividade extra Exercício 1 A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Se a balança abaixo se encontra em equilíbrio é correto afirmar que: Fonte: http//portaldoprofessorhmg.mec.gov.br

Leia mais

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro.

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro. Avaliação Trimestral Amanda Marques Adm-Manhã 1. Uma empresa produz um tipo de peça para automóveis. O custo de produção destas peças é dado por um custo fixo de R$10,00 mais R$5,00 por peça produzida.

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

COLÉGIO MACHADO DE ASSIS. Turma: Data: / /

COLÉGIO MACHADO DE ASSIS. Turma: Data: / / Disciplina: Matemática Professor: Eduardo Nagel COLÉGIO MACHADO DE ASSIS Turma: Data: / / Aluno: ( ) Avaliação ( x ) Exercício / Revisão ( ) Recuperação Bim ª Chamada ( ) 1ª Prova ( ) ª Prova Estude e

Leia mais

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A Questão 1 Paulo comprou um automóvel fle ue pode ser abastecido com álcool ou com gasolina. O manual da montadora informa ue o consumo médio do veículo é de km por litro de álcool ou 1 km por litro de

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA y y a y P A y b B R T xb x xa x y y a A y b M xb xa x y y x x r s a 3 a 2 a a 1 b c b + c Como pode cair no enem (CESGRANRIO) As escalas termométricas Celsius

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-2013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ

AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-2013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-0 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA 0- Unicamp 0 Na figura abaixo,

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

Módulo 2 RECEITA TOTAL. 1. Introdução

Módulo 2 RECEITA TOTAL. 1. Introdução Módulo 2 RECEITA TOTAL 1. Introdução Conforme Silva (1999), seja U uma utilidade (bem ou serviço), cujo preço de venda por unidade seja um preço fixo P 0, para quantidades entre q 1 e q 2 unidades. A função

Leia mais

01) 551 02) 552 03) 553 04) 554 05) 555

01) 551 02) 552 03) 553 04) 554 05) 555 Questão 01 PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA (FUVEST010)

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

Circunferência e Círculos

Circunferência e Círculos Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

CADERNO DE EXERCÍCIOS 1E

CADERNO DE EXERCÍCIOS 1E CADERNO DE EXERCÍCIOS 1E Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Porcentagem H15 H8 2 Subtração e divisão com números decimais 3 Multiplicação e adição

Leia mais

EXERCÍCIOS PROPOSTOS. Matemática 5 Professor: Caio Barcellos Palma Lista 4 Razões entre grandezas de espécies diferentes

EXERCÍCIOS PROPOSTOS. Matemática 5 Professor: Caio Barcellos Palma Lista 4 Razões entre grandezas de espécies diferentes EXERCÍCIOS PROPOSTOS 1. (Enem 2013) A Lei da Gravitação Universal, de Isaac Newton, estabelece a intensidade da força de atração entre duas massas. Ela é representada pela expressão: Matemática 5 Professor:

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir. Combinação 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

Problemas de função do 1º grau

Problemas de função do 1º grau Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas

Leia mais

Espelhos Esféricos Gauss 2013

Espelhos Esféricos Gauss 2013 Espelhos Esféricos Gauss 2013 1. (Unesp 2012) Observe o adesivo plástico apresentado no espelho côncavo de raio de curvatura igual a 1,0 m, na figura 1. Essa informação indica que o espelho produz imagens

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

EXERCÍCIOS DE GEOMETRIA

EXERCÍCIOS DE GEOMETRIA EXERCÍCIOS DE GEOMETRIA 1. Uma construtora, para construir o novo prédio da biblioteca de uma universidade, cobra um valor fixo para iniciar as obras e mais um valor, que aumenta de acordo com o passar

Leia mais

Exercícios de Matemática Equações de Segundo Grau

Exercícios de Matemática Equações de Segundo Grau Exercícios de Matemática Equações de Segundo Grau 2. (Ita 2001) O conjunto de todos os valores de m para os quais a função TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais