ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :"

Transcrição

1 ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1

2 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática. Ele está sempre presente na relação entre duas grandezas variáveis. Assim são exemplos de funções: - O valor a ser pago numa corrida de táxi é função do espaço percorrido; - A área de um quadrado é função da medida do seu lado; - O consumo de combustível de um automóvel é função, entre outros fatores, da velocidade. Observe que as relações que vimos a seguir têm duas características em comum: - A todos os valores da variável independente estão associados valores da variável dependente; - Para um dado valor da variável independente está associado um único valor da variável dependente. As relações que têm essas características são chamadas de funções. Exemplos: 1) Nos itens abaixo, estão descritas algumas relações entre variáveis. Em cada caso, identifique a variável independente e a dependente. a) O número de refrigerante que uma pessoa compra e a quantia a ser paga. b) A duração de uma chamada telefônica e o custo da chamada. 2) O preço a ser pago por uma corrida de táxi inclui uma parcela fixa de R$ 6,00, denominada bandeirada mais uma parcela variável de R$ 0,90 por km rodado. Determine: a) A função que representa o preço P de uma corrida em função de x quilômetros rodados. b) O preço de uma corrida de 12 km. c) A distancia percorrida por um passageiro que pagou R$ 96,00 pela corrida. 2

3 DEFINIÇÃO MATEMÁTICA DE FUNÇÃO Sendo A e B dois conjuntos não vazios e uma relação f de A em B, essa relação f é uma função quando cada elemento x do conjunto A está associado a um, e somente um, elemento y do conjunto B. Indica-se por: f: A B Quando estas condições descritas na definição não forem satisfeitas, existirá apenas uma relação (R). Daí, concluímos que toda função é uma relação mas, nem toda relação e uma função. Observe os exemplos com diagramas: As figuras 1, 2 e 3 representam funções. Note que cada elemento do conjunto domínio A tem uma única chegada no conjunto contradomínio B. Chamamos de conjunto imagem (Im) aos elementos de B que se relacionaram com os elementos de A. No conjunto contradomínio pode sobrar elemento. A letra f acima do diagrama indica que a relação especial é uma função. fig.1 fig.2 fig.3 As figuras 4, 5 e 6 representam apenas relações. Note que na fig. 4 alguns elementos de A têm duas chegadas em B, na fig. 5 sobrou um elemento de A sem relacionar-se com B e, finalmente, na fig. 6 um único elemento de A têm várias chegadas em B. A letra R acima do diagrama indica ser apenas uma relação. Exemplos fig.4 fig.5 fig.6 1) Dados A = { -3, -2, 0, 3 } e B = { - 1, 0, 1, 2, 4, 5, 7 } e uma relação expressa pela fórmula y = x + 2, com x pertencendo a A e y pertencendo a B. a) Faça o diagrama e verifique se f é uma função de A em B. b) Se for uma função de A em B, determine o domínio, a imagem e o contra-domínio de f. 2) Seja a função f: definida por f(x) = x 2-7x + 9. Determine: 3

4 a) O valor de f(-1) b) Os valores de x para que se tenha f(x) = -1. 3) Dadas as funções f(x) = 4x + 3 e g(x) = x 2 + a. Sabendo que f(2) - g(1) = 3, calcule o valor de a. 4) Dada a função f: definida por f(x) = ax + b, com a e b R. Determine a e b, sabendo que f(1) = 3 e f(2) = 5. DOMINIO DE UMA FUNÇÃO REAL DE VARIÁVEL REAL Quando trabalhamos com uma função, é importante sabermos qual o domínio dessa função, pois é ele que vai determinar os valores possíveis para a variável independente. Em muitos casos, o domínio e o contradomínio não vêm explicitados, devemos, então, considerar como domínio o conjunto de todos os números reais que podem ser colocados no lugar da variável independente na fórmula da função, obtendo, após os cálculos, um número real, já, o contradomínio será os números reais. Exemplos 1) Encontrar o domínio das funções: a) f(x) = 3x 2-4x + 2 3x 5 b) f(x) = 2x 4 x 5 c) f(x) = 4x 4 d) f(x) = + x + 2 3x 3 x 4 4

5 GRÁFICO DE UMA FUNÇÃO Para construir o gráfico de uma função, utilizaremos o sistema de coordenadas cartesianas ortogonais. O sistema de coordenadas ortogonais é composto por: - Duas reta perpendiculares entre si, onde a reta horizontal é o eixo x (abscissas) e a reta vertical o eixo y (ordenadas). - O cruzamento das duas retas é a origem do sistema. - As retas dividem o plano em quatro partes iguais chamadas de quadrantes. O gráfico é conjunto de todos os pontos (x;y) do plano cartesiano, com x D e y Im. Para isso, consideremos os valores do domínio da função o eixo x e as respectivas imagens no eixo y. Exemplos: 1) Construir o gráfico das funções: a) f : A B, definida por f(x) = x + 2, sendo A = { -1; 0; 1; 2 } e B = { 1; 2; 3; 4; 5 } b) f: definida por f(x) = x + 2 5

6 ANALISANDO GRÁFICOS DE FUNÇÕES A partir do gráfico de uma função, podemos obter informações importantes sobre o comportamento dessa função, como: - O domínio e a imagem. - Os pontos onde o gráfico intercepta os eixos coordenados. - Os intervalos para os quais a função é crescente, decrescente ou constante. - Os intervalos para os quais a o valor da função é positivo e negativo. - O valor máximo ou mínimo que a função atinge. - O (s) valor (es) da(s) raiz(es) da função. Como reconhecer quando um gráfico representa uma função Como para cada valor de x do domínio devemos ter em correspondência um único y do contradomínio, é possível identificar se um gráfico representa ou não função, traçamos retas paralelas ao eixo y. Para ser função, cada reta vertical traçada por pontos do domínio deve interceptar o gráfico em um único ponto. Como determinar o domínio e a imagem da função - O domínio de uma função é obtido pela projeção dos pontos do gráfico sobre o eixo x (abscissas) - A imagem de uma função é obtida pela projeção dos pontos do gráfico sobre o eixo y (ordenadas) Exemplo D(f) = { x R/1 x 6} Im(f) = { y R / 2 y 5} 6

7 Como determinar as raízes ou os zeros de uma função Graficamente a(s) raiz(es) de uma função é(são) a(s) a(s) abscissa(s) do(s) ponto(s) onde o gráfico encontra o eixo x (abscissas). Exemplo Logo, os números 2 e 5 são as raízes ou os zeros da função Como determinar o intervalo onde a função é crescente, decrescente ou constante - Se aumentarmos o valor da variável independente e aumentar os valores da imagem, temos função crescente. - Se aumentarmos o valor da variável independente e diminuir os valores da imagem, temos função decrescente. Se aumentarmos o valor da variável independente e não alterar os valores da imagem, temos função constante. y constante crescente decrescente o x Valor máximo e Valor mínimo de uma função y máximo f(x 2) mínimo Valor máximo f(x 2 ) Valor mínimo f(x 1 ) f(x 1) o X 1 X 2 x 7

8 EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 1) (Unesp) Uma pessoa obesa, pesando num certo momento 156 kg, recolhe-se a um SPA onde se anunciam perdas de peso de até 2,5 kg por semana. Suponhamos que isso realmente ocorra. Nessas condições: a) Encontre uma fórmula que expresse o peso mínimo, P, que essa pessoa poderá atingir após n semanas. resp: 156 2,5n b) Calcule o número mínimo de semanas completas que a pessoa deverá permanecer no SPA para sair de lá com menos de 120 kg de peso. resp: 15 semanas 2) (Unicamp) Para transformar graus Fahrenheit em graus centígrados usa-se a fórmula: C = 5(F - 32)/9,onde F é o número de graus Fahrenheit e C é o número de graus centígrados. a) Transforme 35 graus centígrados em graus Fahrenheit. resp: 95 b) Qual a temperatura (em graus centígrados) em que o número de graus Fahrenheit é o dobro do número de graus centígrados? resp: 160 3) (Fuvest) A função que representa o valor a ser pago após um desconto de 3% sobre o valor x de uma mercadoria é: resp: b a) f(x) = x 3 b) f(x) = 0,97x c) f(x) = 1,3x d) f(x) = -3x e) f(x) = 1,03x 4) (Puccamp) Para produzir um número n de peças (n inteiro positivo), uma empresa deve investir R$200000,00 em máquinas e, além disso, gastar R$0,50 na produção de cada peça. Nessas condições, o custo C, em reais, da produção de n peças é uma função de n dada por: a) C(n) = ,50 resp: c b) C(n) = n c) C(n) = n/ d) C(n) = ,50n e) C(n) = ( n)/2 5) (Faap) A taxa de inscrição num clube de natação é de R$ 150,00 para o curso de 12 semanas. Se uma pessoa se inscreve após o início do curso, a taxa é reduzida linearmente. Expresse a taxa de inscrição em função do número de semanas transcorridas desde o início do curso: resp: a a) T = 12,50 (12 - x) b) T = 12,50x c) T = 12,50x -12 d) T = 12,50 (x + 12) e) T = 12,50x ) (Puccamp) Durante um percurso de x km, um veículo faz 5 paradas de 10 minutos cada uma. Se a velocidade média desse veículo em movimento é de 60 km/h, a expressão que permite calcular o tempo, em horas, que ele leva para percorrer os x km é: resp: b a) (6x + 5)/6 b) (x + 50)/60 c) (6x + 5)/120 d) (x/60) + 50 e) x + (50/6) 7) Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. resp: a) R 1 é uma função de A em B, D = A, Im = {0; 4; 16} b) não é função 8

9 8) Dados os conjuntos A = {-1; 0; 1; 2} e B = {-1; 0; 1; 2; 3; 4; 5}, faça o diagrama das relações abaixo, e diga, qual delas é uma função A em B. resp: b a) R 1 = {(x;y) AxB/ y = x 2 2 } b) R 1 = {(x;y) AxB/ y = 2x + 1 } 9) Dado o conjunto A = { -2; -1; 0; 1}, determine o conjunto imagem da função f: A R definida por f(x) = 1 x 2. resp: Im = { -3; 0; 1} 10) Seja a função f: R R definida por f(x)= x 2-10x+8. Calcular: a) f(4) resp: -16 b) Os valores de x de modo que f(x)=-1. resp: 1 e 9 11) Dadas as funções f(x)= 2 1 x + 1 e g(x) = x 2-1, calcule f(6)+g(-2). resp: 7 12) São dadas as funções f(x)= 3x+1 e g(x)= 5 4 x + a. Sabendo que f(1)-g(1)= 3 2, calcule o valor de a. resp: 38/15 13) Dada a função f: R R definida por f(x)= ax + b, com a, b R, calcule: a) a e b sabendo que f(1)=4 e f(-1)= -2; resp: a=3 e b=1 b) f(4). resp: 13 14) Dada a função f: R R definida por f(x)= x 2 -x-12, determine a de modo f(a+1) = 0. resp: -4 ou 3 15)Encontrar o domínio das funções: a) y=3x+4 resp: D=R b) f(x)=x 2-3x+6 resp: D=R c) f(x)= d) f(x) = 2x + 5 4x x 7 x + 3 resp: D=R-{-3;-2} e) f(x)= f) f(x)= 3x 6 resp: D={x R/ x 2} g) f(x)= 3x + 9 x + 4 x x 2 81 x x x + 4 x ) Construa os gráficos das funções, e dê o domínio e a imagem: a) f: A B, definida por f(x) = x 2 +1, sendo A={-1,0,1} e B={1,2,3,4} b) f: A B, definida por f(x) = 3x+1, sendo A=[-1,2] e B=[-4;8] c) f: A B, definida por f(x)=-4x, sendo A=]-2,1/2] e B= [-10,5] resp: resp: D=R-{-4} x resp: D=R-{-9;-7;9} resp: D={x R/ x 5} a) y b) y c) y o 1 x x -2 0 x -2-2 D={-1,0,1} e IM={1,2} D=[-1,2] e IM=[-2,7] D=]-2,1/2] IM=[-2,8[ 9

10 17) Os gráficos abaixo representam gráficos de funções. a) y b) y c) y o x o x o x Resp: a, b e c 18). (Ufes) O preço de uma certa máquina nova é R$10.000,00. Admitindo-se que ela tenha sido projetada para durar 8 anos e que sofra uma depreciação linear com o tempo, ache a fórmula que dá o preço P(t) da máquina após t anos de funcionamento, 0 t 8, e esboce o gráfico da função P. Resp: P(t) = t ( 0 t 8 ) 19) (Ufpe) Na(s) questão(ões) a seguir escreva nos parênteses a letra (V) se a afirmativa for verdadeira ou (F) se for falsa. O gráfico a seguir fornece o perfil do lucro de uma empresa agrícola ao longo do tempo, sendo 1969 o ano zero, ou seja, o ano de sua fundação. Analisando o gráfico, podemos afirmar que: ( ) 10 foi o único ano em que ela foi deficitária. ( ) 20 foi o ano de maior lucro. ( ) 25 foi um ano deficitário. ( ) 15 foi um ano de lucro. ( ) 5 foi o ano de maior lucro no período que vai da fundação até o ano Resp: F V F F V 10

11 20) (Uff) O gráfico da função f está representado na figura: Sobre a função f é FALSO afirmar que: a) f(1) + f(2) = f(3) b) f(2) = f(7) c) f(3) = 3f(1) d) f(4) - f(3) = f(1) e) f(2) + f(3) = f(5) Resp: e Prof. Carlinhos Bibliografia: Curso de Matemática Volume Único Autores: Bianchini&Paccola Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/Bonjorno&Givanni Jr. Ed. FTD Contexto&Aplicações Volume Único Autor: Luiz Roberto Dante Ed. Ática 11

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

Lista de exercícios 1º Ensino médio

Lista de exercícios 1º Ensino médio 1. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$800,00 mais uma comissão de 5% sobre as vendas do mês. Em geral, cada duas horas e meia de trabalho, ele vende o equivalente a R$500,00. a)

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

Estudo de funções parte 2

Estudo de funções parte 2 Módulo 2 Unidade 13 Estudo de funções parte 2 Para início de conversa... Taxa de desemprego no Brasil cai a 5,8% em maio A taxa de desempregados no Brasil caiu para 5,8% em maio, depois de registrar 6%

Leia mais

A primeira é a adoção de práticas que possam reduzir a gravidade dos acidentes.

A primeira é a adoção de práticas que possam reduzir a gravidade dos acidentes. CIC DAMAS DISCIPLINA MATEMÁTICA PROFESSOR GILMAR SANTOS FUNÇÃO AFIM TEXTO PARA A PRÓXIMA QUESTÃO (Ufsm 2004) Recomendações Da frieza dos números da pesquisa saíram algumas recomendações. Transformadas

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

Estudo de funções parte 2

Estudo de funções parte 2 Módulo 2 Unidade 3 Estudo de funções parte 2 Para início de conversa... Taxa de desemprego no Brasil cai a 5,8% em maio A taxa de desempregados no Brasil caiu para 5,8% em maio, depois de registrar 6%

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Função: definição, domínio e imagem. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Função: definição, domínio e imagem. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 11 matemática Função: definição, domínio e imagem Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico Secretaria

Leia mais

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Funções e Aplicações Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Maio de 2011 Índice 1 - Conjuntos Numéricos... 4 Intervalos... 5 Intervalos finitos... 5 Intervalos

Leia mais

Podemos concluir: Todas as funções desse tipo passam pelos pontos: (0,0),(-1,-1) e (1,1). Todas as funções desse tipo são exemplos de funções ímpares.

Podemos concluir: Todas as funções desse tipo passam pelos pontos: (0,0),(-1,-1) e (1,1). Todas as funções desse tipo são exemplos de funções ímpares. 4.3 Funções potência Uma função da forma f(x)=x n, onde n é uma constante, é chamada função potência. Os gráficos de f(x)=x n para n=1,2,3,4 e 5 são dados a seguir. A forma geral do gráfico de f(x)=x n

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

O 'motoboy' ganha R$2 por entrega, a empresa, R$8. É um exército de garotos em disparada.

O 'motoboy' ganha R$2 por entrega, a empresa, R$8. É um exército de garotos em disparada. DISCIPLINA- MATEMÁTICA PROFESSOR - GILMAR SANTOS FUNÇÃO AFIM TEXTO PARA A PRÓXIMA QUESTÃO (Ufsm 2004) Recomendações Da frieza dos números da pesquisa saíram algumas recomendações. Transformadas em políticas

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

TOPICO 9 FUNÇÕES MATEMÁTICAS E SUAS REPRESENTAÇÕES

TOPICO 9 FUNÇÕES MATEMÁTICAS E SUAS REPRESENTAÇÕES TOPICO 9 FUNÇÕES MATEMÁTICAS E SUAS REPRESENTAÇÕES Observe a tabela com valores Reais de x e y (ou seja, infinitos valores) x... 3 2 1 0 1 2 3 4... y... 6 4 2 0 2 4 6 8... Por meio da tabela acima, observa-se

Leia mais

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial Grandezas, Unidades de Medidas e Escala 1) (Enem) Um mecânico de uma equipe de corrida necessita que as seguintes medidas realizadas em um carro sejam obtidas em metros: a) distância a entre os eixos dianteiro

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

A x B = {(2;1), (2;3), (2;5), (4;1), (4;3), (4; 5)}

A x B = {(2;1), (2;3), (2;5), (4;1), (4;3), (4; 5)} PROFESSOR: EUDES A x B = {(2;1), (2;3), (2;5), (4;1), (4;3), (4; 5)} b) A relação binária h = {(x;y) y < x} A 2 1 3 4 5 B y x h: {(2;1), (4;1), (4,3)} c) A relação binária g = {(x;y) y= x + 3} A 2 1 3

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

Matemática. Resolução das atividades complementares. M4 Funções

Matemática. Resolução das atividades complementares. M4 Funções Resolução das atividades complementares Matemática M Funções p. Responda às questões e, tomando por base o teto abaio: (Unama-PA) O ATAQUE DOS ALIENS Caramujos africanos, medindo centímetros de comprimento

Leia mais

Onde usar os conhecimentos os sobre função?

Onde usar os conhecimentos os sobre função? II FUNÇÃO E LOGARITMO Por que aprender função?... As funções exponenciais e logarítmicas estão presentes no estudo de fenômenos que envolvem taxas de crescimento e de decrescimento. Onde usar os conhecimentos

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : 1 ESFERAS Consideramos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r o conjunto

Leia mais

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela.

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela. FUNÇÕES Em matemática, uma função é dada pela relação entre duas ou mais quantidades. A função de uma variável f(x) relaciona duas quantidades, sendo o valor de f dependente do valor de x. Existem várias

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

ENSINO DA FUNÇÃO AFIM

ENSINO DA FUNÇÃO AFIM Pró-Reitoria de Pós-Graduação e Pesquisa (PROPEP) Programa de Pós-Graduação em Ensino das Ciências Mestrado Profissional em Ensino das Ciências na Educação Básica ENSINO DA FUNÇÃO AFIM Apostila Autores

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

FUNÇÕES AULA 2 DO PLANO DE

FUNÇÕES AULA 2 DO PLANO DE Matemática Tema 2 Professora: Rosa Canelas FUNÇÕES AULA 2 DO PLANO DE TRABALHO Nº1 FUNÇÃO - DEFINIÇÃO Uma função é uma relação entre duas variáveis em que a cada valor da primeira, a variável independente,

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Trabalhando Matemática: percepções contemporâneas

Trabalhando Matemática: percepções contemporâneas CONSTRUINDO CONCEITOS SOBRE FAMÍLIA DE FUNÇÕES POLINOMIAL DO 1º GRAU COM USO DO WINPLOT Tecnologias da Informação e Comunicação e Educação Matemática (TICEM) GT 06 MARCOS ANTONIO HELENO DUARTE Secretaria

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau)

2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau) 2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau) Problema 01. Determine o coeficiente angular das retas cujos gráficos são dados abaixo: a) b) Problema 02. Através do coeficiente

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B).

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B). Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo : Funções.- Definições Sejam A e B dois conjuntos não vazios. Uma função f de

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS

ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS Após a realização de um experimento, deseja-se estabelecer a função matemática que relaciona as variáveis do fenómeno físico estudado. Nos nossos experimentos

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

RODA DE BICICLETA, BAMBOLÊ OU CICLO TRIGONOMÉTRICO?

RODA DE BICICLETA, BAMBOLÊ OU CICLO TRIGONOMÉTRICO? RODA DE BICICLETA, BAMBOLÊ OU CICLO TRIGONOMÉTRICO? Lessandra Marcelly Sousa da Silva Universidade Estadual Paulista Júlio de Mesquita Filho lessandramarcelly@gmail.com Resumo: Este trabalho é um relato

Leia mais

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES Prof. ANTONIO ROBERTO GONÇALVES Aprendizagem de Conceitos Se você precisa encontrar o volume de um silo de milho, a distância percorrida por um carro

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 Função do Primeiro Grau 1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 2)Uma função polinomial do 1 o grau y = f(x) é tal

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Álgebra Linear I Solução da 5ª Lista de Exercícios

Álgebra Linear I Solução da 5ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Engenharia de Produção Curso de Graduação em Engenharia Ambiental e Sanitária

Leia mais

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10]

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10] Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [;10] 1) Verifique se as funções são injetoras, sobrejetoras ou bijetoras: a) f: A B A 0 f 1 B 4 5 6 7 b) f: A B A 0 4 6 c) f: R R + definida

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 01. Dadas as funções definidas por f(x) = 1 2 x 2 x + e g(x) = + 1 2 5, determine o valor de f(2) + g(5). 02. Dada a função

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Matrizes e Sistemas de Equações Apresentação Lineares UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade você deverá ser capaz de: Descrever e comentar possibilidades

Leia mais

1. (Fgv 2005) a) Mostre que existem infinitas triplas ordenadas (x,y,z) de números que

1. (Fgv 2005) a) Mostre que existem infinitas triplas ordenadas (x,y,z) de números que SISTEMAS LINEARES 2 1. (Fgv 2005) a) Mostre que existem infinitas triplas ordenadas (x,y,z) de números que satisfazem a equação matricial: b) Resolva o sistema linear abaixo, nas incógnitas x e y, usando

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Por: George Schlesinger Existem diversos tipos de gráficos: linhas, barras, pizzas etc. Estudaremos aqui os gráficos

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 10B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Função Afim Um vendedor recebe, mensalmente, um salário que é composto por uma parte fixa de R$ 3.000,00 e uma

Leia mais

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais