GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

Tamanho: px
Começar a partir da página:

Download "GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo."

Transcrição

1 GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua é 0cm. Tal peça deve se vazada de maneia que a pefuação na foma de um cilindo cicula eto seja tangente as suas faces lateais, confome mosta a figua. O aio da pefuação da peça e igual a: a) cm b) cm c) cm d) 4cm e) 5cm ) Um aquiteto está fazendo um pojeto de iluminação de ambiente e necessita sabe a altua que deveá instala a lumináia ilustada na figua. Sabendo-se que a lumináia deveá ilumina uma áea cicula de 8,6m, consideando =,4, a altua h seá igual a: a) m b) 4m c) 5m d) 9m e) 6m ) Dona Maia, diaista na casa da família Teixeia, pecisa faze café paa sevi as vinte pessoas que se encontam numa eunião na sala. Paa faze o café, Dona Maia dispõe de uma leiteia cilíndica e copinhos plásticos, também cilíndicos. Com o objetivo de não despediça café, a diaista deseja coloca a quantidade mínima de água na leiteia paa enche os vinte copinhos pela metade. Paa que isso ocoa, Dona Maia deveá: a) Enche a leiteia até a metade, pois ela tem um volume 0 vezes maio que o volume do copo. b) Enche a leiteia toda de água, pois ela tem um volume 0 vezes maio que o volume do copo. c) Enche a leiteia toda de água, pois ela tem um volume 0 vezes maio que o volume do copo. d) Enche duas leiteias de água, pois ela tem um volume 0 vezes maio que o volume do copo.

2 e) Enche cinco leiteias de água, pois ela tem um volume 0 vezes maio que o volume do copo. 4) Paa constui uma manilha de esgoto, um cilindo com m de diâmeto e 4m de altua (de espessua despezível), foi envolvido homogeneamente po uma camada de conceto, contendo 0cm de espessua. Supondo que cada meto cúbico de conceto custe R$0,00 e tomando, como valo apoximado de, então o peço dessa manilha e igual a: a) R$ 0,40 b) R$ 4,00 c) R$04,6 d) R$ 54,56 e) R$ 49,60 5) Na figua, está epesentada uma toe de quato andaes constuída com cubos conguentes empilhados, sendo sua base fomada po dez cubos. Calcule o númeo de cubos que fomam a base de outa toe, com 00 andaes, constuída com cubos iguais e pocedimento idêntico. 6) Um cone cicula eto está inscito em um paalelepípedo eto etângulo, de base quadada, como mosta a figua. A azão b a ente as dimensões do paalelepípedo é / e o volume do cone é π. Detemine o compimento g da geatiz do cone. 7) A figua abaixo epesenta um cilindo cicunscito a uma esfea. Se é o volume da esfea e é o volume do cilindo, então a azão a) /. é

3 b) /. c). d). e). 8) Duas esfeas de aio foam colocadas dento de um cilindo cicula eto com altua 4, aio de base e espessua despezível, como na figua abaixo. Nessas condições, a azão ente o volume do cilindo não ocupado pelas esfeas e o volume das esfeas é a) /5. b) /4. c) /. d) /. e) /. 9) Um esevatóio tem foma de um cilindo cicula eto com duas semiesfeas acopladas em suas extemidades, confome epesentado na figua abaixo. O diâmeto da base e a altua do cilindo medem, cada um, 4dm. Dente as opções abaixo, o valo mais póximo da capacidade do esevatóio, em litos, é a) 50. b) 60. c) 70. d) 80. e) 90. RESPOSTAS GEOMETRIA ESPACIAL ) Solução: A base do pisma é um tiângulo etângulo, pois as dimensões são 6, 8, 0 (múltiplo de, 4 e 5). Temos (6 R) + (8 R) = 0 4 R = = R 4 = R 4 = R = R ) Solução: Se a áea a se iluminada mede 8,6m e é o aio da áea cicula iluminada, então:

4 π = 8,6 = 8,6 = 9 = m,4 A altua seá calculada na elação de Pitágoas h = 5 = 5 9 = 6 = 4m ) Solução: Pimeiamente, vamos calcula o volume da leiteia cujo fomato é de um cilindo. olume = Áea da base x altua = (. ).(0) = (.4 ).(0) 0cm. Calculando o volume do copinho, temos: (.).4 = 6cm. O volume de 0 copinhos cheios pela metade vale: (6).(0,5).(0) = 60cm. Este é o volume de água necessáio. Repaem que ele coesponde à metade do volume da leiteia. 4) Solução: olume do conceto é, logo: = olume do cilindo maio volume do cilindo meno =.(,).(4) -.( ).(4) = =,76 = (,76).(,) = = 5,456m. O peço da manilha seá (5,456).(R$0,00) = R$ 54,56. 5) Solução: Obseve que o númeo de cubos em cada anda, patindo do mais alto, é o esultado da soma do total de cubos do anda anteio com o númeo indicado do anda atual. Logo, com 5 andaes a base teia ( ) = 5 cubos. Essa soma epesenta a soma de uma Pogessão Aitmética de azão. Calculando o númeo de cubos da base paa 00 andaes, temos: Base: S 00 = = (+00). 00 = (0). (55) = ) Solução: g = b + ( a ) b a = b = a π (a ) b = π a b = a a = a = 4 a = 8 a = b =. = 6 = g = + ( ) g = 9 + g = 0

5 7) Solução: O volume nós já sabemos que é 4. Paa o cilindo, nós sabemos que o aio de base é e que a altua é. Logo, o volume é. Substituindo na fómula pedida, teemos Leta D ) Solução: Pimeiamente vamos calcula o volume do cilindo inteio. Sabemos que o aio da base é e a altua é 4. Então o volume é 4 4. O volume ocupado pelas esfeas é 4 volume não ocupado pelas esfeas dividido pelo volume das esfeas, ou seja: = 8. Queemos calcula o total esfeas Leta D 9) Solução: esfeas Como o diâmeto da base é 4 dm, então os aios da base e, consequentemente das semiesfeas, é dm. O volume que queemos é a soma dos volumes do cilindo e das duas semiesfeas (que juntas, fomam uma esfea). O volume do cilindo é volumes e substituindo po,5, teemos: ,05 84 e o volume das duas semiesfeas é 4 8. Somando os dois dm³. Na vedade, se substituíssemos pelo seu valo eal, teíamos um pouco menos que 84. Assim, o númeo mais póximo de 84 nas altenativas é 80. Leta D

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line Esse mateial é pate integante do ulas Paticulaes on-line do IESDE BSIL S/, MTEMÁTI PÉ-VESTIBUL LIVO DO POFESSO 006-009 IESDE Basil S.. É poibida a epodução, mesmo pacial, po qualque pocesso, sem autoização

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

Renato Frade Eliane Scheid Gazire

Renato Frade Eliane Scheid Gazire APÊNDICE A CADENO DE ATIVIDADES PONTIFÍCIA UNIVESIDADE CATÓLICA DE MINAS GEAIS Mestado em Ensino de Ciências e Matemática COMPOSIÇÃO E/OU DECOMPOSIÇÃO DE FIGUAS PLANAS NO ENSINO MÉDIO: VAN HIELE, UMA OPÇÃO

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

32 m. Sabendo que a medida de sua altura é o dobro da medida de seu

32 m. Sabendo que a medida de sua altura é o dobro da medida de seu IST DE EXERCÍCIOS PR RECUPERÇÃO DE MTEMÁTIC PROFESSOR MOBI IST DE CIINDROS - 0 atua de um ciindo eto vae e o aio da ase mede Detemine a áea tota e o voume do ciindo O voume de um ciindo equiáteo vae 5

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico Univesidade Abeta do Nodeste e Ensino a Distância são macas egistadas da Fundação Demócito Rocha É poibida a duplicação ou epodução deste fascículo Cópia não autoizada é Cime Matemática e suas Tecnologias

Leia mais

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação:

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação: Capítulo Gavitação ecusos com copyight incluídos nesta apesentação: Intodução A lei da gavitação univesal é um exemplo de que as mesmas leis natuais se aplicam em qualque ponto do univeso. Fim da dicotomia

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Pofissional SENAI Plínio Gilbeto Köeff MECÂNICA TÉCNICA Pofesso: Dilma Codenonsi Matins Cuso: Mecânica de Pecisão São Leopoldo 2009 1 SUMÁRIO

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex:

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA ESCOL DE ESPECILISTS DE ERONÁUTIC CONCURSO DE DMISSÃO O CS /00 PROV DE MTEMÁTIC ÍSIC QUÍMIC CÓDIGO D PROV 9 MRQUE NO CRTÃO DE RESPOSTS O CÓDIGO D PROV. s questões de 0 a 0 efeem se a Matemática 0 Se a

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

FAÇA AS ATIVIDADES NAS DATAS SUGERIDAS PARA RELEMBRAR O QUE JÁ APRENDEMOS.

FAÇA AS ATIVIDADES NAS DATAS SUGERIDAS PARA RELEMBRAR O QUE JÁ APRENDEMOS. NOME: QUEIDO(A) EDUCANDINHO(A). FAÇA AS ATIVIDADES NAS DATAS SUGEIDAS PAA ELEMBA O QUE JÁ APENDEMOS. APOVEITE AS FÉIAS PAA DESCANSA E FAZE MUITAS COISAS GOSTOSAS E DIVETIDAS. VEJA ALGUMAS DICAS: BINCA

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB 1 C 16 B 31 C 46 E 61 A 76 D

QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB QUESTÃO GAB 1 C 16 B 31 C 46 E 61 A 76 D LINGUAGENS, CÓDIGOSE SUAS TECNOLOGIAS Simulado ENEM 01 Etapa I 01 ª Séie do Ensino Médio - º DIA 5/11 LINGUAGENS, CÓDIGOS E SUAS TECNOLOGIAS MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICAE SUAS TECNOLOGIAS QUESTÃO

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais Mecânica Clássica (icenciatuas em Física Ed., Química Ed.) Folha de oblemas 4 Movimentos de coos sob acção de foças centais 1 - Uma atícula de massa m move-se ao longo do eixo dos xx, sujeita à acção de

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

Movimentos: Variações e Conservações

Movimentos: Variações e Conservações Movimentos: Vaiações e Consevações Volume único Calos Magno S. da Conceição Licinio Potugal Lizado H. C. M. Nunes Raphael N. Púbio Maia Apoio: Fundação Ceciej / Extensão Rua Visconde de Niteói, 1364 Mangueia

Leia mais

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva De Keple a Newton (atavés da algeba geomética) 008 DEEC IST Pof. Calos R. Paiva De Keple a Newton (atavés da álgeba geomética) 1 De Keple a Newton Vamos aqui mosta como, a pati das tês leis de Keple sobe

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1 ATIVIDADES - CAPÍTULO 1 1 COMPLETE AS FASES USANDO AS PALAVAS DO QUADO: CUIDADOS INTENET CONTAS DIGITA TAEFAS COMPUTADO A COM O COMPUTADO É POSSÍVEL DE TEXTO B O COMPUTADO FACILITA AS tarefas digitar VÁIOS

Leia mais

MAT1514 Matemática na Educação Básica

MAT1514 Matemática na Educação Básica MAT54 Matemática na Educação Básica TG7 Uma Intodução ao Cálculo de olumes Gabaito Demonste que o volume de um bloco etangula cujas medidas das aestas são númeos acionais é o poduto das tês dimensões esposta:

Leia mais

REDUÇÃO DE CROMO HEXAVALENTE UTILIZANDO-SE FILMES DE POLIANILINA. ESTUDO DA DISTRIBUIÇÃO DE POTENCIAL ELÉTRICO NO INTERIOR DO ELETRODO POROSO

REDUÇÃO DE CROMO HEXAVALENTE UTILIZANDO-SE FILMES DE POLIANILINA. ESTUDO DA DISTRIBUIÇÃO DE POTENCIAL ELÉTRICO NO INTERIOR DO ELETRODO POROSO REDUÇÃO DE CROMO HEXAVALENTE UTILIZANDO-SE FILMES DE POLIANILINA. ESTUDO DA DISTRIBUIÇÃO DE POTENCIAL ELÉTRICO NO INTERIOR DO ELETRODO POROSO L.A.M. Ruotolo 1 e J. C. Gubulin Depatamento de Engenhaia Química,

Leia mais

João Eduardo de Souza Grossi

João Eduardo de Souza Grossi UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE INSTITUTO DE MATEMÁTICA E ESTATÍSTICA MESTRADO PROFISSIONALIZANTE, MODELAGEM MATEMÁTICA EM FINANÇAS MODELO DISCRETO DE APREÇAMENTO

Leia mais

Questão 2. Questão 1. Resposta. Resposta

Questão 2. Questão 1. Resposta. Resposta Atenção: Esceva a esolução COMPLETA de cada questão no espaço esevado paa a mesma. Não basta esceve apenas o esultado final: é necessáio mosta os cálculos e o aciocínio utilizado. Utilize g 10m/s e π3,

Leia mais

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler).

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler). 3 - DESCRIÇÃO DO EEVADOR Abaixo apesentamos o diagama esquemático de um elevado (obtido no site da Atlas Schindle). Figua 1: Diagama esquemático de um elevado e suas pates. No elevado alvo do pojeto, a

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

2.6 RETRODISPERSÃO DE RUTHERFORD. 2.6.1 Introdução

2.6 RETRODISPERSÃO DE RUTHERFORD. 2.6.1 Introdução Capítulo Técnicas de Caacteização Estutual: RS.6 RETRODISPERSÃO DE RUTHERFORD.6. Intodução De modo a complementa a análise estutual das váias amostas poduzidas paa este tabalho, foi utilizada a técnica

Leia mais

Introdução. O trabalho encontra-se resumidamente estruturado da seguinte forma:

Introdução. O trabalho encontra-se resumidamente estruturado da seguinte forma: Intodução. À medida que sistemas wieless se tonam mais ubíquos, um entendimento da popagação em ádio-feqüência (RF) paa popósitos de planejamento, tona-se significativamente impotante. Com a cescente utilização

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica, LISTA 3 - Pof Jason Gallas, DF UFPB 1 de Junho de 13, às 18: Execícios Resolvidos de Física Básica Jason Alfedo Calson Gallas, pofesso titula de física teóica, Douto em Física pela Univesidade Ludwig Maximilian

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Capítulo III Lei de Gauss

Capítulo III Lei de Gauss ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 3.1 Fluxo eléctico e lei de Gauss Capítulo III Lei de Gauss A lei de Gauss aplicada ao campo eléctico, pemite-nos esolve de

Leia mais

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET ELETRÔNICA II Engenaia Elética Campus Pelotas Revisão Modelo CA dos tansistoes BJT e MOSFET Pof. Mácio Bende Macado, Adaptado do mateial desenvolvido pelos pofessoes Eduado Costa da Motta e Andeson da

Leia mais

Motores Elétricos. IX.1 Motores de Indução Trifásicos (MIT)

Motores Elétricos. IX.1 Motores de Indução Trifásicos (MIT) Eletotécnica Geal IX. Motoes Eléticos IX Motoes Eléticos Um moto elético é uma máquina capaz de tansfoma enegia elética em enegia mecânica, utilizando nomalmente o pincípio da eação ente dois campos magnéticos.

Leia mais

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO NÁLIE D IBILIDDE D REDE DE TRNPORTE E DITRIBUIÇÃO. Maciel Babosa Janeio 03 nálise da iabilidade da Rede de Tanspote e Distibuição. Maciel Babosa nálise da iabilidade da Rede de Tanspote e Distibuição ÍNDICE

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

11. ÁGUA SUBTERRÂNEA / HIDRÁULICA DE POÇOS

11. ÁGUA SUBTERRÂNEA / HIDRÁULICA DE POÇOS . ÁGUA SUBTEÂNEA / HIDÁULICA DE POÇOS.. Intodução. Caacteísticas dos meios poosos Neste capítulo, são estudados os escoamentos da água atavés de meios poosos, dando-se paticula ênfase à hidáulica de poços.

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas Poceeding Seies of te Bazilian Society of Applied and Computational Matematics, Vol., N. 1, 14. Tabalo apesentado no CMAC-Sul, Cuitiba-PR, 14. Análise do Pefil de Tempeatuas no Gás de Exaustão de um Moto

Leia mais

As grandezas vetoriais

As grandezas vetoriais As gandezas vetoiais No capítulo I, vimos o poquê da utilização de vetoes na caacteização de algumas gandezas físicas, difeenciando as gandezas escalaes das vetoiais. As gandezas escalaes são aquelas pefeitamente

Leia mais

Transformações geométricas

Transformações geométricas Instituto Politécnico de Bagança Escola upeio de Educação Tansfomações geométicas 1 Tanslações endo dado um vecto u, a tanslação associada a u é a aplicação que faz coesponde ao ponto M o ponto M tal que

Leia mais

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade A UA UL LA Unidades de volume Introdução Com esta aula iniciamos uma nova unidade do Telecurso 2000: a Geometria Espacial. Nesta unidade você estudará as propriedades de figuras espaciais, tais como: o

Leia mais

Dimensionamento de uma placa de orifício

Dimensionamento de uma placa de orifício Eata de atigo do engenheio Henique Bum da REBEQ 7-1 Po um eo de fechamento de mateial de ilustação, pate do atigo do Engenheio Químico Henique Bum, publicado na seção EQ na Palma da Mão, na edição 7-1

Leia mais

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998 Romeo Taaes Vestibulaes da UFPB Poas de Física Resolidas de 994 até 998 João Pessoa, outubo de 998 Pof. Romeo Taaes - (8)5-869 Apesentação Romeo Taaes é Bachael em Física pela Uniesidade Fedeal de Penambuco,

Leia mais

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueador Sênior

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueador Sênior PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoia Fanqueado Sênio Dados da Empesa Razão Social: Soidents Fanchising Ltda Nome Fantasia: Soidents Clínicas Odontológicas Data de fundação: 20

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

Análise de Correlação e medidas de associação

Análise de Correlação e medidas de associação Análise de Coelação e medidas de associação Pof. Paulo Ricado B. Guimaães 1. Intodução Muitas vezes pecisamos avalia o gau de elacionamento ente duas ou mais vaiáveis. É possível descobi com pecisão, o

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação Pontifícia Uniesidade Católica do Rio de Janeio Depatamento de Engenhaia Mecânica Pojeto Final de Gaduação ANÁLISE DO PROCESSO DE DESLOCAMENTO DE LÍQUIDOS EM POÇOS COM EXCENTRICIDADE VARIÁVEL Aluno: Benado

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais

FLEXÃO DE ELEMENTOS CURVOS EM COMPÓSITOS OBTIDOS POR AUTOCLAVE

FLEXÃO DE ELEMENTOS CURVOS EM COMPÓSITOS OBTIDOS POR AUTOCLAVE MÉTODOS COMPUTACIONAIS M NGNHARIA Lisboa, 31 de Maio de Junho, 004 APMTAC, Potugal 004 FLXÃO D LMNTOS CURVOS M COMPÓSITOS OBTIDOS POR AUTOCLAV J. Tavassos e A. Leite Instituto Supeio de ngenhaia de Lisboa

Leia mais

Aula ONDAS ELETROMAGNÉTICAS

Aula ONDAS ELETROMAGNÉTICAS ONDAS ELETROMAGNÉTICAS Aula 6 META Intoduzi aos alunos conceitos básicos das ondas eletomagnéticas: como elas são poduzidas, quais são suas caacteísticas físicas, e como desceve matematicamente sua popagação.

Leia mais

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA LIMA, Nélio Neves; CUNHA, Ygho Peteson Socoo Alves MARRA, Enes Gonçalves. Escola de Engenhaia Elética

Leia mais

ATIVIDADE DE FÉRIAS PRÉ

ATIVIDADE DE FÉRIAS PRÉ ATIVIDADE DE FÉIAS PÉ EDUCANDO (A): FÉIAS ESCOLAES 2013 Como é gostoso aprender cada dia mais, conhecer professores e novos amigos... Mas, quando chega às férias, tudo se torna bem mais gostoso, podemos

Leia mais

Notas de Aula de Física

Notas de Aula de Física Vesão pelimina de setembo de Notas de Aula de ísica 8. CONSRVAÇÃO DA NRGIA... ORÇAS CONSRVATIVAS NÃO-CONSRVATIVAS... TRABALHO NRGIA POTNCIAL... 4 ORÇAS CONSRVATIVAS - NRGIA MCÂNICA... 4 negia potencial

Leia mais

Professor: Newton Sure Soeiro, Dr. Eng.

Professor: Newton Sure Soeiro, Dr. Eng. UNIVERSIDDE FEDERL DO PRÁ MESTRDO EM ENGENHRI MECÂNIC GRUPO DE VIRÇÕES E CÚSTIC nálise Modal Expeimental Pofesso: Newton Sue Soeio, D. Eng. elém Paá Outubo/00 Gupo de Vibações e cústica UFP nálise Modal

Leia mais

Rolamentos rígidos de esferas

Rolamentos rígidos de esferas Rolamentos ígidos de esfeas Os olamentos ígidos de esfeas estão disponíveis em váios tamanhos e são os mais populaes ente todos os olamentos. Esse tipo de olamento supota cagas adiais e um deteminado gau

Leia mais

UNIVERSIDADE ESTADUAL DE LONDRINA Concurso Vestibular 2003 07/01/03

UNIVERSIDADE ESTADUAL DE LONDRINA Concurso Vestibular 2003 07/01/03 UNIVERSIDADE ESTADUAL DE LONDRINA Concuso Vestibula 00 07/0/0 INSTRUÇÕES. Confia, abaixo, seu nome e númeo de inscição. Assine no local indicado.. Aguade autoização paa abi o cadeno de povas.. A intepetação

Leia mais

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio Fenômenos de Tanspote Equações Básicas na Foma Integal - I Pof. M. Sc. Lúcio P. Patocínio Objetivos Entende a utilidade do teoema de Tanspote de Reynolds. Aplica a equação de consevação da massa paa balancea

Leia mais

Potencial Elétrico. Prof. Cláudio Graça 2012

Potencial Elétrico. Prof. Cláudio Graça 2012 Potencal Elétco Po. Cláudo Gaça Campo elétco e de potencal Campo e Potencal Elétcos E Potencal gavtaconal Potencal Elétco O potencal elétco é a quantdade de tabalho necessáo paa move uma caga untáa de

Leia mais

Ivan Correr (UNIMEP) ivcorrer@unimep.br. Ronaldo de Oliveira Martins (UNIMEP) romartin@unimep.br. Milton Vieira Junior (UNIMEP) mvieira@unimep.

Ivan Correr (UNIMEP) ivcorrer@unimep.br. Ronaldo de Oliveira Martins (UNIMEP) romartin@unimep.br. Milton Vieira Junior (UNIMEP) mvieira@unimep. X SMPEP Bauu, SP, Basil, 7 a 9 de ovembo de 2005 Avaliação do índice de utilização de máquinas feamentas CC em uma empesa de usinagem, po meio da análise da técnica de pé ajustagem de feamentas. - van

Leia mais

PR I. Teoria das Linhas de Transmissão. Carlos Alberto Barreiro Mendes Henrique José da Silva

PR I. Teoria das Linhas de Transmissão. Carlos Alberto Barreiro Mendes Henrique José da Silva PR I II Teoia das Linhas de Tansmissão Calos Albeto Baeio Mendes Henique José da Silva 5 Linhas de Tansmissão 1 LINHAS DE TRANSMISSÃO 1.1 Paâmetos distibuídos Um cabo coaxial ou uma linha bifila (mostados

Leia mais