Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell"

Transcrição

1 Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes μ 1 e μ depende da dieção de B e H nos dois meios analisando sepaadamente os casos em que, assumindo μ > μ 1, a) os campos são pependiculaes à supefície de sepaação ente os dois meios, b) os campos são paalelos à supefície de sepaação ente os dois meios. espostas:. 1-a) = 1 μ -μ 1 μ 1 μ B no sentido do meio de meno pemeabilidade.. 1-b) = 1 (μ - μ 1 ) H no sentido do meio de meno pemeabilidade. Pobl. ) (evisão) Uma fita condutoa de condutividade σ c e espessua b desloca-se com velocidade unifome v ente os pólos ciculaes de um magnete pemanente. Os pólos têm aio a muito pequeno compaado com a lagua da fita. Assumindo que o campo magnético B é apoximadamente constante ente os pólos e que a densidade de coente induzida aí é J c = 1 σ v B, detemine a foça que actua sobe a fita. espostas:. -a) F = - 1 π a b σ B v Pobl. 3) Um cicuito em séie com = 50 Ω, = 150 mh e = 100 μf está ligado a uma tensão V (t) = V o sin (ω t), onde V o = 50 V e ω = 300 ad s -1. V(t) icuito em séie a) Esceva as equações do cicuito. b) Detemine as eactâncias indutivas e capacitativas X e X e a impedância Z do cicuito. c) Detemine a amplitude máxima da coente I (t) no cicuito assumindo que já não existem tansientes. d) Qual é o desfasamento ϕ ente a coente e a tensão? e) alcule a amplitude máxima das quedas de potencial atavés de cada elemento do cicuito. f) alcule a difeença de potencial máxima atavés do pa. g) Detemine a fequência de esonância ω do cicuito. h) Detemine a amplitude da coente e da tensão atavés da indutância na esonância. i) Detemine a potência instantânea (t) e a potência média fonecida pela fonte de tensão. espostas. 3-a) di c + I c + Q = V o e i ω t d I c + di c + 1 I c = i ω V o e i ω t 1º Semeste AS

2 I (t) = Im (I c (t)) = V o sin (ω t - ϕ). 3-b) X = ω = 45 (Ω) ; X = 1 = (Ω) ω Z = + i (X - X ) ; = + ω - 1 ω = (Ω). 3-c) I o = V o = (A). 3-d) ϕ = tan -1 X -X = 0.3 V max = I o = 48.7 (V). 3-e) V max = I o X = 43.8 (V) = I o X = 3.5 (V) V max. 3-f) V = I o (X - X ) = 11.3 (V). 3-g) ω = 1 = 58. ad s-1. 3-h) (I o) = 1.0 (A) (V max ) = 38.7 (V). 3-i) (t) = I (t) V (t) = V o sin (ω t - ϕ) sin (ω t) ; cos(ϕ) = ; = 1 V o cos(ϕ) (t) = 48.7 sin (300 t) sin (300 t - ϕ) ; ϕ = 0.3 ; = 3.7 (W) Note que sin (ω t - ϕ) sin (ω t) = cos (ϕ) sin (ω t) - 1 sin (ϕ) sin ( ω t) = 1 cos(ϕ) Pobl. 4) No cicuito em paalelo epesentado na figua a tensão é V (t) = V o sin (ω t). V(t) icuito em paalelo a) Detemine as coentes I (t), I (t) e I (t) atavés da esistência, indutância e capacidade, espectivamente. b) Detemine a coente total I (t) no cicuito e a sua amplitude. c) Detemine o desfasamento ϕ ente a coente total e a tensão V (t). d) Esceva a expessão paa potência instantânea (t) e paa a potência média fonecida pela fonte de tensão. espostas:. 4-a) I (t) = V (t) = V o sin (ω t). 4-b) V (t) = V (t) = di (t) V (t) = V (t) = Q (t) I (t) = I (t) + I (t) + I (t) I (t) = V o dq (t) I (t) = X sin ω t - π = V o X sin ω t + π I o = I o + I o - I 1 o = V o X X = V o. 4-c) ϕ = tan -1 I o - I o I o = tan -1 1 X - 1 X ; cos(ϕ) = AS -- 1º Semeste

3 . 4-d) = I (t) V (t) = V o sin (ω t) = V o = V ms cos(ϕ) Pobl. 5) Detemine as coentes atavés de cada esistência no cicuito da figua nas seguintes condições: 3 A V 1 a) No instante em que o inteupto A é fechado. b) Muito depois de fecha o inteupto. c) Imediatamente após abi o inteupto quando o cicuito já se encontava em egime estacionáio. d) Muito depois de abi o inteupto. e) Esceva as equações do cicuito quando o inteupto está fechado. espostas:. 5-a) I 1 = I = V b) I 1 = V 1 + eq ; I = V eq ( 1 + eq ) ; I 3 = V eq 3 ( 1 + eq ) onde eq = c) I 1 = 0 ; I =. 5-d) I 1 = I = I 3 = 0 V eq 3 ( 1 + eq ) = -I 3. 5-e) I 1 = I + I 3 V - di 3 = 1 I I 3 V = 1 I 1 + I I 1 [t] = V+I 3[t] 1 + I [t] = V-I 3[t] t I 3 [t] = 1-e- τ V eq 3 ( 1 + eq ) onde τ = ( 1+ ) eq 3 ( 1 + eq ) Pobl. 6) No cicuito seguinte o inteupto que fecha o cicuito em A há muito tempo é súbitamentente abeto e faz contacto com B. A B V a) Esceva as equações do cicuito e detemine a sua fequência de oscilação. b) Qual é a caga máxima que apaece no condensado? c) Qual a coente máxima na indutância? d) Qual é a enegia amazenada no cicuito em qualque instante? espostas:. 6-a) di = - Q. 6-b) Q max = V d I = - 1 I = -ω o I com ω o = 1, donde f = ω o π = 1 π 1º Semeste AS

4 . 6-c) A solução da equação do cicuito dá (a pate eal de) I (t) = I max e i ω o t- π, pelo que a tensão máxima na indutância é V = di = ω o I max. Assim I max = V ω o = V. 6-d) A enegia inicial está toda no condensado, e não havendo dissipação a enegia total amazenada em cada instante no condensado e na indutância é constante, U em = 1 V = 1 I max. Pobl. 7) No cicuito epesentado na figua a fonte de tensão aplicada fonece uma onda quadada como indicado na figua. O egime live do cicuito extinge-se num tempo muito infeio a T. Detemine a tensão à saída dos teminais da esistência em função do tempo. 1 V(t) V(t) 0 -T - T T T t - esposta. 7-a) A equação do cicuito é di (t) di (t) V (t) - = ( 1 + ) I (t) = -( 1 + ) I (t) ± di (t) = I (t) I (t) = A e t- nt As condições iniciais em cada intevalo em que V (t) = ± são dadas po I nt =, pelo que 1 + A = donde 1 + I (t) = ± 1 - e t- nt A tensão de saída é popocional a I (t), com n = t T. = I (t) = ± 1 - e t- nt 1 + V(t) I(t) VM Pobl. 8) onsidee o cicuito elético epesentado na figua. a) Esceva a equação difeencial paa a coente I (t) que atavessa a indutância. b) Esceva a equação difeencial que desceve o compotamento da tensão à saída do condensado. AS -4-1º Semeste

5 E(t) Pobl. 9) Detemine o compotamento da tensão de saída em função da fequência ω da fonte E paa as seguintes configuações de componentes. E E a) b) E E c) d) E E e) f ) espostas:. 9-a) Passa-Baixas A análise qualitativa destes cicuitos assenta no econhecimento que, paa baixas fequências ω 0, a eactância indutiva X = ω 0, ou seja o segmento indutivo compota-se como um cuto-cicuito (não há queda de tensão). Po outo lado a eactãncia capacitativa X = 1, ou seja o segmento capacitativo compota-se como um ω cicuito abeto (não passa coente). No limite inveso, paa altas fequências ω, é o segmento indutivo que se compota como um cicuito abeto e o capacitativo que se compota como um cuto-cicuito. Assim, no cicuito a) a tensão à saída é popocional à queda de tensão no condensado, e paa baixas fequências E (t), já que na indutância a queda de tensão tende a se pequena, enquanto paa altas fequências não há páticamente tensão à saída 0 poque esta cai pincipalmente na indutância. O cicuito deixa assim passa pefeencialmente sem gande atenuação as componentes de baixas fequências dos sinais de tensão E (t) à entada e filta as componentes de alta fequência desse sinal. Paa uma fonte de tensão com esistência intena i. 9-b) Passa-Altas. 9-c) Passa-Banda 1º Semeste AS

6 . 9-d) ejeita-banda. 9-e) Passa-Banda. 9-f) Passa-Banda Pobl. 10) Uma tensão V = V o sin (ω t) é aplicada no cento das amaduas de um condensado de placas paalelas de aio e sepaação d. Detemine em função da distância ao eixo do condensado: a) A densidade de coente de deslocamento J d. b) A intensidade de campo magnético H. espostas:. 10-a) J d = ε o E t = ε o ω V o d cos(ω t) e z. 10-b) H = ε o ω V o d cos(ω t) e θ Pobl. 11) Num fio de m de compimento e secção cicula com 1 mm de aio passam 5 A. O fio é homogéneo com esistividade eléctica ρ e = π 10-7 Ω m. a) alcule o campo magnético B à supefície do fio (sug.: use a ei de Ampée). b) alcule a esistência do fio. c) alcule a densidade de coente e o campo eléctico E no conduto junto à supefície do fio. d) alcule o vecto de Poynting S junto ao fio. e) alcule, usando o esultado anteio, a enegia de adiação tocada ente o fio e o exteio po unidade de tempo. Paa onde vai essa enegia? f) alcule a potência dissipada no fio po efeito de Joule (calo de Joule). espostas:. 11-a) B = 10-3 e θ (T). 11-b) = 0.4 (Ω). 11-c) E = 1 e z V m. 11-d) S = e W m. 11-e) P = 10 (W). 11-f) P d = 10 (W) Pobl. 1) Um conduto cilíndico oco, muito compido, com condutividade elética σ e e aios inteio 1 e exteio, tanspota uma coente I unifomemente distibuída em qualque secção tanvesal. Assumindo que a sua pemeabilidade magnética é μ o : I σ e e z ε o μ o 1 a) Detemine os campos E e B no inteio do conduto. b) Qual é a potência dissipada po unidade de compimento neste conduto? c) Detemine o veto de Poynting S à supefície do conduto (inteio e exteio). d) Qual é o fluxo do veto de Poynting po unidade de compimento neste conduto? AS -6-1º Semeste

7 Pobl. 13) Assuma agoa que no poblema anteio a coente I (t) = I o cos(ω t) ainda segundo o eixo e z. a) Despezando a coente de deslocamento, detemine o campo magnético no inteio e exteio do conduto. b) Detemine a densidade de coente de deslocamento J d no inteio e exteio do conduto em função de I (t). esposta:. 13-a) Assumindo que a coente de deslocamento é despezável compaada com a coente de condução podemos usa a ei de Ampée apoximada paa ciculos de aio coaxiais com o cilindo Γ H d I int () H θ (, t) I int (, t) π = 0 (0 1 ) I o - 1 π - 1 cos (ω t) ( 1 ) I o π cos (ω t) ( ) A pati de B = μ H ou B = μ o H obtém-se o campo magnético em todas as egiões.. 13-b) Paa o cálculo da coente de deslocamento é necessáio utiliza a ei de Faaday E = - B t = + μ ω Iint () sin (ω t) e θ π onde I int () apenas depende de, e μ é igual a μ dento do cilindo e μ o foa dele. Uma vez que E não deve depende de z devido à simetia de tanslação na dieção e z, nem as suas componentes devem depende de θ devido à simetia azimutal em tono do eixo e z, obtemos em coodenadas cilíndicas E = 1 E z θ - (E θ) z ou seja - E z = μ ω Iint () π sin (ω t) ; e + E z - E z 1 e θ + 1 (E θ ) - E θ (E θ ) = 0 E θ () = k e z = - E z e θ + 1 (E θ ) e z ontudo, nesta última equação podemos ve que E θ () = 0 (ou k = 0) poque, paa um cículo hoizontal de aio coaxial com e z, S E ds = S E d = E θ (, t) π = 0 = - B t ds E θ (, t) = 0 Assim esta intega, tendo em conta que E z deve se contínua nas supefícies de tansição, de z () d = - μ ω sin (ω t) π I int () E z (, t) = 0 (0 1 ) E z (, t) = μ ω J o sin (ω t) omo D = ε o E obtemos, tendo em conta que ε o μ o = c -, J d = D t = ε o E z t e z - 1 E z (, t) = E z (, t) + μ o ω J o sin (ω t) - 1 log 1 ( 1 ) - 1 log 1 ( ) J dz (, t) = 0 (0 1 ) ω J dz (, t) = μ c J o sin (ω t) log 1 ( 1 ) J dz (, t) = J dz ( ) + ω c J o sin (ω t) - 1 log 1 ( ) Note-se que J o = I o π - 1 no inteio do tubo, pelo que J do = ω c α () J o J o se ω α () c. Pobl. 14) Um solenóide ideal de aio e n espias po unidade de compimento, com eixo segundo e z, é pecoido po uma coente vaiável de intensidade I (t). Detemine o campo elético induzido no inteio e exteio do solenóide e moste que veifica a equação de Maxwell E = - B (NB: Em coodenadas cilíndicas E = 1 e e θ e z θ z E E θ E z ) t. 1º Semeste AS

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

II Transmissão de Energia Elétrica (Teoria de Linhas)

II Transmissão de Energia Elétrica (Teoria de Linhas) II Tansmissão de Enegia Elética (Teoia de Linhas) Linhas de tansmissão : (Pela física) todos os elementos de cicuitos destinados ao tanspote de enegia elética ente dois pontos, independentemente da quantidade

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

4200V Fig. 1 C 1. 10V C 2 Fig. 2

4200V Fig. 1 C 1. 10V C 2 Fig. 2 a lista de execícios de Física 3 - Pof alos Felipe Pinheio apacitoes 1) eja E o o campo elético no inteio (vácuo) de um capacito de placas planas e paalelas Ao intoduzimos um dielético ente as placas desse

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Medidas elétricas em altas frequências

Medidas elétricas em altas frequências Medidas eléticas em altas fequências A gande maioia das medidas eléticas envolve o uso de cabos de ligação ente o ponto de medição e o instumento de medida. Quando o compimento de onda do sinal medido

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever 7.5 Aplicações da lei de Ampèe paa distibuições de coente com simetia De foma muito semelhante do uso de simetia com a lei de Gauss, pode-se detemina o campo magnético geado po uma distibuição de densidade

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo.

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo. 10. Lei de Faaday 10.1. A Lei de Faaday da Indução 10.2. A fem de indução num conduto em movimento 10.3. A Lei de Lenz 10.4. Fems Induzidas e Campos Elécticos Induzidos 10.5. Geadoes e Motoes 10.6. As

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

LISTA COMPLETA PROVA 02. Fig Exercício 6.

LISTA COMPLETA PROVA 02. Fig Exercício 6. LISTA COMPLETA PROVA CAPÍTULO 6 5E. Quando um eléton se move de A até B ao longo da linha de campo elético, mostada na Fig. 6-4, o campo elético ealiza um tabalho de 3,94 1 19 J sobe ele. Quais são as

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S Questão paa eflexão: em sítios, não é incomum nos fogões a lenha te-se uma tubulação que aquece água, a qual é conduzida paa os chuveios e toneias sem o uso de bombas. Explique o po quê. (figua extaída

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

DISPERSÃO E PODER RESOLVENTE DUM PRISMA

DISPERSÃO E PODER RESOLVENTE DUM PRISMA Aulas páticas de Óptica e Acústica º semeste de / DISPERSÃO E PODER RESOLVENTE DUM PRISMA Conceitos envolvidos: Equações de Maxwell, dispesão, polaizabilidade, índice de efacção, pisma, ede de difacção

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

ENERGIA E SUAS TRANSFORMAÇÕES 813EE

ENERGIA E SUAS TRANSFORMAÇÕES 813EE 1 TEOIA Neste tópico apesentamos os pincípios básicos de tansfomação de enegia mecânica em enegia elética, os quais são fundamentados na Lei de indução de Faaday. Que a enegia elética venha do vento ou

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência 3. Elementos de Sistemas Eléticos de Potência Pofesso: D. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

ELETROMAGNETISMO I 44

ELETROMAGNETISMO I 44 ELETROMAGNETIMO I 44 6 CORRENTE ELÉTRICA Nos capítulos anteioes estudamos os campos eléticos quando geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo faemos o estudo da coente elética,

Leia mais

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga Física II Eng. Infomática 003-004 1 Caga e densidade de caga As patículas elementaes caegadas são o electão e o potão. Possuem uma caga de igual valo, mas de sinal contáio. Caga do electão: e = -1.6010

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Análise Vetorial. Sistemas de coordenadas

Análise Vetorial. Sistemas de coordenadas Análise Vetoial Sistemas de coodenadas Retangula (,, ), cilíndico (, φ, ) e esféico (, θ, φ) são os tês sistemas de coodenadas mais utiliados em eletomagnetismo. No sistema etangula, um ponto P é definido

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

Área projectada. Grandezas Radiométricas

Área projectada. Grandezas Radiométricas Áea pojectada Conceito de áea pojectada (fontes extensas) Tata-se da áea pojectada num plano pependicula à diecção de popagação da p dω da Também se aplica paa o caso de uma supefície eflectoa (emboa aí

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POBLMAS SOLVIDOS D FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências xatas Univesidade Fedeal do spíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Problemas sobre Indução Electromagnética

Problemas sobre Indução Electromagnética Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça Aula 3_ Potencial lético II Física Geal e xpeimental III Pof. Cláudio Gaça Capítulo 3 Resumo da Aula () a pati de V() xemplo: dipolo quipotenciais e Condutoes Foma difeencial da Lei de Gauss Distibuição

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas)

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas) Sistemas Eléticos de Potência 5. nálise de utos-icuitos ou Faltas 5. omponentes Siméticos (ou Siméticas) Pofesso: D. Raphael ugusto de Souza enedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO CRG LÉTRIC caga elética é uma popiedade, dos mateiais, esponsável pelas inteações eletostáticas. xistem dois tipos de caga elética a que se convencionou chama caga positiva e caga negativa. LTRIZÇÃO POR

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

PEA2410 Sistemas de Potência I. Cálculo de Parâmetros de Linhas de Transmissão

PEA2410 Sistemas de Potência I. Cálculo de Parâmetros de Linhas de Transmissão 1 Samuel Domingos Maganeti Lazain 17/05/005 Otávio Luís de Oliveia Lucas Blattne Matinho Pofesso: Luiz Cea Zanetta Junio PEA410 Sistemas de Potência I Cálculo de Paâmetos de Linhas de Tansmissão Paa ealiza

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

Análise e Projeto de Antenas de Microfita Multicamadas

Análise e Projeto de Antenas de Microfita Multicamadas Análise e Pojeto de Antenas de Micofita Multicamadas Pojeto ITA/IEAv (Pocess FAPESP 02/14164-0) Coodenado: Pof. José Calos da Silva Lacava (ITA) Equipe do IEAv : Valdi Augusto Seão, Fancisco Sicilli e

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss Eletomagnetismo As leis da Eletostática: A lei de Gauss Eletomagnetismo» As leis da Eletostática: A lei de Gauss 1 São duas as leis que egem o compotamento do campo elético nas condições especificadas

Leia mais