Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Tamanho: px
Começar a partir da página:

Download "Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica"

Transcrição

1 Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte pontual que adia potência igualmente em todas as dieções (onda esféica); otência total tansmitida: Densidade de potência média (a uma distância da fonte): [W/m ] 4π Veto de oynting: H Valo médio (no a, e H pependiculaes): 1 1 H com η 1π Ω η Campo elético a uma distância da fonte: 4π 1 η

2 6 Logo: [V/m] (antena isotópica) xemplo: Uma antena isotópica tansmite uma potência de 5 kw. Calcula a densidade de potência e o campo elético a 1 km da fonte π 4π 3 ( 1 ) 398µ W m ,548 V m 3 1 O dipolo infinitesimal - elemento adiado com coente unifomemente distibuída no seu compimento; - compimento l cuto peante o compimento de onda: l << λ (citéio usual: l < λ/1); Coente: cos( ωt) (independente de z) Campos no ponto "" (fasoes): H l πε 1 c + 1 jω 3 cos θ e jβ (1) H θ θ l 4πε jω 1 jβ + + sen θ e 3 c c jω 1 () φ H φ l jω 4π c 1 jβ + sen θ e (3), onde c m/s e π ω β. λ c

3 Campos distantes: m pontos distantes da antena ( gande): 1 1 << e 1 1 << 3 Citéio usual: d >, com d maio dimensão da antena. (dipolo: d l) λ Neste caso, tem-se: H, H,, θ φ θ 6π j l λ jβ sen e θ (4) H φ l j λ jβ sen e θ (5) Desta foma, paa pontos distantes da antena os campos elético e magnético são pependiculaes ente si e ambos são pependiculaes à dieção de popagação (dieção adial). θ Além disso, 1π Ω 377 Ω. Conclui-se potanto que, na egião de campos distantes, a H φ antena adia uma onda M (tansveso-eletomagnética). Decomposição do campo: 6 π θ 1 l λ sen θ je β constante coente distância compimento padão de fase elético adiação j Diagama de adiação: ρ(θ, φ) epesentação gáfica que mosta as popiedades de adiação de uma antena em função de coodenadas espaciais. O diagama de adiação mosta a amplitude do campo distante (ou da potência adiada) em função dos ângulos θ e φ. No caso geal, o diagama é uma figua tidimensional, mas na maioia das vezes é epesentado como figuas bidimensionais (planos de cote vetical e hoizontal).

4 aa o dipolo infinitesimal: diagama de campo ρ( θ, φ) sen θ Diagama D (plano vetical) dieção de máxima adiação O diagama acima independe de φ (o diagama D no plano hoizontal seia uma cicunfeência). Neste caso, diz-se que a antena é onidiecional. Densidade de potência média (veto de oynting médio): aa o campo distante tem-se: 1 H θ φ (6) Usando (4) e (5) vem: 15π l sen θ (7) λ Assim, na egião de campo distante, a potência adiada pela antena decai com o inveso do quadado da distância e o fluxo de potência (veto de oynting) aponta na dieção adial. aa calcula a potência total ( ) adiada, basta intega a densidade de potência média em qualque supefície fechada que contenha a antena. o simplicidade, gealmente a integação é feita na egião de campos distantes. sup d (8)

5 aâmetos incipais de uma Antena 1 - esistência de adiação ( ): esistência fictícia que dissipa uma potência igual à potência adiada pela antena. potência adiada otência adiada pela antena potência dissipada em 1 d sup (9) xemplo: Calcula a esistência de adiação do dipolo infinitesimal. sup d com e 15 π l sen θ a (dieção adial) d λ sen θ dθ dφ a (coodenadas esféicas) otanto 15π l λ π π sen 3 θ dθ dφ mas π π sen π π 3 3 π θ dθ dφ π sen sen θ cos θ cos θ θ dθ π logo 4π l λ. l 4π De (9): λ 8π l λ [Ω] xecício: Calcula a esistência de adiação de um dipolo de 1 cm opeando na feqüência de 3 MHz. Calcula a coente necessáia paa 1 W de potência adiada. l 1 cm 6 f 3 1 λ 1 m (l λ/1) 8 c 3 1

6 1 8π 79 mω 1 1 aa 1 W e 79 mω vem: 5A Conclusão: como é pequena paa o dipolo infinitesimal, a coente tem que se alta. sso mosta que o dipolo infinitesimal é um adiado pouco eficiente. - Diagama de adiação: mosta a potência adiada (ou os campos) em função da posição angula (gealmente na egião de campos distantes). xemplos: diagamas de adiação de potência. a) Antena isotópica: F(θ,φ) constante b) Dipolo infinitesimal: F(θ,φ) sen θ c) Antena diecional (exemplo): Diagama 3D Diagama D max max

7 Caacteísticas pincipais: - lobo ou feixe pincipal; - lobos menoes: lateais e posteioes; - lagua de feixe de meia potência ou ângulo de abetua ("HBW"). 3 - Dietividade (D): ida da "focalização" do lobo pincipal. ndica a capacidade da antena de dieciona a potência adiada. Ganho dietivo: D(, φ) 4π θ (1) A dietividade coesponde ao ganho dietivo máximo. xemplos: a) antena isotópica: 4π Dietividade: D 1 ou D 4π ( θ φ) 1 D 1 log D db, 15π l b) dipolo infinitesimal: sen θ e λ 4π l λ 4π Logo D ( θ, φ) 1,5 sen θ O ganho dietivo máximo ocoe paa θ 9. Dietividade: D 1,5 ou 1,76 db Obsevação: a pati de (1) e da definição da dietividade tem-se que, paa uma antena qualque, a densidade de potência adiada na dieção de ganho dietivo máximo é dada po: D (11) 4π xecício: Um dipolo infinitesimal tansmite uma potência de 5 kw. Calcula a densidade de potência e o campo elético a 1 km da antena na dieção de máxima adiação.

8 D 1,5 5 4π 4π 1 Mas, paa uma onda no espaço live: 597 µ W 1 m η η otanto: ,671V m 4 - Ganho (G): o ganho de uma antena depende de sua dietividade (D) e de seu endimento ou eficiência de tansmissão (η). G η D com otência adiada η ( η 1) otência total aplicada otência total aplicada otência adiada + edas ôhmicas aa uma antena sem pedas (η 1): Ganho Dietividade 5 - olaização: indica a dieção do campo elético da onda adiada. otência Fato de casamento de polaização (FC): FC otência máxima ecebida possível ecebida ode-se mosta que FC cos ψ onde ψ difeença angula ente as polaizações da onda e da antena eceptoa. xemplos: (a) (b) (c) a) ψ antena "casada" (ou alinhada com a onda): FC 1 ecebida máxima possível ; b) < ψ < 9 descasamento pacial: < FC < 1 < ecebida < máxima possível ; c) ψ 9 descasamento total: FC ecebida.

9 6 - Abetua efetiva (A e ): azão ente a potência ecebida ( ) e a densidade de potência média incidente (com FC 1). A e [m ] aa antenas sem pedas, pode-se mosta que : A e λ D 4 π xemplos: a) antena isotópica: D 1 A e,796 λ (,8 λ,8 λ) b) dipolo infinitesimal: D 1,5 A e,1194 λ (,345 λ,345 λ) 7 - mpedância de entada (Z): impedância "vista" nos teminais da antena. Cicuitos equivalentes: antena tansmissoa: antena eceptoa: Z L Z V th + _ L antena antena 8 - Lagua de banda: faixa de feqüências dento da qual uma antena opea coetamente, com pouca vaiação de seus paâmetos. Quanto maio a lagua de banda de uma antena, maio a sua capacidade de tansmiti e ecebe sinais de difeentes feqüências. O dipolo de meia onda Uma das antenas mais usadas na pática é o dipolo de meia onda, que consiste em dois segmentos metálicos alinhados com compimento total igual a λ/. distibuição de coente l λ/

10 Distibuição de coente: a coente pode se consideada distibuída senoidalmente ao longo do compimento da antena, sendo nula nas extemidades e máxima ( ) no ponto de alimentação. π sen z λ Campos distantes: aa obte o campo adiado pelo dipolo de meia onda, este é decomposto em elementos (dipolos) infinitesimais. O campo total adiado coesponde à soma (integal) dos campos de todos os elementos infinitesimais. Fazendo isto, obtém-se: θ 6 j π cos cos θ e sen θ jβ H φ π cos cos θ j e π sen θ jβ Como os campos distantes se compotam como os de uma onda M, tem-se: H θ φ 1π Ω. Diagama de adiação: A pati das equações anteioes, obtém-se: F ( θ, φ) π cos cos θ sen θ esistência de adiação: 73Ω Dietividade e ganho: Abetua efetiva: D G 1,64 ou Ae 5,15 db,361 λ,131λ, l,361 λ

11 mpedância de entada: Z in 73 + j4, 5 Ω Obs.: na pática, é comum encuta ligeiamente o compimento do dipolo de foma a toná-lo essonante, isto é, com impedância de entada puamente esistiva (Z in 7 Ω). O monopolo de quato de onda Consiste num fio metálico etilíneo, com compimento igual a λ/4, colocado sobe um plano conduto infinito ("plano de tea"). A análise é feita usando o método das imagens. Os efeitos da pesença do plano conduto podem se levados em conta substituindo-o po uma antena fictícia coespondente à imagem da antena eal fomada abaixo do plano conduto. Desta foma, os campos poduzidos po um monopolo de quato de onda (l λ/4) colocados sobe um plano conduto coespondem aos campos poduzidos po um dipolo de meia onda (l λ/) sem a pesença do plano. sta equivalência só é válida paa os campos acima do plano conduto; abaixo do plano, os campos são obviamente nulos. Diagama de adiação: π cos cos θ F(, ) θ φ ( θ 9 ) sen θ esistência de adiação: Dietividade e ganho: 73Ω 36, 5 Ω D G 1,64 D G 3,8 ou 5,16 db

12 ,51 λ Abetua efetiva: A e, 131λ Ae 19,6 λ 4, l,51 λ mpedância de entada: Z in 73 + j4,5 Ω Z in 36,5 + j1, 5 Ω Casamento de impedâncias e a impedância de entada da antena fo difeente da impedância caacteística da linha de tansmissão conectada a ela, devem-se utiliza as técnicas de casamento de impedância vistas anteiomente. ansfomado de λ/4 tub Alguns exemplos de antenas Antena bicônica Antena cônica

13 Loop cicula Antena helicoidal Coneta etangula Coneta cicula Antena Yagi-Uda Antena log-peiódica

14 efleto paabólico efleto "cone"

15 Cálculo de ádio-enlaces ("adio-links") eja o enlace de ádio mostado abaixo, consistindo de uma antena tansmissoa e de uma antena eceptoa sepaadas po uma distância. x x ejam potência tansmitida potência ecebida D dietividade da antena tansmissoa D dietividade da antena eceptoa A abetua efetiva da antena tansmissoa A abetua efetiva da antena eceptoa Consideações: - as antenas são sem pedas (η 1); - as polaizações das antenas estão casadas (FC 1). Densidade de potência adiada: Antena isotópica (D 1): Antena qualque: 4π D (1) 4π otência ecebida: A () D A De (1) e de (): (3) 4π Mas A e λ D 4 π (4) De (3) e (4) obtém-se a equação fundamental paa o cálculo de ádio-enlaces: λ D D (5) Fómula de Fiis (antenas sem peda) 4π

16 Ou, em temos de ganhos (G η D): λ G G (6) Fómula de Fiis (antenas quaisque) 4π xemplo: Um dipolo de meia onda sem pedas, opeando em f 1 MHz, é alimentado com uma potência de 1 W. Calcula; a) a densidade de potência adiada a 1 km de distância; b) a potência de alimentação de uma antena isotópica que poduziia a mesma densidade de potência calculada no item anteio; c) a potência máxima ecebida po um outo dipolo de meia onda a 1 km do tansmisso. olução: f 1 MHz λ 3 m D 1,64 1 a) 4π 4π 1 13,5µ W m 6 b) D 1 4π 4π 1 13, W λ 3 c) D D 1,64 1, ,33µ W 4π 4π 1

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Aula ONDAS ELETROMAGNÉTICAS

Aula ONDAS ELETROMAGNÉTICAS ONDAS ELETROMAGNÉTICAS Aula 6 META Intoduzi aos alunos conceitos básicos das ondas eletomagnéticas: como elas são poduzidas, quais são suas caacteísticas físicas, e como desceve matematicamente sua popagação.

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

PROPAGAÇÃO II. Conceitos de Antenas

PROPAGAÇÃO II. Conceitos de Antenas Instituto Supeio de Engenhaia de Lisboa Depatamento de Engenhaia de Electónica e Telecomunicações e de Computadoes Secção de Sistemas de Telecomunicações ROAGAÇÃO II Conceitos de Antenas ISEL, opagação

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler).

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler). 3 - DESCRIÇÃO DO EEVADOR Abaixo apesentamos o diagama esquemático de um elevado (obtido no site da Atlas Schindle). Figua 1: Diagama esquemático de um elevado e suas pates. No elevado alvo do pojeto, a

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA LIMA, Nélio Neves; CUNHA, Ygho Peteson Socoo Alves MARRA, Enes Gonçalves. Escola de Engenhaia Elética

Leia mais

Exp. 10 - RESSONÂNCIA

Exp. 10 - RESSONÂNCIA apítulo Exp. 0 - RESSONÂNIA EÉTRIA. OBJETIVOS Estudo das oscilações eléticas foçadas em cicuitos essonantes em séie e em paalelo..2 PARTE TEÓRIA Muitos sistemas físicos estáticos e estáveis, quando momentaneamente

Leia mais

RAIOS E FRENTES DE ONDA

RAIOS E FRENTES DE ONDA RAIOS E FRENTES DE ONDA 17. 1, ONDAS SONORAS ONDAS SONORAS SÃO ONDAS DE PRESSÃO 1 ONDAS SONORAS s Onda sonora harmônica progressiva Deslocamento das partículas do ar: s (x,t) s( x, t) = s cos( kx ωt) m

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Linhas de Campo Magnético

Linhas de Campo Magnético Linha de Campo Magnético Popiedade da Linha de Campo Magnético Não há evidência expeimental de monopolo magnético (pólo iolado) Etutua magnética mai imple: dipolo magnético Linha de Campo Magnético ão

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

Antenas e Propagação. Artur Andrade Moura. amoura@fe.up.pt

Antenas e Propagação. Artur Andrade Moura. amoura@fe.up.pt 1 Antenas e Propagação Artur Andrade Moura amoura@fe.up.pt 2 Parâmetros fundamentais das antenas Permitem caracterizar o desempenho, sobre vários aspectos, das antenas Apresentam-se definições e utilização

Leia mais

Interações Eletromagnéticas 1

Interações Eletromagnéticas 1 Inteações Eletomagnéticas 1 I.H.Hutchinson 1 I.H.Hutchinson 1999 Capítulo 1 Equações de Maxwell e Campos Eletomagnéticos 1.1 Intodução 1.1.1 Equações de Maxwell (1865) As equações que govenam o eletomagnetismo

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger

CAP. 3 - EXTENSÔMETROS - STRAIN GAGES Exemplo: extensômetro Huggenberger CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /

Leia mais

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio Fenômenos de Tanspote Equações Básicas na Foma Integal - I Pof. M. Sc. Lúcio P. Patocínio Objetivos Entende a utilidade do teoema de Tanspote de Reynolds. Aplica a equação de consevação da massa paa balancea

Leia mais

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET ELETRÔNICA II Engenaia Elética Campus Pelotas Revisão Modelo CA dos tansistoes BJT e MOSFET Pof. Mácio Bende Macado, Adaptado do mateial desenvolvido pelos pofessoes Eduado Costa da Motta e Andeson da

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

Capítulo III: Parâmetros Principais de uma Antena

Capítulo III: Parâmetros Principais de uma Antena Capítulo : aâmetos incipais de uma ntena 8 1 - esistência de adiação ( ): esistência fictícia que dissipa uma potência igual à potência adiada pela antena. i(t) i(t) potência adiada i(t) cos ωt otência

Leia mais

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE)

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE) Depatamento de ngenhaa lectotécnca (D) O tanssto de junção bpola (J) pola dos tpos de cagas, electões e buacos, enoldos nos fluxos de coente Junção duas junções pn. Junção base/emsso e junção base/colecto

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO 1. Leis Físicas Fundamentais 3 leis escoamentos independentes da natueza do fluido Leis Básicas Equações Fundamentais Lei da Consevação de Massa Equação

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas.

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas. UniposRio - FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 9 de novembro de 00 Nome (legível): Assinatura: Leia atentamente as oito (8) questões e responda nas folhas de

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Capítulo 2. Estações Terrenas em Comunicações Via Satélite com Órbita Geo-Estacionária

Capítulo 2. Estações Terrenas em Comunicações Via Satélite com Órbita Geo-Estacionária Capítulo Estações Terrenas em Comunicações Via Satélite com Órbita Geo-Estacionária Enlace Ponto-Ponto em apenas um sentido Satélite Enlace de subida (Up-Link) Enlace de Descida (Down-Link) Estação de

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

Problemas sobre Indução Electromagnética

Problemas sobre Indução Electromagnética Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

INSTRUMENTAÇÃO AULA XI

INSTRUMENTAÇÃO AULA XI INSTRUMENTAÇÃO AULA XI Transdutores Eletromagnéticos Princípio de Funcionamento Lei de Faraday Um fluxo magnético variável ao atravessar perpendicularmente uma espira de área A ef induz uma tensão elétrica

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013 Aula-9 ampos Magnétcos Poduzdos po oentes uso de Físca Geal F-38 o semeste, 13 Le de Bot - Savat Assm como o campo elétco de poduzdo po cagas é: 1 dq 1 dq db de ˆ, 3 ε ε de manea análoga, o campo magnétco

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex:

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br F-38 - º Semeste de 013 Coodenado. José Antonio Rovesi IFGW-DEQ-Sala 16 ovesi@ifi.unicamp.b 1- Ementa: Caga Elética Lei de Coulomb Campo Elético Lei de Gauss Potencial Elético Capacitoes e Dieléticos Coente

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

Análise no Domínio do Tempo de Sistemas em Tempo Discreto

Análise no Domínio do Tempo de Sistemas em Tempo Discreto Análise no Domínio do Tempo de Sistemas em Tempo Discreto Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

Introdução. O trabalho encontra-se resumidamente estruturado da seguinte forma:

Introdução. O trabalho encontra-se resumidamente estruturado da seguinte forma: Intodução. À medida que sistemas wieless se tonam mais ubíquos, um entendimento da popagação em ádio-feqüência (RF) paa popósitos de planejamento, tona-se significativamente impotante. Com a cescente utilização

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Rotor bobinado: estrutura semelhante ao enrolamento de estator. Rotor em gaiola de esquilo

Rotor bobinado: estrutura semelhante ao enrolamento de estator. Rotor em gaiola de esquilo Coente altenada é fonecida ao etato dietamente; Coente altenada cicula no cicuito de oto po indução, ou ação tanfomado; A coente de etato (que poui uma etutua n-fáica) poduzem um campo giante no entefeo;!"

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

e A Formação do Circuito Equivalente

e A Formação do Circuito Equivalente Cadeno de Estudos de MÁQUINAS ELÉCTRICAS nº 4 A Coe nte Eléctica de Magnetização e A Fomação do Cicuito Equivalente Manuel Vaz Guedes (Pof. Associado com Agegação) Núcleo de Estudos de Máquinas Elécticas

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO NÁLIE D IBILIDDE D REDE DE TRNPORTE E DITRIBUIÇÃO. Maciel Babosa Janeio 03 nálise da iabilidade da Rede de Tanspote e Distibuição. Maciel Babosa nálise da iabilidade da Rede de Tanspote e Distibuição ÍNDICE

Leia mais

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito

Leia mais

Torque Eletromagnético de Máquinas CA. com Entreferro Constante

Torque Eletromagnético de Máquinas CA. com Entreferro Constante 1. Intodução Apotila 4 Diciplina de Coneão de Enegia B Toque Eletoagnético de Máquina CA co Entefeo Contante Neta apotila ão abodado o pincipai apecto elacionado co a podução de toque e áquina de coente

Leia mais

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 8 a de agosto de 00 Campina Gande Paaíba - Basil August 8, 00 Campina Gande Paaíba Bazil MODELAGEM NUMÉRICA DE

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Pofissional SENAI Plínio Gilbeto Köeff MECÂNICA TÉCNICA Pofesso: Dilma Codenonsi Matins Cuso: Mecânica de Pecisão São Leopoldo 2009 1 SUMÁRIO

Leia mais

Ondas Eletromagnéticas. Física Geral F-428

Ondas Eletromagnéticas. Física Geral F-428 Ondas letomagnéticas Física Geal F-48 1 Radiação letomagnética & Ondas letomagnéticas Ondas letomagnéticas: Veemos: Radiação eletomagnética é uma foma de enegia que se popaga no espaço, em meios mateiais

Leia mais

Tipos de Antenas e suas propriedades

Tipos de Antenas e suas propriedades Tipos de Antenas e suas propriedades TV Antenas Lineares: Yagi-Uda Log-Periódica Painel Dipolos MO/OC/X Painel H (Duplo Delta) Superturnstile (Batwing) Antenas de Abertura: Parabólica Slot Figura 2 - Tipos

Leia mais

2. A INVESTIGAÇÃO EXPERIMENTAL DE ESTRUTURAS. 2.1 Aplicação da Análise Experimental de Estruturas

2. A INVESTIGAÇÃO EXPERIMENTAL DE ESTRUTURAS. 2.1 Aplicação da Análise Experimental de Estruturas 3. A INVESTIGAÇÃO EXPERIMENTAL DE ESTRUTURAS.1 Aplicação da Análise Expeimental de Estutuas A qualidade de um sistema estutual é caacteizada po um deteminado conjunto de seus atibutos chamados de vaiáveis

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

Medidas elétricas em altas frequências

Medidas elétricas em altas frequências Medidas elétricas em altas frequências A grande maioria das medidas elétricas envolve o uso de cabos de ligação entre o ponto de medição e o instrumento de medida. Quando o comprimento de onda do sinal

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

INTRODUÇÃO CARACTERÍSTICAS

INTRODUÇÃO CARACTERÍSTICAS FILTROS ATIVOS INTRODUÇÃO Circuitos importantes em sistemas de comunicação e instrumentação; Área vasta da eletrônica conceitos fundamentais; Conjunto de modelos de filtros e métodos de projetos; CARACTERÍSTICAS

Leia mais

Notas de Aula de Física

Notas de Aula de Física Vesão pelimina de setembo de Notas de Aula de ísica 8. CONSRVAÇÃO DA NRGIA... ORÇAS CONSRVATIVAS NÃO-CONSRVATIVAS... TRABALHO NRGIA POTNCIAL... 4 ORÇAS CONSRVATIVAS - NRGIA MCÂNICA... 4 negia potencial

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Variable Speed Wind Turbine Modeling Using ATPDraw

Variable Speed Wind Turbine Modeling Using ATPDraw Antonio S. Neto, Fancisco A. S. Neves, Pedo A. C. Rosas Univesidade Fedeal de Penambuco UFPE Recife - PE Email: asneto01@yahoo.com.b, fneves@ufpe.b, posas@ufpe.b Eduado L. R. Pinheio, Selênio R. Silva

Leia mais