Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Tamanho: px
Começar a partir da página:

Download "Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40."

Transcrição

1 Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção é Sabendo que o lucro é obtido pela diferença entre o valor resultante das vendas e o custo da produção, então o número de lotes mensais que essa indústria deve vender para obter lucro máximo é igual a a) 4 lotes. b) 5 lotes. c) 6 lotes. d) 7 lotes. e) 8 lotes.. (Insper 03) No gráfico estão representadas duas funções: f(x) do primeiro grau e g(x) do segundo grau. O gráfico que melhor representa a função h(x) = f(x) + g(x) é a) b) c) d) e) Página de 8

2 3. (Fgv 03) Uma única linha aérea oferece apenas um voo diário da cidade A para a cidade B. O número de passageiros y que comparecem diariamente para esse voo relaciona-se com o preço da passagem x, por meio de uma função polinomial do primeiro grau. Quando o preço da passagem é R$ 00,00, comparecem 0 passageiros e, para cada aumento de R$ 0,00 no preço da passagem, há uma redução de 4 passageiros. Qual é o preço da passagem que maximiza a receita em cada voo? a) R$ 0,00 b) R$ 30,00 c) R$ 40,00 d) R$ 50,00 e) R$ 60,00 4. (Epcar (Afa) 03) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, ) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (, 8) b) (0, 6) c) (6, 4) d) (, 36) 5. (Fgv 03) A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 0. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de livros adquirida pelos consumidores em função do preço de cada exemplar. Preço de venda Quantidade vendida R$ 00,00 30 R$ 90,00 40 R$ 85,00 45 R$ 80,00 50 Considere que os dados da tabela possam ser expressos mediante uma função polinomial do º grau y a x b, em que x representa a quantidade de livros vendida e y, o preço de cada exemplar. a) Que preço de venda de cada livro maximizaria a receita da editora? b) O custo unitário de produção de cada livro é de R$ 8,00. Visando maximizar o lucro da editora, o gerente de vendas estabeleceu em R$ 75,00 o preço de cada livro. Foi correta a sua decisão? Por quê? 6. (Fgv 03) A editora fez também um estudo sobre o lançamento do livro em duas versões: capa dura e capa de papelão. A pesquisa mostrou que, se a versão capa dura for vendida por x reais e a versão capa de papelão por y reais, serão vendidos, no total, 30x 70y x y exemplares das duas versões. Por uma questão de estratégia, o gerente de vendas decidiu que a versão capa dura deve custar o dobro da versão capa de papelão. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? b) Nas condições do item (a), quantos exemplares a editora estima vender no total? 7. (Ufpr 03) O número N de caminhões produzidos em uma montadora durante um dia, após t horas de operação, é dado por N(t) 0 t t, sendo que 0 t 0. Suponha que o custo C (em milhares de reais) para se produzir N caminhões seja dado por C(N) N. a) Escreva o custo C como uma função do tempo t de operação da montadora. b) Em que instante t, de um dia de produção, o custo alcançará o valor de 300 milhares de reais? Página de 8

3 8. (Pucrj 03) Sejam f e g funções reais dadas por f(x) = x + e g(x) = + x. Os valores de x tais que f(x) = g(x) são: a) x = 0 ou x = b) x = 0 ou x = c) x = ou x = d) x = ou x = e) x = 0 ou x = 9. (G - cftmg 03) A função real representada pelo gráfico é definida por a) b) f x x x. f x x 3x. c) f x x 3x. d) f x x 3x. 0. (Pucrj 03) Sejam f e g funções reais dadas por f(x) = + x e g(x) = + x. Os valores de x tais que f(x) = g(x) são: a) x = 0 ou x = b) x = 0 ou x = c) x = 0 ou x = d) x = ou x = e) x = 0 ou x = /. (Ibmecrj 03) Uma lanchonete vende, em média, 00 sanduíches por noite ao preço de cada um. O proprietário observa que, para cada R$ 0,0 que diminui no preço, a R$ 6,00 quantidade vendida aumenta em cerca de 0 sanduíches. Considerando o custo de R$ 4,50 para produzir cada sanduíche, o preço de venda que dará o maior lucro ao proprietário é: a) R$ 5,00 b) R$ 5,5 c) R$ 5,50 d) R$ 5,75 e) R$ 6,00 Página 3 de 8

4 . (Ufsj 03) Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,5m. b) 0,64m. c) 0,58m. d) 0,6m. 3. (Pucrj 03) O retângulo ABCD tem dois vértices na parábola de equação x y x e dois vértices no eixo x, como na figura abaixo. Sabendo que D = (3,0), faça o que se pede. a) Determine as coordenadas do ponto A. b) Determine as coordenadas do ponto C. c) Calcule a área do retângulo ABCD. 4. (Ibmecrj 03) O gráfico da função quadrática definida por f x 4x 5x é uma parábola de vértice V e intercepta o eixo das abscissas nos pontos A e B. A área do triângulo AVB é a) 7/8 b) 7/6 c) 7/3 d) 7/64 e) 7/8 5. (Ufrgs 03) Dada a função f, definida por f x x 9 6x, o número de valores de x que satisfazem a igualdade f x f x é a) 0. b). c). d) 3. e) 4. Página 4 de 8

5 TEXTO PARA AS PRÓXIMAS QUESTÕES: A figura a seguir representa a evolução dos milhares de unidades vendidas de um produto em função do tempo, dado em meses, desde seu lançamento. O trecho correspondente ao intervalo [0,t ] pode ser representado pela expressão o trecho correspondente ao intervalo ]t,t ] por 6. (Insper 03) O valor de t é a) 5. b) 0. c) 5. d) 0. e) 5. y 0,05x 4x 40. y 0,05x 7. (Insper 03) Considere que o ponto (t,v) corresponde ao vértice da parábola de equação y 0,05x 4x 40. Nos últimos dez meses representados no gráfico, as vendas totais, em milhares de unidades, foram iguais a a). b). c) 3. d) 4. e) (Ufsj 0) O gráfico da função f(x) = ax + bx + c é: e Com relação a f(x), é INCORRETO afirmar que a) seu discriminante ( ) é maior que zero. b) o vértice da parábola tem ordenada positiva. c) o coeficiente do termo quadrado (a) é positivo. d) as raízes da função quadrática são 0 e 3/. Página 5 de 8

6 9. (Ufrn 0) Uma lanchonete vende, em média, 00 sanduíches por noite ao preço de cada um. O proprietário observa que, para cada R$ 0,0 que diminui no preço, a R$ 3,00 quantidade vendida aumenta em cerca de 0 sanduíches. Considerando o custo de R$,50 para produzir cada sanduíche, o preço de venda que dará o maior lucro ao proprietário é a) R$,50. b) R$,00. c) R$,75. d) R$,5. 0. (G - cftmg 0) Se a função L(x) 0.(x ). x 0 representa o lucro de uma indústria em que x é a quantidade de unidades vendida, então o lucro será a) mínimo para x 3. b) positivo para x. c) máximo para d) positivo para x. 0 x. 0. (Ucs 0) Uma dose de um medicamento foi administrada a um paciente por via intravenosa. Enquanto a dose estava sendo administrada, a quantidade do medicamento na corrente sanguínea crescia. Imediatamente após cessar essa administração, a quantidade do medicamento começou a decrescer. Um modelo matemático simplificado para avaliar a quantidade q, em mg, do medicamento, na corrente sanguínea, t horas após iniciada a administração, é q t t 7t 60. Considerando esse modelo, a quantidade, em mg, do medicamento que havia na corrente sanguínea, ao ser iniciada a administração da dose e o tempo que durou a administração dessa dose, em horas, foram, respectivamente, a) 5 e. b) 0 e. c) 0 e 3,5. d) 60 e. e) 60 e 3,5.. (G - ifal 0) Assinale a alternativa que completa corretamente a frase: A função real f(x) = x 4x + 5 a) não admite zeros reais. b) atinge um valor máximo. c) tem como gráfico uma reta. d) admite dois zeros reais e diferentes. e) atinge um valor mínimo igual a. 3. (Ufpb 0) Um estudo das condições ambientais na região central de uma grande cidade indicou que a taxa média diária (C) de monóxido de carbono presente no ar é de C(p) 0,5p partes por milhão, para uma quantidade de (p) milhares de habitantes. Estima- se que, daqui a t anos, a população nessa região será de p(t) t t 0 milhares de habitantes. Nesse contexto, para que a taxa média diária de monóxido de carbono ultrapasse o valor de 6 partes por milhão, é necessário que tenham sido transcorridos no mínimo: a) anos b) anos e 6 meses c) 3 anos d) 3 anos e 6 meses e) 4 anos Página 6 de 8

7 4. (G - cftrj 0) Um objeto é lançado do topo de um muro, de altura h, atingindo o solo após 5 segundos. A trajetória parabólica do objeto é representada pela equação y = 0,5x + bx +,5, cujo gráfico está apresentado abaixo, onde y indica a altura atingida pelo objeto em relação ao solo, em metros, no tempo x, em segundos. a) Calcule a altura h e o valor do coeficiente b da equação da trajetória. b) Determine a altura máxima, em relação ao solo, atingida pelo objeto. 5. (Espm 0) A parábola de equação y = x x + intercepta a reta de equação y = x + 4 nos pontos A e B. O comprimento do segmento AB é igual a: a) 4 b) 5 c) 5 d) 4 e) 3 KO 6. (Uel 0) O óxido de potássio,, é um nutriente usado para melhorar a produção em lavouras de cana-de-açúcar. Em determinada região, foram testadas três dosagens diferentes do nutriente e, neste caso, a relação entre a produção de cana e a dosagem do nutriente se deu conforme mostra a tabela a seguir. Dose do nutriente (kg/hectare) Produção de cana-de-açúcar (toneladas/hectare) Considerando que a produção de cana-de-açúcar por hectare em função da dose de nutriente pode ser descrita por uma função do tipo, determine a quantidade de nutriente por hectare que maximiza a produção de cana-de-açúcar por hectare. Apresente os cálculos realizados na resolução da questão. y(x) ax bx c 7. (Insper 0) A área da região sombreada na Figura, limitada pelo gráfico da função f x 9 x e pelos eixos coordenados, é igual a 8. Página 7 de 8

8 Assim, a área da região sombreada na Figura, limitada pelo gráfico da função eixo x e pela reta de equação x 3, é igual a a) 4,5. b) 6. c) 9. d). e) 3,5. gx x, 8. (Fgvrj 0) Deseja-se construir um galpão com base retangular de perímetro igual a 00 m. A área máxima possível desse retângulo é: a) b) c) d) e) 575 m 600 m 65 m 650 m 675 m 9. (Ulbra 0) Preocupados com o lucro da empresa VXY, os gestores contrataram um matemático para modelar o custo de produção de um dos seus produtos. O modelo criado pelo matemático segue a seguinte lei: C = n + n, onde C representa o custo, em reais, para se produzirem n unidades do determinado produto. Quantas unidades deverão ser produzidas para se obter o custo mínimo? a) 65. b) 5. c) 45. d) 65. e) (Ueg 0) Em um terreno, na forma de um triângulo retângulo, será construído um jardim retangular, conforme figura abaixo. pelo Sabendo-se que os dois menores lados do terreno medem 9 m e 4 m, as dimensões do jardim para que ele tenha a maior área possível, serão, respectivamente, a),0 m e 4,5 m. b) 3,0 m e 4,0 m. c) 3,5 m e 5,0 m. d),5 m e 7,0 m. Página 8 de 8

9 Gabarito: Resposta da questão : [D] Seja L(x) o lucro obtido, então: L(x) = V(x) C(x) = x + 8x + 40 O valor de x para que L(x) seja máximo será dado por: b 8 xv 7 a ( ) Resposta da questão : [C] Como o gráfico de como o gráfico de g Portanto, f passa pelos pontos (, 0) e (0, ), segue que passa pelos pontos (0, 0) e (0,), temos que h(x) ax (a )x. f(x) x. g(x) ax ax, Desse modo, o gráfico de h intersecta o eixo y no ponto de ordenada e tem sua concavidade voltada para cima. A abscissa do vértice do gráfico de h é dada por (a ) x v. a a Além disso, com a 0. Finalmente, como f() 3 melhor representa a função h e g() 0, segue que h() f() g() 3 é o da alternativa [C]. e, portanto, o gráfico que Resposta da questão 3: [D] Seja x o número de aumentos de R$ 0,00 no preço da passagem. A receita de cada voo é dada pelo produto entre o preço da passagem e o número de passageiros, ou seja, R(x) (00 0x) (0 4 x) 40 (x 0) (x 30). Logo, o número de aumentos que proporciona a receita máxima é 0 30 xv 5 e, portanto, o resultado pedido é R$ 50,00. Resposta da questão 4: [A] Sendo V(x v, y v ) o vértice de uma função polinomial do segundo grau dada por f(x) = ax + bx + c. Toda função polinomial do segundo grau pode ser escrita através de sua forma canônica f(x) = a (x x v ) + y v. Página 9 de 8

10 Portanto, f(x) = a Como f(4) = 3, temos: a (4 5) = 3 a = 3. (x 5) +. Logo, f(x) = (x 5) +. Portanto, o ponto (, 8) pertence ao gráfico da função, pois ( 5) + = 8. Resposta da questão 5: a) Tomando os pontos (30,00) y ax b é igual a a Logo, 90 ( ) 40 b b 30. Portanto, y x 30. e (40, 90), segue que a taxa de variação da função A função R:, definida por R(x) x ( x 30) x (x 30), fornece a receita obtida com a venda de x livros. Logo, a quantidade a ser vendida, a fim de se obter a receita máxima, é 0 30 xv 65. Desse modo, o preço pedido é igual a y R$ 65,00. b) Seja L: a função definida por L(x) x 30x 8x x x x (x), que fornece o lucro obtido na venda de x livros (supondo que todos os livros produzidos são vendidos). Logo, a quantidade a ser vendida para se obter o lucro máximo é 0 6. Para essa quantidade, o preço de venda unitário deveria ter sido y 6 30 R$ 69,00. Por conseguinte, a decisão do gerente não foi correta. Página 0 de 8

11 Resposta da questão 6: a) Se x y, a quantidade de livros vendidos seria 30 y 70y (y) y 5y (y 66). Logo, o preço da versão capa de papelão que maximiza a quantidade vendida de livros é 0 66 R$ 33,00. Portanto, o preço da versão capa dura deverá ser 33 R$ 66,00. b) O resultado pedido é igual a Resposta da questão 7: a) C(t) = (0t t ) C(t) = 30t + 600t + 50 b) 300 = 30t + 600t + 50 Dividindo por 30, temos: 30t 600t + 50 = 0 t 0.t + 75 = (33 66) Resolvendo a equação, temos t = 5h (não convém) e t = 5h. Resposta da questão 8: [E] Os valores de x para os quais f(x) g(x) são tais que x x x x 0 x x 0 x 0 ou x. Resposta da questão 9: [D] A forma canônica da função quadrática o vértice do gráfico de f. Logo, como 3 f(x) a x. 4 8 f: é 3 (x v, y v),, 4 8 f(x) a (x x v) y v, temos: com (x, y ) v v sendo Além disso, sabendo que o gráfico de f passa pelo ponto (0,), vem 3 a 0 a Página de 8

12 Portanto, 3 f(x) x 4 8 3x 9 x 6 8 x 3x. Resposta da questão 0: [C] Os valores de x para os quais f(x) g(x) são tais que x x x x 0 x(x ) 0 x 0 ou x. Resposta da questão : [D] Seja x o número de reduções de R$ 0,0 no preço de venda do sanduíche. A receita obtida com a venda dos sanduíches é dada pela função R :, definida por R(x) (6 0, x) (00 0 x) x 00x 00. Além disso, o custo total para produzir os sanduíches é dado pela função C :, por definida C(x) 4,5 (00 0x) 90x 900. Por conseguinte, a função que dá o lucro total é L :, definida por L(x) R(x) C(x) x 00x 00 (90x 900) x 0x 300. O valor de x que proporciona o lucro máximo é igual a 0,5. ( ) Portanto, o resultado pedido é 6 0,,5 6 0,5 R$ 5,75. Página de 8

13 Resposta da questão : [B] Utilizando a forma fatorada da função do segundo grau, temos: f(x) = a.x. (x 4). Como o gráfico da função passa pelo ponto (,48), temos: 48 = a.( 4) a = 6 Portanto, f(x) = -6x + 64x e a altura máxima será dada por: Δ 64 hmáxima a 4.( 6) Resposta da questão 3: a) Sabendo que D (3, 0), temos y f(x ) A A vem x x 3. A D Além disso, como A pertence à parábola, b) Como ABCD é retângulo, concluímos facilmente que y y. B A Assim, C x x C 3 x C x C x 8 C e, portanto, C (8, 0). c) A área do retângulo ABCD é dada por (xc x D) f(x A) (8 3) 5 u.a. Resposta da questão 4: [E] Os zeros da função f são x e x. 4 O vértice do gráfico de f é o ponto 5 9 V,. 8 6 Portanto, a área do triângulo AVB é dada por Página 3 de 8

14 Resposta da questão 5: [B] Temos f(x) f(x) f(x) 0 (x 3) 0 x 3. Portanto, x 3 é o único valor de x para o qual se tem f(x) f(x). Resposta da questão 6: [D] 0 0,05 t t 400 t 0 como t 0 t 0 meses. Resposta da questão 7: [E] t b a 4 0,05 40 Nos últimos 0 meses as vendas totais serão dadas por: y40 y30 0, , milhares de unidades. Resposta da questão 8: [B] [A] Verdadeira A parábola intersecta o eixo x em dois pontos distintos. [B] Falsa O vértice tem ordenada negativa. [C] Verdadeira A parábola tem concavidade para cima. [D] Verdadeira A parábola intersecta o eixo x nos pontos (0,0) e (3/,0). Resposta da questão 9: [C] Se x é o número de aumentos de R$ 0,0, então serão vendidos (00 0x) sanduíches ao preço de (3 0,x) reais. Desse modo, o lucro obtido pelo proprietário é dado por: L(x) (3 0,x)(00 0x),5(00 0x) (x 0)(x 5). Então, o número de aumentos de R$ 0,0 que produz o maior lucro para o proprietário é: 0 5 x,5 e, portanto, o resultado pedido é 3 0,,5 R$,75. Página 4 de 8

15 Resposta da questão 0: [D] Estudando o sinal da função acima, temos: Lucro positivo para x. 0 Resposta da questão : [E] A quantidade do medicamento na corrente sanguínea, no momento em que é iniciada a administração da dose, é q(0) 60mg. O tempo que durou a administração da dose é dado por Resposta da questão : [A] 7 3,5 h. ( ) De acordo com o gráfico, podemos observar que: a função f não admite raízes reais, pois seu gráfico não intercepta o eixo x, possui um valor mínimo igual a e seu gráfico é uma parábola. Página 5 de 8

16 Resposta da questão 3: [B] De acordo com as informações do problema, podemos escrever: 6=0,5 p + p = 0 mil habitantes. Fazendo p(t) = 0 na segunda função, temos: 0 = t t + 0 t t 0 = 0 t =,5 ou t = - (não convém). Logo, t é, no mínimo, anos e 6 meses. Resposta da questão 4: a) h = y(0) =,5m y(5) = 0-0, b +,5 = 0 5b =,5,5 5b = 0 b= b) A altura máxima será calculada através do y v (y do vértice) y v 4 ( 0,5),5 4,5m 4 a 4 ( 0,5) Resposta da questão 5: [A] Resolvendo o sistema A(-, 3) e B(3, 7). y x x, y x 4 temos: Calculando a distância entre A e B, temos a medida da corda AB: AB 3 ( ) (7 3) AB 3 AB 4. Página 6 de 8

17 Resposta da questão 6: a.0 + b.0 + c = 4 c = 4 a.70 + b = a + 70.b = 4 a.40 + b = a + 40.b = 9 Resolvendo o sistema 9 37 a e b = Portanto, a função será 9 37 y x x Calculando o x do vértice, temos: 4900.a 70.b a 40.b 9., temos: 37 b xv 43,88kg.a Resposta da questão 7: [C] Observando as figuras, concluímos que a área pedida será dada por: A = = 9. Resposta da questão 8: [C] A x x 50 x A x x 50x Página 7 de 8

18 Nota-se que A(x) é uma função do segundo grau. Portanto, o valor de x para que a área seja máxima será dado pelo x do vértice. b a 4 Resposta da questão 9: [B] O número de unidades a serem produzidas para se obter o custo mínimo é Resposta da questão 30: [A] Utilizando semelhança de triângulos temos: Calculando a função da área, temos: A x x y 9x 36 A x x. 4 A x 9x 36x 4 4 x y 9x 36 y Determinando o x do vértice, temos: 36 x 4 v 9. 4 Portanto, x = e y 4,5 4 Logo, as dimensões do jardim são m e 4,5m. Página 8 de 8

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Funções. Parte I. www.soexatas.com Página 1

Funções. Parte I. www.soexatas.com Página 1 Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. 1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

15 + 17 + 19 +... + 35 + 37 = 312

15 + 17 + 19 +... + 35 + 37 = 312 MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo.

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo. Aluno(a): Código: Série: 3ª Turma: Data: / / 01. A empresa Dk transporta 400 passageiros por mês da cidade de Vicentinópolis(Paletó) a Joviânia. A passagem custa 0 reais, e a empresa deseja aumentar o

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Em busca da trajetória perfeita!

Em busca da trajetória perfeita! Reforço escolar M ate mática Em busca da trajetória perfeita! Dinâmica 4 1º Série 3º Bimestre DISCIPLINA Série CAMPO CONCEITO Aluno Matemática Ensino Médio 1ª Algébrico Simbólico Função polinomial do 2º

Leia mais

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma Módulo 2 Unidade 7 Função do 2 grau Para início de conversa... Imagine você sentado em um ônibus, indo para a escola, jogando uma caneta para cima e pegando de volta na mão. Embora para você a caneta só

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

Gráficos de uma função para análise e interpretação

Gráficos de uma função para análise e interpretação Gráficos de uma função para análise e interpretação 1. (Insper 014) Um leitor enviou a uma revista a seguinte análise de um livro recém-lançado, de 400 páginas: O livro é eletrizante, muito envolvente

Leia mais

Problemas de função do 1º grau

Problemas de função do 1º grau Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Função Trigonométrica

Função Trigonométrica Função Trigonométrica 1. (Ufpr 013) O pistão de um motor se movimenta para cima e para baixo dentro de um cilindro, como ilustra a figura. Suponha que em um instante t, em segundos, a altura h(t) do pistão,

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Matrizes e Sistemas de Equações Apresentação Lineares UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade você deverá ser capaz de: Descrever e comentar possibilidades

Leia mais

Função Afim. www.soexatas.com Página 1

Função Afim. www.soexatas.com Página 1 Função Afim. (Ufsm 04) De acordo com dados da UNEP - Programa das Nações Unidas para o Meio Ambiente, a emissão de gases do efeito estufa foi de 45 bilhões de toneladas de CO em 005 e de 49 bilhões de

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro.

Matemática 1. 20. Abaixo temos um extrato bancário simplificado do mês de novembro. Matemática 1 17. Uma revista semanal de larga circulação apresentou matéria contendo o seguinte texto: O governo destinou 400.000 reais para a vacinação de 25 milhões de cabeças de gado, ou seja, um centavo

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I MATEMÁTICA Prof. Paulo Roberto MÓDULO I ENCONTRO 01---------------Função, Domínio e Imagem, Tipos, composição e inversibilidade. ENCONTRO 0 ---------------Função (função do primeiro grau). ENCONTRO 03---------------Função

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

2;3. Qual o valor do coeficiente angular? y k x

2;3. Qual o valor do coeficiente angular? y k x PARTE A A) Esboce o gráfico das funções determinando o ponto onde a reta corta o eixo y e onde corta o eixo x. Caso isso não seja possível, determine alguns pontos para a construção dos gráficos. ) y x

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Função polinomial Seja dado um número inteiro não negativo n, bem como os coeficientes reais a 0, a 1,,a n, com a n 0. A função definida por

Função polinomial Seja dado um número inteiro não negativo n, bem como os coeficientes reais a 0, a 1,,a n, com a n 0. A função definida por Funções polinomiais 4 Antes de ler o capítulo Esse capítulo trata de um grupo particular de funções, de modo que, antes de lê-lo, o leitor precisa dominar o conteúdo do Capítulo 1. Depois de tratarmos

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente

Leia mais

Equações do 2º grau a uma incógnita

Equações do 2º grau a uma incógnita Equações do º grau a uma incógnita Proposta de sequência de tarefas para o 9.º ano - 3.º ciclo Julho de 011 Autores: Professores das turmas piloto do 9º ano de escolaridade Ano Lectivo 010 / 011 Novo Programa

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Funções e Aplicações Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Maio de 2011 Índice 1 - Conjuntos Numéricos... 4 Intervalos... 5 Intervalos finitos... 5 Intervalos

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações:

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1 FUNÇÕES DE 1º GRAU 0) Determine f() cujo gráfico está ilustrado abaio. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1) O fator a determina o crescimento da função: se y 1, então

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Questão 1. Questão 2. Resposta

Questão 1. Questão 2. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

MUV. constante igual a a 2,0 m/s. O veículo B, distando d = 19,2 km do veículo A, parte com aceleração constante igual a veículos, em segundos.

MUV. constante igual a a 2,0 m/s. O veículo B, distando d = 19,2 km do veículo A, parte com aceleração constante igual a veículos, em segundos. MUV 1. (Espcex (Aman) 013) Um carro está desenvolvendo uma velocidade constante de 7 km h em uma rodovia federal. Ele passa por um trecho da rodovia que está em obras, onde a velocidade máxima permitida

Leia mais

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

Lançamento Oblíquo. 1. (Unesp 2012) O gol que Pelé não fez

Lançamento Oblíquo. 1. (Unesp 2012) O gol que Pelé não fez Lançamento Oblíquo 1. (Unesp 01) O gol que Pelé não fez Na copa de 1970, na partida entre Brasil e Tchecoslováquia, Pelé pega a bola um pouco antes do meio de campo, vê o goleiro tcheco adiantado, e arrisca

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4 UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito no INSPER INSPER Resolvida 5/novembro/0 Prova A (Verde) ANÁLISE quantitativa e lógica 0 Por um terminal de ônibus passam dez diferentes linhas A mais movimentada delas é a linha : quatro

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões: Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho Questões: 01.(UNESP) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fixa de 0 C.

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA

GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA PROF. ENZO MARCON TAKARA 05 - PLANO CARTESIANO ORTOGONAL Considere num plano a dois eixos x e y perpendiculares em O. O par de eixos

Leia mais

Derivação Implícita e Taxas Relacionadas

Derivação Implícita e Taxas Relacionadas Capítulo 14 Derivação Implícita e Taxas Relacionadas 14.1 Introdução A maioria das funções com as quais trabalhamos até agora é da forma y = f(x), em que y é dado diretamente ou, explicitamente, por meio

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

a) R$ 51 500,00. b) R$ 52 000,00. c) R$ 52 400,00. d) R$ 52 500,00. e) R$ 53 000,00.

a) R$ 51 500,00. b) R$ 52 000,00. c) R$ 52 400,00. d) R$ 52 500,00. e) R$ 53 000,00. MATEMÁTICA 49 Um terreno comprado por R$ 30 000,00 valorizou de tal maneira, que seu valor no mercado imobiliário 2 anos após sua compra era de R$ 50 000,00, e 5 anos após a compra era de R$ 68 000,00.

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA y y a y P A y b B R T xb x xa x y y a A y b M xb xa x y y x x r s a 3 a 2 a a 1 b c b + c Como pode cair no enem (CESGRANRIO) As escalas termométricas Celsius

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Atividade experimental 2º bimestre 10 pontos Nome: N.: Nome: N.: Nome: N.: Nome: N.: Nome: N.: Série: 1ª série Profª Elizangela Goldoni Conteúdo: Função quadrática

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

Questão 01. Questão 02

Questão 01. Questão 02 PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Função do 2 grau. Módulo 2 Unidade 6. Para início de conversa... Matemática e suas Tecnologias Matemática 67

Função do 2 grau. Módulo 2 Unidade 6. Para início de conversa... Matemática e suas Tecnologias Matemática 67 Módulo Unidade 6 Função do grau Para início de conversa... A função é um grande instrumento de modelagem de fenômenos físicos e situações cotidianas como foi visto em unidades anteriores. Um tipo de função

Leia mais

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 Função do Primeiro Grau 1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 2)Uma função polinomial do 1 o grau y = f(x) é tal

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais