Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis
|
|
- Valentina Fialho Campelo
- 5 Há anos
- Visualizações:
Transcrição
1 Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis
2 Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios Exercício 1. Sejam A e B pontos distintos da reta de equação x que distam duas unidades da reta de equação r : x y + 0. Qual o produto das ordenadas de A e B? Exercício. Determine o valor numérico de k para que a distância de um ponto de coordenadas (, k), situado no primeiro quadrante, à reta de equação x + 4y 4 0, seja igual a 18 unidades. Exercício. Em um sistema cartesiano ortogonal são dados os pontos P (, 0) e Q (0, ). O ponto A é o simétrico da origem em relação à reta PQ, quais os valores de x A e y A? Exercício 4. Qual a distância entre o ponto P(, 1) e a reta r de equação r : 6x 8y ? Exercício. Sejam A e B dois pontos da reta de equação y x +, que distam duas unidades da origem. Neste caso, qual a soma das abscissas de A e B? Exercício 6. No plano cartesiano da figura, feito fora de escala, o eixo x representa uma estrada já existente, os pontos A(8, ) e B(, 6) representam duas cidades e a reta r, de inclinação 4, representa uma estrada que será construída. Exercícios de Fixação Exercício 9. Determine a distância entre o ponto P(, ) e a reta r, de equação x + y 8 0. Exercício 10. Uma reta r de coeficiente angular m 4 está à distância d do ponto A(, 6). Determine a equação dessa reta. Exercício 11. Um trapézio foi desenhado a partir das interseções das retas r : x y 1 0 e s : y x + 0 com os eixos Ox e Oy. Qual a área deste trapézio? Exercício 1. Se os pontos A ( 1, 0), B (1, 0) e C (x, y) são vértices de um triângulo equilátero, então qual a distância entre A e C? Exercício 1. Consideramos a reta r : y x +. Se P 0 (x 0, y 0 ) é o ponto dessa reta mais próximo da origem dos eixos coordenados, qual o valor de x 0 + y 0? Exercício 14. Qual a distância entre as retas paralelas r : y x e s : y x + 7? Exercício 1. A reta r de equação 6x + 8y 48 0 intersecta os eixos coordenados cartesianos nos pontos P e Q. Desse modo, qual a distância, em u.c., de P a Q? Exercício 16. Duas retas r e s são dadas, respectivamente, pelas equações x 4y e x + y. Um ponto P pertencente à reta s tem abcissa positiva e dista unidades de medida da reta r. Se ax + by + c 0 é a equação da reta que contém P e é paralela a r, então, qual o valor de a + b + c? Exercício 17. Na figura abaixo, os triângulos OAB e OCD são semelhantes e AB CD b. Quais as coordenadas de C, de modo que as distâncias das cidades A e B até a nova estrada sejam iguais? Exercício 7. Considere as retas r : 4x y e s : 4x y 8 0. Qual a distância entre r e s? Exercício 8. Num plano cartesiano, sabe-se que os pontos A, B(1, ) e C(, ) pertencem a uma mesma reta, e que o ponto A está sobre o eixo Oy. Qual o valor da ordenada de A? Se a reta que passa por C e D tem por equação x + y a, a > 0, então qual a distância entre as retas AB e CD? Exercício 18. Sejam A, B, C, D vértices consecutivos de um quadrado tais que A (1, ) e B e D pertencem à reta de equação x y 4 0. Qual a área deste quadrado, em unidade de área? 1
3 Exercícios de Aprofundamento e de Exames. Exercício 19. Calcule o ponto de interseção das bissetrizes dos ângulos internos do triângulo delimitado pelas retas r : 7x y , s : x + y 1 0 e t : 7x + 17y Exercício 0. Qual o conjunto dos pontos P(x, y) do plano xoy tais que a distância de P ao eixo OX é igual a vezes a distância de P à reta r : y 4x 0? Exercício 1. Seja o triângulo ABC de vértices A(, 4), B(1, ) e C(, ). Qual a medida da altura relativa ao lado AB? Exercício. Resolva em R a equação x x 6x Exercício. Qual a equação do lugar geométrico de um ponto que se move de maneira que sua distância ao ponto (6, 0) é sempre igual a duas vezes sua distância à reta x 0?
4 Respostas e Soluções. 1. (Adaptado do vestibular do UNIUBE MG) Escrevendo A(, y A ) e B(, y B ), seguimos com y + d A,r 1 + ( ) y y. y. Por fim, as ordenadas são y A e y B, cujo produto é igual a.. (Extraído do vestibular do UFSC) A distância do ponto dado à reta em questão pode ser calculada como Agora, podemos fazer ou d + 4 k k 4 4k k k k k k 7 4k k 18 ( 18) 4k k 7 4 k 18 Por fim, como o ponto pertence ao primeiro quadrante, então k 7.. (Adaptado do vestibular do MACK SP) A reta PQ tem coeficiente angular igual a e linear igual a a y x b Uma perpendicular a PQ tem coeficiente angular igual a 1 e como a origem pertence a essa reta, então seu coeficiente linear igual a 0. Agora, a reta tem equação y x e cruza com y x + no ponto (1, 1). Por fim, o simétrico pode ser calculado como x A y A, o que resulta no ponto A(; ). 4. (Adaptado do vestibular do UEPI) Podemos escrever d P,r 6 + ( 8) (Adaptado do vestibular do UFMG) Podemos escrever d A,O (x 0) + (x + 0) x + (x + ) x + 8x 0. 4 x + 4x + 8x + 4 Cujas raízes são 0 e 8 (analogamente para o ponto B, teremos as mesmas coordenadas). Assim, a soma é (Adaptado do vestibular do IBMEC SP 014) Observe que a r tg 4 1 e o ponto médio do segmento AB, que é M( 11, 4) pertence a r, e seu coeficiente linear é b r Daí, temos que r : y x ( ), cuja interseção com Ox é o ponto, 0.
5 7. (Adaptado do vestibular do CEFET PR) Observe que r s e para calcularmos a distância entre elas, basta tomarmos um ponto em uma e usarmos a fórmula de distância de ponto à reta com a outra. Assim, perceba que o ponto A(, 1) r e agora d A,r. 4 ( ) ( 1) ( ) (Adaptado do vestibular do UEA AM 014) A reta r que passa por B e C tem a r e b r 1 1. Assim, temos r : y x + 1, ou seja, r : x y Como A(0, y A ) r, então d A,r 0, logo y d A,r A ( 1) 0 y A + 1 y A (Adaptado do vestibular do UEPB) Aplicando a fórmula, temos d P,r A reta pode ser escrita como r : y 4x + b ou ainda r : 4x + y b 0, cuja distância para o ponto A(, 6) é calculada como b d A,r ( 4) b b. 17 Assim, e 18 b 17 Por fim, as equações são e 18 b 17 b e b r : 4x + y e r : 4x + y (Adaptado do vestibular do UEPB 011) Observe que r intersecta os eixos nos pontos R 1 (1, 0) e R (0, 1) (o que produz uma base medindo ), agora s possui os pontos de interseção com Ox e Oy sendo ( ) ( S 1, 0 e S 0, maior medindo ), cuja distância produz a base. A altura h é a distância entre as retas r s, que pode ser calculada como d R1,s + ( ) h h. Por fim, a área é igual a ( ) + S u.a.. 1. (Adaptado do vestibular do PUC RJ 01) Como ABC é equilátero e BC, então AC. 1. (Adaptado do vestibular do UFJF MG) Seja s a reta que passa pela origem é perpendicular a r. Daí, a s 1 e b s 0, fazendo s : y x. Agora, r s pode ser encontrado como a solução do sistema que é { y x + y x, ( 4, ). Por fim, como x 0 4 e y 0, concluímos que x 0 + y (Adaptado do vestibular do UEPB) Como r s, basta tomarmos um ponto em r, por exemplo, e calcularmos sua distância para s. Assim, como O(0, 0) r, sigamos com d O,s 1 + ( 1) 7 1. (Adaptado do vestibular do UNEB BA) Observe que r Ox {(8, 0)} e r Oy {(0, 6)}. Assim, formamos um triângulo retângulo com catetos medindo 6 e 8, logo a medida da hipotenusa vale 10 u.c
6 16. (Adaptado do vestibular do ITA SP) Como P s, podemos escrevê-lo como P(x, x). Agora, aplicando a fórmula de distância de ponto à reta, ficamos com x 4 ( x) d P,r + ( 4) x 8 + 8x Aqui podemos ter 11x 11 11x 11 e 11x x 1 10 x 11 11x 11 11x x 1 10 x 9 e como x > 0, ficamos com x 11 e y 0. Agora, seja t r, então t : x 4y + c 0 e como (11, 0) t, então c Por fim, a + b + c (Adaptado do vestibular da EFOA MG) A distância D pedida é D d O,CD d O,AB. Agora, perceba que o membro da esquerda é a subtração das alturas dos triângulos OAB e OCD e, por semelhança, d O,AB d O,CD b. Daí, ficamos com D d O,CD d O,CD b D d O,CD (1 b). Como a equação de CD é x + y a, podemos escrever que C(0, a) e D(a, 0). Temos assim um triângulo retângulo isósceles de lado a, hipotenusa a e altura h d O,CD. Pelas relações métricas no triângulo retângulo, podemos escrever Por fim, D a(1 b). a h a a a h a d O,CD a. 18. (Adaptado do vestibular do PUC SP) A reta dada ( r : x y 4 0) é de uma das diagonais do quadrado (lembrando que elas são perpendiculares entre si), assim a outra diagonal é a reta de equação t : y x + b. Como A t, ficamos com b 4 e t : y x + 4. Agora, r t {(4, 0)} e podemos encontrar que o vértice C(7, ) e o comprimento da diagonal: d AC d AC ( 6) Portanto, o lado do quadrado é igual a 6 u.c. e sua área é igual a 6 u.a. 19. O incentro I(m, n) (ponto de encontro das bissetrizes) é equidistante de todos os lados do triângulo. Sendo assim, podemos escrever Como d I,r d I,s, teremos 7m n + 11 d I,r, 7 + ( 1) d I,s m + n 1 e d I,t 7m + 17n m n + 11 m + n ( 1) Como d I,r d I,t, teremos h + k 16. 7m n m + 17n ( 1) h 7k 1. E este sistema obtido tem solução I(, 1). 0. (Adaptado do vestibular do UESC BA) A distância de P até Ox é igual a y e até y 4x 0 pode ser calculada como 4x + y d P,r ( 4) + Do enunciado y 4x + y y 4x + y.
7 Aqui podemos ter 4x + y y e 4x + y y y y 4x y 4x y + y 4x 4y 4x y x y x. 1. Trace H como a projeção ortogonal do ponto C sobre a reta r definida pelos pontos A e B, tal que h CH é a altura procurada. Agora, temos AB : , x y 1 que resulta em x y 8 0. Por fim, d CH u.c.. + ( ) 1 1. (Extraído do Bando de Questões da OBMEP 01) Considere no plano cartesiano os pontos F, D e E de coordenadas (x, 0), (0, ) e (, 1), respectivamente. y D(0, ) Pela desigualdade triangular, x (x ) + 1 DF + FE DE. Com igualdade apenas quando D, F e E são colineares. Portando, o ponto F deve coincidir com a interseção G entre DE e o eixo Ox, ou seja, x 9/4.. Seja A(x, y) o ponto em questão, sua distância d até (6, 0) é d (x 6) + (y 0) d (x 6) + y, e sua distância D até a reta x 0 é D x + 0 D x. Do enunciado, concluímos que d D (x 6) + y x ( ) (x 6) + y x (x 6) + y (x ) x 1x y 4x 4 1x + 9 G(9/4, 0) F (x, 0) x x y 7 0. E(, 1) Podemos associar as distâncias entre alguns pontos aos radicais dados: DF x + 9 FE (x ) + 1 x 6x + 10 DE Elaborado por Tiago Miranda e Cleber Assis Produzido por Arquimedes Curso de Ensino 6
Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios
Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações
MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.
I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas
I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO
Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,
Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E
Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
PROFº. LUIS HENRIQUE MATEMÁTICA
Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,
Lista de férias. Orientação de estudos:
Lista de férias Orientação de estudos: 1. Você deve rever as aulas iniciais sobre distância entre dois pontos e coeficiente angular. Lembre-se que há duas maneiras para determinar o coeficiente angular.
Geometria Analítica Plana.
Geometria Analítica Plana. Resumo teórico e eercícios. 3º Colegial / Curso Etensivo. Autor - Lucas Octavio de Souza (Jeca) Estudo de Geometria Analítica Plana. Considerações gerais. Este estudo de Geometria
Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).
Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio
2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:
Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se
Exercícios de Matemática Geometria Analítica - Circunferência
Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas
02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.
Exercícios de apoio à disciplina Geometria Analítica e Cálculo Vetorial 1 01 Três vetores A, B e C possuem as seguintes componentes nas direções x e y: A x = 6, A y = -3; B x = -3, B y =4; C x =2, C y
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes
Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência
Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA
REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.
NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria
OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.
META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função
IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :
IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).
GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)
GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA
GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA PROF. ENZO MARCON TAKARA 05 - PLANO CARTESIANO ORTOGONAL Considere num plano a dois eixos x e y perpendiculares em O. O par de eixos
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível
Retas e Planos. Equação Paramétrica da Reta no Espaço
Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x
Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal
Universidade Tecnológica Federal do Paraná Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA Professor Responsável: Ivan José Coser
Lista 1: Vetores -Turma L
Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w
UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS
UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS. Usando a definição de parábola determinar, em cada um dos itens a
MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/013 Aluno(a): Número: Turma: 1) Determine
FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas
Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de
1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.
Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.
Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18
MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 9. Na maquete de uma casa, a réplica de uma caixa d água de 1000 litros tem 1 mililitro de capacidade. Se a garagem da maquete tem 3 centímetros de
Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru
Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P
AULA DE REPOSIÇÃO 001 / 3º ANO
UL DE REPOSIÇÃO 00 / 3º NO Introdução Inicialmente, para a primeira aula, será feita uma retomada de todo o assunto já estudado, uma vez que não é nada fácil simplesmente retomar o conteúdo sem que sejam
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será:
TEÁTIC 1ª QUESTÃO Um avião possui 10 poltronas de passageiros distribuídas em 0 filas. Cada fila tem poltronas do lado esquerdo (denotadas por, B, C) e do lado direito (denotadas por D, E, F), separadas
Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.
Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período
(Exames Nacionais 2002)
(Exames Nacionais 2002) 105. Na figura estão representadas, num referencial o.n. xoy: parte do gráfico de uma função f, de domínio R +, definida por f(x)=1+2lnx; a recta r, tangente ao gráfico de f no
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
Preparação para o teste intermédio de Matemática 8º ano
Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos
ELIPSES INSCRITAS NUM TRIÂNGULO
ELIPSES INSCRITAS NUM TRIÂNGULO SERGIO ALVES IME-USP Freqüentemente apresentada como um exemplo notável de sistema dedutivo, a Geometria tem, em geral, seus aspectos indutivos relegados a um segundo plano.
INTRODUÇÃO O sistema de coordenadas ao qual estamos acostumados é o sistema de coordenadas
Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 17 ESTUDO DAS CÔNICAS USANDO COORDENADAS POLARES Tiago Santos Arruda 1, Bruno Rogério Locatelli dos Santos, Eugenia
Capítulo 1. x > y ou x < y ou x = y
Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}
MATEMÁTICA 3. Resposta: 29
MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e
Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é
1. (Espce- 01) A figura a seguir apresenta o gráfico de um polinômio P() do º grau no intervalo 0,5. O número de raízes reais da equação a) 0 b) 1 c) d) e) P 1 0 no intervalo 0,5 é. (Ufrn 01) Considere,
5 LG 1 - CIRCUNFERÊNCIA
40 5 LG 1 - CIRCUNFERÊNCIA Propriedade: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a circunferência de centro O e raio r. Notação: Circunf(O,r). Sempre
Dupla Projeção Ortogonal / Método de Monge
Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade Para a Frequência do Ensino Superior dos Maiores de 23 Anos 2015 Prova de Desenho e Geometria Descritiva - Módulo de Geometria Descritiva
O coeficiente angular
A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir
NOME :... NÚMERO :... TURMA :...
1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO Relações métricas envolvendo a circunferência Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... X - RELAÇÕES MÉTRICAS NO DISCO (Potência de Ponto) X.1) Relação
1 Módulo ou norma de um vetor
Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo
Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA
Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na
Vestibular 2ª Fase Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis
Expressões Algébricas e Polinômios. 8 ano/e.f.
Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício
valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109
LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um
Bissetrizes e suas propriedades.
Semana Olímpica 013 - Prof. ícero Thiago - olégio ETP/SP issetrizes e suas propriedades. Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual à distância de P a
MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 5 Geometria Plana I. Mostre que o ângulo inscrito em uma circunferência é a metade do ângulo central correspondente. 1. (MAM-Mathematical
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 06.05.2011 10.º no de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a
MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.
MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),
PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A
PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso
É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A
4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los
TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:
TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema
QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.
Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados
Aula 8 Distância entre pontos do plano euclidiano
Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois
AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A
AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero
Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.
Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica
Lista 8 - Geometria Analítica
Lista 8 - Geometria Analítica Posição Relativa, Distância e Ângulos e paralelo a reta x = y = z 7 1 Estude a posição relativa das retas r e s. Se as retas forem concorrentes encontre o ponto de intersecção
GEOMETRIA ESPACIAL - PIRÂMIDES
GEOMETRIA ESPACIAL - PIRÂMIDES Questão 0 - (FAMERP SP) O gráfico indica uma reta r, que intersecta o eixo y no ponto de coordenadas (0, n). De acordo com os dados disponíveis nesse gráfico, n é igual a
COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9
Prof. Rossini Bezerra Faculdade Boa Viagem
Sistemas de Coordenadas Polares Prof. Rossini Bezerra Faculdade Boa Viagem Coordenadas Polares Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no
MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.
1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto
FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.
FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8
1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra
GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos
As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:
Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]
AV1 - MA 13-2011 UMA SOLUÇÃO. b x
Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,
INSTITUTO TECNOLÓGICO
PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA
FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:
FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro
A trigonometria do triângulo retângulo
A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e
1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.
1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento
RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14
FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,
Lista de Exercícios 03
Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados
1ª Parte Questões de Múltipla Escolha
MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo
Olimpíadas Portuguesas de Matemática
XXV OPM Final o dia 7 Categoria A Justifica convenientemente as tuas respostas e indica os principais cálculos Não é permitido o uso de calculadoras http://wwwpt/~opm Duração: horas Questão : 6 pontos
Módulo de Geometria Anaĺıtica 1. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)
Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton
Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5
Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar
Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana
Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade
A B C F G H I. Apresente todas as soluções possíveis. Solução
19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura