Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40."

Transcrição

1 Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção é Sabendo que o lucro é obtido pela diferença entre o valor resultante das vendas e o custo da produção, então o número de lotes mensais que essa indústria deve vender para obter lucro máximo é igual a a) 4 lotes. b) 5 lotes. c) 6 lotes. d) 7 lotes. e) 8 lotes.. (Insper 03) No gráfico estão representadas duas funções: f(x) do primeiro grau e g(x) do segundo grau. O gráfico que melhor representa a função h(x) = f(x) + g(x) é a) b) c) d) e) Página de 8

2 3. (Fgv 03) Uma única linha aérea oferece apenas um voo diário da cidade A para a cidade B. O número de passageiros y que comparecem diariamente para esse voo relaciona-se com o preço da passagem x, por meio de uma função polinomial do primeiro grau. Quando o preço da passagem é R$ 00,00, comparecem 0 passageiros e, para cada aumento de R$ 0,00 no preço da passagem, há uma redução de 4 passageiros. Qual é o preço da passagem que maximiza a receita em cada voo? a) R$ 0,00 b) R$ 30,00 c) R$ 40,00 d) R$ 50,00 e) R$ 60,00 4. (Epcar (Afa) 03) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, ) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (, 8) b) (0, 6) c) (6, 4) d) (, 36) 5. (Fgv 03) A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 0. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de livros adquirida pelos consumidores em função do preço de cada exemplar. Preço de venda Quantidade vendida R$ 00,00 30 R$ 90,00 40 R$ 85,00 45 R$ 80,00 50 Considere que os dados da tabela possam ser expressos mediante uma função polinomial do º grau y a x b, em que x representa a quantidade de livros vendida e y, o preço de cada exemplar. a) Que preço de venda de cada livro maximizaria a receita da editora? b) O custo unitário de produção de cada livro é de R$ 8,00. Visando maximizar o lucro da editora, o gerente de vendas estabeleceu em R$ 75,00 o preço de cada livro. Foi correta a sua decisão? Por quê? 6. (Fgv 03) A editora fez também um estudo sobre o lançamento do livro em duas versões: capa dura e capa de papelão. A pesquisa mostrou que, se a versão capa dura for vendida por x reais e a versão capa de papelão por y reais, serão vendidos, no total, 30x 70y x y exemplares das duas versões. Por uma questão de estratégia, o gerente de vendas decidiu que a versão capa dura deve custar o dobro da versão capa de papelão. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? b) Nas condições do item (a), quantos exemplares a editora estima vender no total? 7. (Ufpr 03) O número N de caminhões produzidos em uma montadora durante um dia, após t horas de operação, é dado por N(t) 0 t t, sendo que 0 t 0. Suponha que o custo C (em milhares de reais) para se produzir N caminhões seja dado por C(N) N. a) Escreva o custo C como uma função do tempo t de operação da montadora. b) Em que instante t, de um dia de produção, o custo alcançará o valor de 300 milhares de reais? Página de 8

3 8. (Pucrj 03) Sejam f e g funções reais dadas por f(x) = x + e g(x) = + x. Os valores de x tais que f(x) = g(x) são: a) x = 0 ou x = b) x = 0 ou x = c) x = ou x = d) x = ou x = e) x = 0 ou x = 9. (G - cftmg 03) A função real representada pelo gráfico é definida por a) b) f x x x. f x x 3x. c) f x x 3x. d) f x x 3x. 0. (Pucrj 03) Sejam f e g funções reais dadas por f(x) = + x e g(x) = + x. Os valores de x tais que f(x) = g(x) são: a) x = 0 ou x = b) x = 0 ou x = c) x = 0 ou x = d) x = ou x = e) x = 0 ou x = /. (Ibmecrj 03) Uma lanchonete vende, em média, 00 sanduíches por noite ao preço de cada um. O proprietário observa que, para cada R$ 0,0 que diminui no preço, a R$ 6,00 quantidade vendida aumenta em cerca de 0 sanduíches. Considerando o custo de R$ 4,50 para produzir cada sanduíche, o preço de venda que dará o maior lucro ao proprietário é: a) R$ 5,00 b) R$ 5,5 c) R$ 5,50 d) R$ 5,75 e) R$ 6,00 Página 3 de 8

4 . (Ufsj 03) Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,5m. b) 0,64m. c) 0,58m. d) 0,6m. 3. (Pucrj 03) O retângulo ABCD tem dois vértices na parábola de equação x y x e dois vértices no eixo x, como na figura abaixo. Sabendo que D = (3,0), faça o que se pede. a) Determine as coordenadas do ponto A. b) Determine as coordenadas do ponto C. c) Calcule a área do retângulo ABCD. 4. (Ibmecrj 03) O gráfico da função quadrática definida por f x 4x 5x é uma parábola de vértice V e intercepta o eixo das abscissas nos pontos A e B. A área do triângulo AVB é a) 7/8 b) 7/6 c) 7/3 d) 7/64 e) 7/8 5. (Ufrgs 03) Dada a função f, definida por f x x 9 6x, o número de valores de x que satisfazem a igualdade f x f x é a) 0. b). c). d) 3. e) 4. Página 4 de 8

5 TEXTO PARA AS PRÓXIMAS QUESTÕES: A figura a seguir representa a evolução dos milhares de unidades vendidas de um produto em função do tempo, dado em meses, desde seu lançamento. O trecho correspondente ao intervalo [0,t ] pode ser representado pela expressão o trecho correspondente ao intervalo ]t,t ] por 6. (Insper 03) O valor de t é a) 5. b) 0. c) 5. d) 0. e) 5. y 0,05x 4x 40. y 0,05x 7. (Insper 03) Considere que o ponto (t,v) corresponde ao vértice da parábola de equação y 0,05x 4x 40. Nos últimos dez meses representados no gráfico, as vendas totais, em milhares de unidades, foram iguais a a). b). c) 3. d) 4. e) (Ufsj 0) O gráfico da função f(x) = ax + bx + c é: e Com relação a f(x), é INCORRETO afirmar que a) seu discriminante ( ) é maior que zero. b) o vértice da parábola tem ordenada positiva. c) o coeficiente do termo quadrado (a) é positivo. d) as raízes da função quadrática são 0 e 3/. Página 5 de 8

6 9. (Ufrn 0) Uma lanchonete vende, em média, 00 sanduíches por noite ao preço de cada um. O proprietário observa que, para cada R$ 0,0 que diminui no preço, a R$ 3,00 quantidade vendida aumenta em cerca de 0 sanduíches. Considerando o custo de R$,50 para produzir cada sanduíche, o preço de venda que dará o maior lucro ao proprietário é a) R$,50. b) R$,00. c) R$,75. d) R$,5. 0. (G - cftmg 0) Se a função L(x) 0.(x ). x 0 representa o lucro de uma indústria em que x é a quantidade de unidades vendida, então o lucro será a) mínimo para x 3. b) positivo para x. c) máximo para d) positivo para x. 0 x. 0. (Ucs 0) Uma dose de um medicamento foi administrada a um paciente por via intravenosa. Enquanto a dose estava sendo administrada, a quantidade do medicamento na corrente sanguínea crescia. Imediatamente após cessar essa administração, a quantidade do medicamento começou a decrescer. Um modelo matemático simplificado para avaliar a quantidade q, em mg, do medicamento, na corrente sanguínea, t horas após iniciada a administração, é q t t 7t 60. Considerando esse modelo, a quantidade, em mg, do medicamento que havia na corrente sanguínea, ao ser iniciada a administração da dose e o tempo que durou a administração dessa dose, em horas, foram, respectivamente, a) 5 e. b) 0 e. c) 0 e 3,5. d) 60 e. e) 60 e 3,5.. (G - ifal 0) Assinale a alternativa que completa corretamente a frase: A função real f(x) = x 4x + 5 a) não admite zeros reais. b) atinge um valor máximo. c) tem como gráfico uma reta. d) admite dois zeros reais e diferentes. e) atinge um valor mínimo igual a. 3. (Ufpb 0) Um estudo das condições ambientais na região central de uma grande cidade indicou que a taxa média diária (C) de monóxido de carbono presente no ar é de C(p) 0,5p partes por milhão, para uma quantidade de (p) milhares de habitantes. Estima- se que, daqui a t anos, a população nessa região será de p(t) t t 0 milhares de habitantes. Nesse contexto, para que a taxa média diária de monóxido de carbono ultrapasse o valor de 6 partes por milhão, é necessário que tenham sido transcorridos no mínimo: a) anos b) anos e 6 meses c) 3 anos d) 3 anos e 6 meses e) 4 anos Página 6 de 8

7 4. (G - cftrj 0) Um objeto é lançado do topo de um muro, de altura h, atingindo o solo após 5 segundos. A trajetória parabólica do objeto é representada pela equação y = 0,5x + bx +,5, cujo gráfico está apresentado abaixo, onde y indica a altura atingida pelo objeto em relação ao solo, em metros, no tempo x, em segundos. a) Calcule a altura h e o valor do coeficiente b da equação da trajetória. b) Determine a altura máxima, em relação ao solo, atingida pelo objeto. 5. (Espm 0) A parábola de equação y = x x + intercepta a reta de equação y = x + 4 nos pontos A e B. O comprimento do segmento AB é igual a: a) 4 b) 5 c) 5 d) 4 e) 3 KO 6. (Uel 0) O óxido de potássio,, é um nutriente usado para melhorar a produção em lavouras de cana-de-açúcar. Em determinada região, foram testadas três dosagens diferentes do nutriente e, neste caso, a relação entre a produção de cana e a dosagem do nutriente se deu conforme mostra a tabela a seguir. Dose do nutriente (kg/hectare) Produção de cana-de-açúcar (toneladas/hectare) Considerando que a produção de cana-de-açúcar por hectare em função da dose de nutriente pode ser descrita por uma função do tipo, determine a quantidade de nutriente por hectare que maximiza a produção de cana-de-açúcar por hectare. Apresente os cálculos realizados na resolução da questão. y(x) ax bx c 7. (Insper 0) A área da região sombreada na Figura, limitada pelo gráfico da função f x 9 x e pelos eixos coordenados, é igual a 8. Página 7 de 8

8 Assim, a área da região sombreada na Figura, limitada pelo gráfico da função eixo x e pela reta de equação x 3, é igual a a) 4,5. b) 6. c) 9. d). e) 3,5. gx x, 8. (Fgvrj 0) Deseja-se construir um galpão com base retangular de perímetro igual a 00 m. A área máxima possível desse retângulo é: a) b) c) d) e) 575 m 600 m 65 m 650 m 675 m 9. (Ulbra 0) Preocupados com o lucro da empresa VXY, os gestores contrataram um matemático para modelar o custo de produção de um dos seus produtos. O modelo criado pelo matemático segue a seguinte lei: C = n + n, onde C representa o custo, em reais, para se produzirem n unidades do determinado produto. Quantas unidades deverão ser produzidas para se obter o custo mínimo? a) 65. b) 5. c) 45. d) 65. e) (Ueg 0) Em um terreno, na forma de um triângulo retângulo, será construído um jardim retangular, conforme figura abaixo. pelo Sabendo-se que os dois menores lados do terreno medem 9 m e 4 m, as dimensões do jardim para que ele tenha a maior área possível, serão, respectivamente, a),0 m e 4,5 m. b) 3,0 m e 4,0 m. c) 3,5 m e 5,0 m. d),5 m e 7,0 m. Página 8 de 8

9 Gabarito: Resposta da questão : [D] Seja L(x) o lucro obtido, então: L(x) = V(x) C(x) = x + 8x + 40 O valor de x para que L(x) seja máximo será dado por: b 8 xv 7 a ( ) Resposta da questão : [C] Como o gráfico de como o gráfico de g Portanto, f passa pelos pontos (, 0) e (0, ), segue que passa pelos pontos (0, 0) e (0,), temos que h(x) ax (a )x. f(x) x. g(x) ax ax, Desse modo, o gráfico de h intersecta o eixo y no ponto de ordenada e tem sua concavidade voltada para cima. A abscissa do vértice do gráfico de h é dada por (a ) x v. a a Além disso, com a 0. Finalmente, como f() 3 melhor representa a função h e g() 0, segue que h() f() g() 3 é o da alternativa [C]. e, portanto, o gráfico que Resposta da questão 3: [D] Seja x o número de aumentos de R$ 0,00 no preço da passagem. A receita de cada voo é dada pelo produto entre o preço da passagem e o número de passageiros, ou seja, R(x) (00 0x) (0 4 x) 40 (x 0) (x 30). Logo, o número de aumentos que proporciona a receita máxima é 0 30 xv 5 e, portanto, o resultado pedido é R$ 50,00. Resposta da questão 4: [A] Sendo V(x v, y v ) o vértice de uma função polinomial do segundo grau dada por f(x) = ax + bx + c. Toda função polinomial do segundo grau pode ser escrita através de sua forma canônica f(x) = a (x x v ) + y v. Página 9 de 8

10 Portanto, f(x) = a Como f(4) = 3, temos: a (4 5) = 3 a = 3. (x 5) +. Logo, f(x) = (x 5) +. Portanto, o ponto (, 8) pertence ao gráfico da função, pois ( 5) + = 8. Resposta da questão 5: a) Tomando os pontos (30,00) y ax b é igual a a Logo, 90 ( ) 40 b b 30. Portanto, y x 30. e (40, 90), segue que a taxa de variação da função A função R:, definida por R(x) x ( x 30) x (x 30), fornece a receita obtida com a venda de x livros. Logo, a quantidade a ser vendida, a fim de se obter a receita máxima, é 0 30 xv 65. Desse modo, o preço pedido é igual a y R$ 65,00. b) Seja L: a função definida por L(x) x 30x 8x x x x (x), que fornece o lucro obtido na venda de x livros (supondo que todos os livros produzidos são vendidos). Logo, a quantidade a ser vendida para se obter o lucro máximo é 0 6. Para essa quantidade, o preço de venda unitário deveria ter sido y 6 30 R$ 69,00. Por conseguinte, a decisão do gerente não foi correta. Página 0 de 8

11 Resposta da questão 6: a) Se x y, a quantidade de livros vendidos seria 30 y 70y (y) y 5y (y 66). Logo, o preço da versão capa de papelão que maximiza a quantidade vendida de livros é 0 66 R$ 33,00. Portanto, o preço da versão capa dura deverá ser 33 R$ 66,00. b) O resultado pedido é igual a Resposta da questão 7: a) C(t) = (0t t ) C(t) = 30t + 600t + 50 b) 300 = 30t + 600t + 50 Dividindo por 30, temos: 30t 600t + 50 = 0 t 0.t + 75 = (33 66) Resolvendo a equação, temos t = 5h (não convém) e t = 5h. Resposta da questão 8: [E] Os valores de x para os quais f(x) g(x) são tais que x x x x 0 x x 0 x 0 ou x. Resposta da questão 9: [D] A forma canônica da função quadrática o vértice do gráfico de f. Logo, como 3 f(x) a x. 4 8 f: é 3 (x v, y v),, 4 8 f(x) a (x x v) y v, temos: com (x, y ) v v sendo Além disso, sabendo que o gráfico de f passa pelo ponto (0,), vem 3 a 0 a Página de 8

12 Portanto, 3 f(x) x 4 8 3x 9 x 6 8 x 3x. Resposta da questão 0: [C] Os valores de x para os quais f(x) g(x) são tais que x x x x 0 x(x ) 0 x 0 ou x. Resposta da questão : [D] Seja x o número de reduções de R$ 0,0 no preço de venda do sanduíche. A receita obtida com a venda dos sanduíches é dada pela função R :, definida por R(x) (6 0, x) (00 0 x) x 00x 00. Além disso, o custo total para produzir os sanduíches é dado pela função C :, por definida C(x) 4,5 (00 0x) 90x 900. Por conseguinte, a função que dá o lucro total é L :, definida por L(x) R(x) C(x) x 00x 00 (90x 900) x 0x 300. O valor de x que proporciona o lucro máximo é igual a 0,5. ( ) Portanto, o resultado pedido é 6 0,,5 6 0,5 R$ 5,75. Página de 8

13 Resposta da questão : [B] Utilizando a forma fatorada da função do segundo grau, temos: f(x) = a.x. (x 4). Como o gráfico da função passa pelo ponto (,48), temos: 48 = a.( 4) a = 6 Portanto, f(x) = -6x + 64x e a altura máxima será dada por: Δ 64 hmáxima a 4.( 6) Resposta da questão 3: a) Sabendo que D (3, 0), temos y f(x ) A A vem x x 3. A D Além disso, como A pertence à parábola, b) Como ABCD é retângulo, concluímos facilmente que y y. B A Assim, C x x C 3 x C x C x 8 C e, portanto, C (8, 0). c) A área do retângulo ABCD é dada por (xc x D) f(x A) (8 3) 5 u.a. Resposta da questão 4: [E] Os zeros da função f são x e x. 4 O vértice do gráfico de f é o ponto 5 9 V,. 8 6 Portanto, a área do triângulo AVB é dada por Página 3 de 8

14 Resposta da questão 5: [B] Temos f(x) f(x) f(x) 0 (x 3) 0 x 3. Portanto, x 3 é o único valor de x para o qual se tem f(x) f(x). Resposta da questão 6: [D] 0 0,05 t t 400 t 0 como t 0 t 0 meses. Resposta da questão 7: [E] t b a 4 0,05 40 Nos últimos 0 meses as vendas totais serão dadas por: y40 y30 0, , milhares de unidades. Resposta da questão 8: [B] [A] Verdadeira A parábola intersecta o eixo x em dois pontos distintos. [B] Falsa O vértice tem ordenada negativa. [C] Verdadeira A parábola tem concavidade para cima. [D] Verdadeira A parábola intersecta o eixo x nos pontos (0,0) e (3/,0). Resposta da questão 9: [C] Se x é o número de aumentos de R$ 0,0, então serão vendidos (00 0x) sanduíches ao preço de (3 0,x) reais. Desse modo, o lucro obtido pelo proprietário é dado por: L(x) (3 0,x)(00 0x),5(00 0x) (x 0)(x 5). Então, o número de aumentos de R$ 0,0 que produz o maior lucro para o proprietário é: 0 5 x,5 e, portanto, o resultado pedido é 3 0,,5 R$,75. Página 4 de 8

15 Resposta da questão 0: [D] Estudando o sinal da função acima, temos: Lucro positivo para x. 0 Resposta da questão : [E] A quantidade do medicamento na corrente sanguínea, no momento em que é iniciada a administração da dose, é q(0) 60mg. O tempo que durou a administração da dose é dado por Resposta da questão : [A] 7 3,5 h. ( ) De acordo com o gráfico, podemos observar que: a função f não admite raízes reais, pois seu gráfico não intercepta o eixo x, possui um valor mínimo igual a e seu gráfico é uma parábola. Página 5 de 8

16 Resposta da questão 3: [B] De acordo com as informações do problema, podemos escrever: 6=0,5 p + p = 0 mil habitantes. Fazendo p(t) = 0 na segunda função, temos: 0 = t t + 0 t t 0 = 0 t =,5 ou t = - (não convém). Logo, t é, no mínimo, anos e 6 meses. Resposta da questão 4: a) h = y(0) =,5m y(5) = 0-0, b +,5 = 0 5b =,5,5 5b = 0 b= b) A altura máxima será calculada através do y v (y do vértice) y v 4 ( 0,5),5 4,5m 4 a 4 ( 0,5) Resposta da questão 5: [A] Resolvendo o sistema A(-, 3) e B(3, 7). y x x, y x 4 temos: Calculando a distância entre A e B, temos a medida da corda AB: AB 3 ( ) (7 3) AB 3 AB 4. Página 6 de 8

17 Resposta da questão 6: a.0 + b.0 + c = 4 c = 4 a.70 + b = a + 70.b = 4 a.40 + b = a + 40.b = 9 Resolvendo o sistema 9 37 a e b = Portanto, a função será 9 37 y x x Calculando o x do vértice, temos: 4900.a 70.b a 40.b 9., temos: 37 b xv 43,88kg.a Resposta da questão 7: [C] Observando as figuras, concluímos que a área pedida será dada por: A = = 9. Resposta da questão 8: [C] A x x 50 x A x x 50x Página 7 de 8

18 Nota-se que A(x) é uma função do segundo grau. Portanto, o valor de x para que a área seja máxima será dado pelo x do vértice. b a 4 Resposta da questão 9: [B] O número de unidades a serem produzidas para se obter o custo mínimo é Resposta da questão 30: [A] Utilizando semelhança de triângulos temos: Calculando a função da área, temos: A x x y 9x 36 A x x. 4 A x 9x 36x 4 4 x y 9x 36 y Determinando o x do vértice, temos: 36 x 4 v 9. 4 Portanto, x = e y 4,5 4 Logo, as dimensões do jardim são m e 4,5m. Página 8 de 8

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. 1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.

Leia mais

Funções. Parte I. www.soexatas.com Página 1

Funções. Parte I. www.soexatas.com Página 1 Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Exercícios de Aprofundamento Matemática Funções Quadráticas

Exercícios de Aprofundamento Matemática Funções Quadráticas 1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo.

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo. Aluno(a): Código: Série: 3ª Turma: Data: / / 01. A empresa Dk transporta 400 passageiros por mês da cidade de Vicentinópolis(Paletó) a Joviânia. A passagem custa 0 reais, e a empresa deseja aumentar o

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

15 + 17 + 19 +... + 35 + 37 = 312

15 + 17 + 19 +... + 35 + 37 = 312 MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

Problemas de função do 1º grau

Problemas de função do 1º grau Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro.

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro. Matemática 1 17. Uma revista semanal de larga circulação apresentou matéria contendo o seguinte texto: O governo destinou 400.000 reais para a vacinação de 25 milhões de cabeças de gado, ou seja, um centavo

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

FUNÇAO DO 2 GRAU. é igual a:

FUNÇAO DO 2 GRAU. é igual a: 1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

Funções. Parte I. Página 1

Funções. Parte I.  Página 1 Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões: Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho Questões: 01.(UNESP) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fixa de 0 C.

Leia mais

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma Módulo 2 Unidade 7 Função do 2 grau Para início de conversa... Imagine você sentado em um ônibus, indo para a escola, jogando uma caneta para cima e pegando de volta na mão. Embora para você a caneta só

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4 UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

a) R$ 51 500,00. b) R$ 52 000,00. c) R$ 52 400,00. d) R$ 52 500,00. e) R$ 53 000,00.

a) R$ 51 500,00. b) R$ 52 000,00. c) R$ 52 400,00. d) R$ 52 500,00. e) R$ 53 000,00. MATEMÁTICA 49 Um terreno comprado por R$ 30 000,00 valorizou de tal maneira, que seu valor no mercado imobiliário 2 anos após sua compra era de R$ 50 000,00, e 5 anos após a compra era de R$ 68 000,00.

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-2013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ

AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-2013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-0 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA 0- Unicamp 0 Na figura abaixo,

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Questão 01. Questão 02

Questão 01. Questão 02 PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo

Leia mais

Função Trigonométrica

Função Trigonométrica Função Trigonométrica 1. (Ufpr 013) O pistão de um motor se movimenta para cima e para baixo dentro de um cilindro, como ilustra a figura. Suponha que em um instante t, em segundos, a altura h(t) do pistão,

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Progressão Geométrica- 1º ano

Progressão Geométrica- 1º ano Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países. Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade

Leia mais

Prof: Danilo Dacar

Prof: Danilo Dacar Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento

Leia mais

01) 48 02) 96 03) 144 04) 240 05) 336. Os três anéis de cores diferentes poderão ser colocados em 3 de 8 dedos das mãos da senhora, logo

01) 48 02) 96 03) 144 04) 240 05) 336. Os três anéis de cores diferentes poderão ser colocados em 3 de 8 dedos das mãos da senhora, logo PROVA FINAL DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 0 - (FGV-Adaptada)

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema: 1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade,

Leia mais

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as

Leia mais

Gráficos de uma função para análise e interpretação

Gráficos de uma função para análise e interpretação Gráficos de uma função para análise e interpretação 1. (Insper 014) Um leitor enviou a uma revista a seguinte análise de um livro recém-lançado, de 400 páginas: O livro é eletrizante, muito envolvente

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais