Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Tamanho: px
Começar a partir da página:

Download "Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais"

Transcrição

1 Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas: são aquelas que independem do tamanho do ema, isto é, da quantidade de matéia. Exemplos : tempeatua, pessão, massa específica, viosidade absoluta, etc. matéia. Extensivas : são aquelas cujos valoes dependem do tamanho do ema, isto é, da quantidade de Exemplos : volume, massa, enegia cinética, peso, etc. Po.ext m popiedade intensiva Métodos paa solução de poblemas: - Sistema: é uma quantidade fixa de massa composta sempe pelas mesmas patículas. Sepaando o ema do meio, temos a fonteia que é pemeável à enegia e impemeável à massa. A fonteia pode se eal ou imagináia, fixa ou móvel, defomável ou indefomável. Exemplo: - olume de Contole: é uma egião de nosso estudo. Sepaando o olume de Contole do meio, temos a supefície de contole. A supefície de contole pode se eal ou

2 imagináia, fixa ou móvel, defomável ou indefomável à enegia, pemeável ou impemeável à massa. Exemplo: Teoema do Tanspote de eynold s Intodução: O teoema de eynold s tansfoma as equações válidas paa emas em equações válidas paa volume de contole. F m a P m dm N popiedade extensiva qualque N m η popiedade intensiva

3 Da definição do cálculo: df dx dn dn F lim x lim t ( x x) x F( x) [ N( t t) N( t) ] t N t t vc N N N lim t t N N entada(-) saída t N vc dn dn vc fluxos n {pojeta o veto velocidade na dieção da nomal á supefície de eoamento} dm da. l. ρ da. l volume elementa d Popiedade em cada ponto pode se dada po η. dm η. d N η. dm η. da. l vc vc Po definição: N N fluxo lim lim t t t fluxo η. n. da η. da. l t dn d vc η. d η. n. da

4 Equação da continuidade A equação da continuidade analisa num volume de contole a popiedade extensiva massa. Assim sendo, no teoema de eynolds temos: N m N m e η m m dn d vc η. d η. n. da dm d vc. d. n. da dm Mas N m m m consevação da massa e η logo: d vc d. n. da Eq. da continuidade CONCEITO DE EGIME PEMANENTE egime Pemanente: Ocoe quando todas as popiedades num mesmo ponto não vaiam com o passa do tempo. O oposto de egime pemanente é o que chamamos de egime vaiável.. d vc Paa egime pemanente:: d. n. da esultando : ρ (egime Pemanente ) Popiedades Unifomes na Seção de Eoamento: Entendemos como seção de eoamento, todo plano colocado pependiculamente ao mesmo. As popiedades são consideadas unifomes na seção de eoamento, quando num ceto instante, todos os seus pontos têm o mesmo valo de uma ceta popiedade. Caso contáio, as popiedades são consideadas não unifomes.

5 º Execício esolvido - Equação da continuidade em egime Pemanete e popiedades unifomes No esquema abaixo, um fluido incompessível em egime pemanente, eoa apesentando popiedades unifomes nas supefícies de contole e. Sendo conhecidas a velocidade média em, a áea e a áea. Detemina a velocidade média em. Solução. Tendo em vista o eoamento se em egime pemanente temos: ρ. n. da No pesente poblema são dois fluxos, sendo um de entada ( secção ) e outo de saída ( secção ) logo: v ρ. n. da n. da O fluxo é negativo ( xn) < (entada no C) e o fluxo é positivo ( xn) > (saída do C) As popiedades são unifomes assim sendo: v n. da n. da ρ ma ρ m A Como o eoamento o é incompessível ρ ρ esultando: A m A m ou m m A A

6 º Execício esolvido Equação da continuidade em egime Pemanente e popiedades não unifomes Execício: No esquema abaixo, está ocoendo um eoamento de um fluido incompessível, em egime pemanente. A massa específica é unifome em todas as supefícies de contole do eoamento. Paa a supefície de contole, a distibuição de velocidades é dada po: máx. Paa a supefície de contole, a distibuição de velocidade é dada po: máx. Supondo dados: máx, A, A, detemina máx. Solução. Tendo em vista o eoamento se em egime pemanente temos: ρ. n. da No pesente poblema são dois fluxos, sendo um de entada ( secção ) e outo de saída ( secção ) logo: ρ. n. da n. da v v O fluxo é positivo ( xn) > (saída do C) e o fluxo é negativo ( xn) < A popiedade não é unifome assim sendo: (entada do C)

7 .... da da n da n da A ρ ρ ρ ρ Como o eoamento o é incompessível ρ ρ esultando: da da A ρ max max d d π π Integando temos: max max d d π π max max d d d d max max d d d d Substituindo os extemos max 4 max 4 max 4 max max max

8 max max 4 4 max max 6 6 max,5 max º EXECÍCIO A SE ESOLIDO PELO ALUNO O dispositivo abaixo esquematizado mistua água quente (enta po ) com água fia (enta po ), tendo todas as entadas e a saída o diâmeto de mm. Pode-se considea o eoamento em egime pemanente, popiedades unifomes e fluido incompessível. Supondo que o pocesso exige que a velocidade média de eoamento na seção de saída seja de,5 m/s, e que,5m / s, calcula o diâmeto na secção.

9 º EXECÍCIO A SE ESOLIDO PELO ALUNO No esquema temos o eoamento de fluido sobe uma placa plana fixa. A distibuição de velocidade dento da camada limite fomada, obedece à equação: y y δ δ, onde δ é a espessua da camada limite. Em CD a espessua da camada limite é de 5mm. O fluido que eoa é o a, em egime pemanente, sua massa específica é de, kg/m e velocidade antes de atingi a placa igual a m/s. A lagua da placa é de,6m. Detemina a vazão em massa que cuza BCC B. Considea o a como fluido incompessível. º EXECÍCIO A SE ESOLIDO PELO ALUNO O dispositivo abaixo esquematizado mistua água quente (enta em ) com água fia (enta em ). Podese considea o eoamento em egime pemanente, fluido incompeensível e popiedades unifomes na seção de saída. Na seção de entada da água quente, o duto tem aio de mm e a distibuição de velocidades em unidades do Sistema Intenacional é dada po : ( ). Na seção de entada de água fia, o duto tem aio de 5 mm e a distibuição de velocidades em unidades do Sistema Intenacional é dada po : 4( ). Detemina: a) A velocidade máxima da seção de entada da água quente ( max m / s ) b) A velocidade média da seção de entada da água quente ( m,5m / s ) m m s c) A velocidade média de saída da água mona.(seção ) (, / )

10 4º EXECÍCIO A SE ESOLIDO PELO ALUNO Um tanque com base quadada com aesta m e altua m está inicialmente vazio. Um tubo cicula com diâmeto 5 mm é capaz de enche o efeido tanque em s. O pefil de velocidade do eoamento do 7 tubo de alimentação obedece a seguinte equação: max( ). Detemina: a) A vazão volumética média ( Q L / s) b) A velocidade média do eoamento (, / ) m 4 m s c) A velocidade máxima do eoamento ( max 4,9m / s ) d) A vazão em massa consideando que o fluido é água cuja massa específica é kg/m³ ( & / ) m kg s

11 5º EXECÍCIO A SE ESOLIDO PELO ALUNO Dente os váios itens de confoto disponibilizados pelo desenvolvimento da tecnologia no século XX, indiutivelmente se destaca o uso do a condicionado não só em instalações destinadas ao confoto témico humano mas também em aplicações industiais como num laboatóio de metologia. Um ema de a condicionado contola a tempeatua e a umidade do a fonecido ao ambiente climatizado. O contole de umidade é feito num equipamento chamado de desumidificado. Considee um desumidificado que ecebe a úmido, isto é, a mistuado com vapo de agua com vazão hoáia de kg/h. No desumidificado devido à etiada de calo, consegue-se condensa 6 kg/h de vapo. Paa que o nível de uído seja aceitável, o a fonecido ao ambiente climatizado não deve ultapassa a velocidade de 5m/s. Pode-se supo o ema tabalhando em egime pemanente com popiedades unifomes e fluido incompessível. Detemina : a) A quantidade de a úmido fonecida ao ambiente condicionado. b) o diâmeto do duto de seção cicula que conduz o a ao ambiente condicionado consideando que a massa especifica é de kg/m³. espostas: Item a m 94 kg/h Item b D 8 mm

12 6º EXECÍCIO A SE ESOLIDO PELO ALUNO Um populso a jato (moto de avião) queima kg/s de combustível em egime pemanente quando o avião voa com velocidade constante de m/s. São dados : a massa específica do a em (), kg/m, massa específica da mistua em (),5 kg/m ; áea de entada em (),5 m ; áea de saída (), m. Detemina : a) a velocidade de saída dos gases queimados b) a elação em massa de a e combustível na câmaa de combustão sabendo que somente % do a admitido paticipa da queima. a espostas: gas m / s e 8 comb A novo () Moto de () gases queimados Avião Combustível

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio Fenômenos de Tanspote Equações Básicas na Foma Integal - I Pof. M. Sc. Lúcio P. Patocínio Objetivos Entende a utilidade do teoema de Tanspote de Reynolds. Aplica a equação de consevação da massa paa balancea

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex:

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas Poceeding Seies of te Bazilian Society of Applied and Computational Matematics, Vol., N. 1, 14. Tabalo apesentado no CMAC-Sul, Cuitiba-PR, 14. Análise do Pefil de Tempeatuas no Gás de Exaustão de um Moto

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br F-38 - º Semeste de 013 Coodenado. José Antonio Rovesi IFGW-DEQ-Sala 16 ovesi@ifi.unicamp.b 1- Ementa: Caga Elética Lei de Coulomb Campo Elético Lei de Gauss Potencial Elético Capacitoes e Dieléticos Coente

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

1ª Aula do Cap. 6 Forças e Movimento II

1ª Aula do Cap. 6 Forças e Movimento II ATRITO 1ª Aula do Cap. 6 Foças e Movimento II Foça de Atito e Foça Nomal. Atito e históia. Coeficientes de atito. Atito Dinâmico e Estático. Exemplos e Execícios. O efeito do atito ente duas supefícies

Leia mais

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO 1. Leis Físicas Fundamentais 3 leis escoamentos independentes da natueza do fluido Leis Básicas Equações Fundamentais Lei da Consevação de Massa Equação

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

DESENVOLVIMENTO DE APLICATIVO PARA MONITORAMENTO EM LINHA E CONTROLE DE REATORES DE POLIMERIZAÇÃO

DESENVOLVIMENTO DE APLICATIVO PARA MONITORAMENTO EM LINHA E CONTROLE DE REATORES DE POLIMERIZAÇÃO DESENVOLVIMENTO DE APLICATIVO PARA MONITORAMENTO EM LINHA E CONTROLE DE REATORES DE POLIMERIZAÇÃO Macelo Esposito, Calos A. Claumann, Ricado A. F. Machado, Claudia Saye, Pedo H. H. Aaújo* Univesidade Fedeal

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

Interações Eletromagnéticas 1

Interações Eletromagnéticas 1 Inteações Eletomagnéticas 1 I.H.Hutchinson 1 I.H.Hutchinson 1999 Capítulo 1 Equações de Maxwell e Campos Eletomagnéticos 1.1 Intodução 1.1.1 Equações de Maxwell (1865) As equações que govenam o eletomagnetismo

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Escoamentos Internos

Escoamentos Internos Escoamentos Internos Escoamento Interno Perfil de velocidades e transição laminar/turbulenta Perfil de temperaturas Perda de carga em tubulações Determinação da perda de carga distribuída Determinação

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 8 a de agosto de 00 Campina Gande Paaíba - Basil August 8, 00 Campina Gande Paaíba Bazil MODELAGEM NUMÉRICA DE

Leia mais

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA LIMA, Nélio Neves; CUNHA, Ygho Peteson Socoo Alves MARRA, Enes Gonçalves. Escola de Engenhaia Elética

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

Módulo 1: Conteúdo programático Equação da quantidade de Movimento

Módulo 1: Conteúdo programático Equação da quantidade de Movimento Módulo 1: Conteúdo pogmático Equção d quntidde de Movimento Bibliogfi: Bunetti, F. Mecânic dos Fluidos, São Pulo, Pentice Hll, 007. Equção d quntidde de movimento p o volume de contole com celeção line

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

Rotor bobinado: estrutura semelhante ao enrolamento de estator. Rotor em gaiola de esquilo

Rotor bobinado: estrutura semelhante ao enrolamento de estator. Rotor em gaiola de esquilo Coente altenada é fonecida ao etato dietamente; Coente altenada cicula no cicuito de oto po indução, ou ação tanfomado; A coente de etato (que poui uma etutua n-fáica) poduzem um campo giante no entefeo;!"

Leia mais

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET ELETRÔNICA II Engenaia Elética Campus Pelotas Revisão Modelo CA dos tansistoes BJT e MOSFET Pof. Mácio Bende Macado, Adaptado do mateial desenvolvido pelos pofessoes Eduado Costa da Motta e Andeson da

Leia mais

CAPÍTULO 4 4.1 GENERALIDADES

CAPÍTULO 4 4.1 GENERALIDADES CAPÍTULO 4 PRIMEIRA LEI DA TERMODINÂMICA Nota de aula pepaada a pati do livo FUNDAMENTALS OF ENGINEERING THERMODINAMICS Michael J. MORAN & HOWARD N. SHAPIRO. 4. GENERALIDADES Enegia é um conceito fundamental

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação Pontifícia Uniesidade Católica do Rio de Janeio Depatamento de Engenhaia Mecânica Pojeto Final de Gaduação ANÁLISE DO PROCESSO DE DESLOCAMENTO DE LÍQUIDOS EM POÇOS COM EXCENTRICIDADE VARIÁVEL Aluno: Benado

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

Ivan Correr (UNIMEP) ivcorrer@unimep.br. Ronaldo de Oliveira Martins (UNIMEP) romartin@unimep.br. Milton Vieira Junior (UNIMEP) mvieira@unimep.

Ivan Correr (UNIMEP) ivcorrer@unimep.br. Ronaldo de Oliveira Martins (UNIMEP) romartin@unimep.br. Milton Vieira Junior (UNIMEP) mvieira@unimep. X SMPEP Bauu, SP, Basil, 7 a 9 de ovembo de 2005 Avaliação do índice de utilização de máquinas feamentas CC em uma empesa de usinagem, po meio da análise da técnica de pé ajustagem de feamentas. - van

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

Estudo para Utilização de Energia Térmica Proveniente de Forno Cerâmico para Secagem de Cerâmica

Estudo para Utilização de Energia Térmica Proveniente de Forno Cerâmico para Secagem de Cerâmica Estudo paa Utilização de Enegia Téica Poveniente de Fono Ceâico paa Secage de Ceâica Glaube Recco* Moliza evestientos ceâicos Ltda, Rua de aio, 165, Moo da Fuaça - SC, Basil, *e-ail: glaube@oliza.co.b

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO NÁLIE D IBILIDDE D REDE DE TRNPORTE E DITRIBUIÇÃO. Maciel Babosa Janeio 03 nálise da iabilidade da Rede de Tanspote e Distibuição. Maciel Babosa nálise da iabilidade da Rede de Tanspote e Distibuição ÍNDICE

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

Aula ONDAS ELETROMAGNÉTICAS

Aula ONDAS ELETROMAGNÉTICAS ONDAS ELETROMAGNÉTICAS Aula 6 META Intoduzi aos alunos conceitos básicos das ondas eletomagnéticas: como elas são poduzidas, quais são suas caacteísticas físicas, e como desceve matematicamente sua popagação.

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Capítulo III Lei de Gauss

Capítulo III Lei de Gauss ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 3.1 Fluxo eléctico e lei de Gauss Capítulo III Lei de Gauss A lei de Gauss aplicada ao campo eléctico, pemite-nos esolve de

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoia Fanqueado Dados da Empesa Razão Social: Cusos e Empeendimentos VER Ltda Nome Fantasia: Micolins Unidade Nova Lima Data de fundação: 09/03/2007

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electricidade e magnetismo Circuitos eléctricos 3ª Parte Prof. Luís Perna 2010/11 Corrente eléctrica Qual a condição para que haja corrente eléctrica entre dois condutores A e B? Que tipo de corrente eléctrica

Leia mais

CURSOS. Licenciatura em Informática Matemática Sistemas de Informação

CURSOS. Licenciatura em Informática Matemática Sistemas de Informação PROCESSO SELETIVO 2009/ Domingo, de janeiro de 2009 CADERNO DE RESPOSTA DISCURSIVA ESPECÍFICA RESPOSTAS ESPERADAS PELAS BANCAS ELABORADORAS CURSOS Curso Superior de Tecnologia em Redes de Computadores

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Informação Geográfica em Engenharia Civil

Informação Geográfica em Engenharia Civil Noções Infomação Geogáfica em Engenhaia Civil Infomação Geogáfica Infomação espeitante a fenómenos (o que ocoe no tempo e no espaço) Geoefeenciação Associação da posição espacial à infomação Alexande Gonçalves

Leia mais

e A Formação do Circuito Equivalente

e A Formação do Circuito Equivalente Cadeno de Estudos de MÁQUINAS ELÉCTRICAS nº 4 A Coe nte Eléctica de Magnetização e A Fomação do Cicuito Equivalente Manuel Vaz Guedes (Pof. Associado com Agegação) Núcleo de Estudos de Máquinas Elécticas

Leia mais

MÓDULO 4 4.10 - DIMENSIONAMENTODE ISOLAMENTO TÉRMICO

MÓDULO 4 4.10 - DIMENSIONAMENTODE ISOLAMENTO TÉRMICO MANUAL DE BOAS PRÁTICAS - ABPE 203 MÓDULO 4 4.0 - DIMENSIONAMENTODE ISOLAMENTO TÉRMICO Isolamento Térmico (Transmissão de Calor) A transmissão de calor em tubulações plásticas adquire particular interesse

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Equações de Conservação

Equações de Conservação Equações de Consevação Equação de Consevação de Massa (continuidade) Equação de Consevação de Quantidade de Movimento Linea ( a Lei de Newton) Equação de Benoulli Equação de Enegia (1 a Lei da temodinâmica)

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/(g o C) = 4,2 x

Leia mais

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler).

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler). 3 - DESCRIÇÃO DO EEVADOR Abaixo apesentamos o diagama esquemático de um elevado (obtido no site da Atlas Schindle). Figua 1: Diagama esquemático de um elevado e suas pates. No elevado alvo do pojeto, a

Leia mais

= (1) ρ (2) f v densidade volumétrica de forças (N/m 3 ) ρ densidade volumétrica de carga (C/m 3 )

= (1) ρ (2) f v densidade volumétrica de forças (N/m 3 ) ρ densidade volumétrica de carga (C/m 3 ) Analise de Esfoços Eletomecânicos em Tansfomadoes Amofos ataés de Modelagem Computacional compaando à Noma IEC 60076-5 W.S. onseca, GSEI, UPA, Belém, PA, Basil; M.Sc A.C. Lopes, UNIAP, Macapá, AP, Basil;

Leia mais

Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente.

Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente. Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente. Conservação da Massa A massa, assim como a energia, é uma propriedade que se conserva,

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Caderno de Provas REFRIGERAÇÃO E CLIMATIZAÇÃO Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo

Leia mais

Escoamentos exteriores 21

Escoamentos exteriores 21 Escoamentos exteriores 2 Figura 0.2- Variação do coeficiente de arrasto com o número de Reynolds para corpos tri-dimensionais [de White, 999]. 0.7. Força de Sustentação Os perfis alares, ou asas, têm como

Leia mais

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueador Sênior

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueador Sênior PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoia Fanqueado Sênio Dados da Empesa Razão Social: Depyl Action Depilações Ltda-ME Nome Fantasia: Depyl Action - Especializada em Depilação Data

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear

6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear 6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear 6.1 Forças sobre estruturas civis sensíveis Na avaliação da força sobre a estrutura é utilizada a relação força/velocidade descrita pela

Leia mais

Portaria Inmetro /Dimel n.º 0202 de 09 de agosto de 2010

Portaria Inmetro /Dimel n.º 0202 de 09 de agosto de 2010 Serviço Público Federal MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA E COMÉRCIO EXTERIOR INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL INMETRO Portaria Inmetro /Dimel n.º 0202 de 09

Leia mais

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998 Romeo Taaes Vestibulaes da UFPB Poas de Física Resolidas de 994 até 998 João Pessoa, outubo de 998 Pof. Romeo Taaes - (8)5-869 Apesentação Romeo Taaes é Bachael em Física pela Uniesidade Fedeal de Penambuco,

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21 Aula 1 Ondas sonoras harmônicas Na aula passada deduzimos a equação de onda para ondas sonoras propagando-se em uma dimensão. Vimos que ela pode ser escrita em termos de três variáveis medidas em relação

Leia mais

Módulo 8: Conteúdo programático Eq. da Energia com perda de carga e com máquina

Módulo 8: Conteúdo programático Eq. da Energia com perda de carga e com máquina Módulo 8: Conteúdo programático Eq. da Energia com perda de carga e com máquina Bibliografia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Prentice Hall, 007. Equação da Energia em Regime Permanente com

Leia mais

2. Levantamentos Magnéticos

2. Levantamentos Magnéticos 2. Levantamentos Magnéticos O objectivo dos levantamentos magnéticos é o de investiga a geologia subsupeficial com base nas anomalias do campo magnético da Tea, esultantes das popiedades magnéticas dos

Leia mais

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoia Fanqueado Dados da Empesa Razão Social: Cultua Anglo Ameicana de Petolina LTDA Nome Fantasia: Yázigi Petolina Data de fundação 03 de janeio

Leia mais

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos Mecânica dos Fluidos Unidade 1- Propriedades Básicas dos Fluidos Quais as diferenças fundamentais entre fluido e sólido? Fluido é mole e deformável Sólido é duro e muito Sólido é duro e muito pouco deformável

Leia mais

EDITAL E NORMAS PARA O CONCURSO DE TREINAMENTO EM CIRURGIA GERAL PARA O ANO DE 2016

EDITAL E NORMAS PARA O CONCURSO DE TREINAMENTO EM CIRURGIA GERAL PARA O ANO DE 2016 IRMANDADE DA SANTA CASA DE MISERICÓRDIA DE SÃO JOSÉ DO RIO PRETO CENTRO DE TREINAMENTO EM CIRURGIA GERAL CREDENCIADO PELO COLÉGIO BRASILEIRO DE CIRURGIÕES (CBC) EDITAL E NORMAS PARA O CONCURSO DE TREINAMENTO

Leia mais

Lista de Exercícios #3 Retirados do livro Mecânica dos Fluidos Frank M. White 4ª e 6ª Edições

Lista de Exercícios #3 Retirados do livro Mecânica dos Fluidos Frank M. White 4ª e 6ª Edições Lista de Exercícios #3 Retirados do livro Mecânica dos Fluidos Frank M. White 4ª e 6ª Edições 3.3 Para escoamento permanente com baixos números de Reynolds (laminar) através de um tubo longo, a distribuição

Leia mais

www.concursovirtual.com.br

www.concursovirtual.com.br Cinemática: É a parte da mecânica que estuda os movimentos, procurando determinar a posição, velocidade e aceleração do corpo a cada instante. Ponto Material: É todo corpo que não possua dimensões a serem

Leia mais