UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática"

Transcrição

1 UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006

2 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h. patícula páa po 15 min e então continua seu movimento, pecoendo 140 km em 2 hoas. Detemine: a) o deslocamento total da patícula; b) a velocidade média da patícula. 2) Uma patícu la movimenta-se ao longo do eixo x e sua posição, em função do tempo é dada po x( t ) = 5 + 3t, com x dado em metos e t em segundos. a) Detemine a posição da patícula desde o instante t=0 s até o instante t=5 s, de segundo em segundo. b) Faça um esboço do gáfico da posição em função do tempo. c) Qual é a posição inicial da patícula? d) Em que instante a patícula passa pela oigem do sistema de coodenadas? e) Em que instante a patícula passa pela posição x=16 m? f) Detemine o deslocamento e a velocidade média da patícula no intevalo de tempo de 0 a 5 s. g) O que podemos dize a espeito da velocidade da patícula? 3) São apesentados abaixo paes de gáficos epesentando velocidade e aceleação em função do tempo. Qual é a única altenativa em que os gáficos podem epesenta o mesmo movimento? 4) s posições assumidas po uma patícula em MRUV são fonecidas pelo gáfico abaixo. velocidade da patícula no instante t=0 s é 18 m/s. O gáfico que epesenta a sua aceleação é: 5) Uma patícula em movimento etilíneo é feada a uma taxa constante de 4 m/s 2. Sabe-se que no instante t=0 s a patícula encontava-se na posição -10 m, com uma velocidade de 12 m/s. a) Esceva as equações da posição e velocidade da patícula em função do tempo. b) Em que instante a patícula passa pela oigem do sistema de coodenadas? c) Em que instante a patícula páa? Qual é a posição da patícula nesse instante? d) Faça um esboço dos gáficos da posição, velocidade e aceleação da patícula em função do tempo. 1ºS /

3 6) Uma patícula movimenta-se ao longo de uma eta com uma velocidade inicial de 10 m/s. patícula é então aceleada unifomemente, duante 10 s, até atingi uma velocidade de 20 m/s. Nos 10 s seguintes, a sua velocidade é mantida constante e, então, a patícula é desaceleada unifomemente duante 5 s, até etona à velocidade de 10 m/s. a) Faça um esboço do gáfico da velocidade em função do tempo. b) Detemine o deslocamento e a velocidade média da patícula duante o intevalo de tempo consideado. 7) Uma patícula é lançada veticalmente paa cima com uma velocidade inicial de 15 m/s. a) Esceva as equações da posição, velocidade e aceleação da patícula em função do tempo. b) Em que instante a patícula etona ao solo? c) Qual é a altua máxima atingida pela patícula? Qual é a sua velocidade nesse instante? 8) Uma patícula é lançada do solo com uma velocidade inicial de 12 m/s, fomando um ângulo de 30 com a hoizontal. Despezando a esistência do a e supo ndo g constante e igual a 9,8 m/s 2, detemine: a) o tempo necessáio paa a patícula etona ao solo; b) a distância hoizontal que a patícula alcança; c) as componentes hoizontal e vetical do veto velocidade no instante em que a patícula etona ao solo; d) o módulo do veto velocidade no instante em que a patícula chega ao solo. 9) Uma patícula em movimento desceve uma tajetóia cicula de aio 6 m, completando 1/6 de volta em 2 s, com velocidade angula constante. Detemine: a) a velocidade angula da patícula; b) a velocidade escala da patícula; c) o tempo necessáio paa a patícula pecoe uma volta completa; d) a aceleação centípeta da patícula. 10) Paa cada movimento abaixo, associe a situação do veto velocidade coespondente: (a) etilíneo(i) O veto velocidade é vaiável em módulo e constante em dieção ( ) (b) unifome(ii) O veto velocidade é constante em dieção ( ) (c) etilíneo e unifome (III) O veto velocidade é constante em módulo e vaiável em di eção ( ) (d) cuvilíneo e unifome (IV) O veto velocidade é vaiável em módulo e dieção ( ) (e) cuvilíneo e vaiado (V) O veto velocidade é constante em módulo e dieção ( ) 1ºS /

4 1) Patindo do epouso, um copo de massa 3 kg atinge a velocidade de 20 m/s em 5s. Descuba a foça que agiu sobe ele nesse tempo. 2) Dois blocos de massas m = 3 kg e m = 2 kg, apoiados sobe uma supefície hoizontal pefeitamente lisa, são empuados po uma foça F de 20 N, quando encostados um no outo. Detemine a aceleação do conjunto. 3) Dois copos e de massas espectivamente iguais à 5 kg e 3 kg, inteligados po um fio de massa despezível, são puxadas sobe um plano hoizontal liso po uma foça hoizontal F. aceleação do conjunto é de 6 m/s 2. Detemine: a) a foça F; b) a foça de tação no fio. 4) Um sólido de massa 5 kg é puxado sobe um plano hoizontal po uma foça hoizontal de 25 N. O coeficiente de atito ente o sólido e o plano é 0,2. ) Qual a foça de atito? ) Qual é a aceleação do copo? Dado: g = 10 m/s 2. 5) Uma foça hoizontal de 10 N aasta um copo de massa 2,5 kg, que estava inicialmente em epouso, deslocando-o 3 m, em uma supefície hoizontal. velocidade final do copo é 2 m/s. Qual a foça de atito ente o copo e a supefície? 6) (UFOP-93) Dois astonautas e de massas m =100kg e m =60kg, espectivamente, estão em uma egião do espaço onde as foças gavitacional e de atito são despezíveis. O astonauta ainda caega uma esfea de massa 20kg e a lança, com uma velocidade de 15m/s, na dieção e sentido do astonauta. Detemine; a) a velocidade de ecuo do astonauta, após lança a esfea. b) a velocidade do astonauta, a pati do momento em que ele agaa a esfea. 6) (UFOP-93) Dois astonautas e de massas m =100kg e m =60kg, espectivamente, estão em uma egião do espaço onde as foças gavitacional e de atito são despezíveis. O astonauta ainda caega uma esfea de massa 20kg e a lança, com uma velocidade de 15m/s, na dieção e sentido do astonauta. Detemine; a) velocidade de ecuo do astonauta, após lança a esfea. b) a velocidade do astonauta, a pati do momento em que ele agaa a esfea. 7) (UFOP-91) Dois copos idênticos e, pefeitamente elásticos, têm massas iguais a 2,0kg. O copo está em epouso sobe uma supefície plana bem polida e hoizontal. O copo é libeado do epouso de uma ampa bem polida, de uma altua h=0,8m, como mosta a figua. onsidee que a aceleação da gavidade local é de 10m/s 2. a. detemine qual seá a velocidade do copo quando o mesmo atingi a supefície hoizontal. b. Supondo que o copo colida fontal e elasticamente com o copo, detemine quais seão as velocidades dos copos e imediatamente após a colisão. 1ºS /

5 8)Um tenó é puxado sobe uma supefície plana e hoizontal po uma foça F = 600 N. O ângulo ente essa foça e o sentido do movimento é 30 o. Sendo o deslocamento do tenó igual a 50 m, calcule o tabalho ealizado pela foça F. Dado: cos 30 o = 0.9 9)Um copo de massa 1kg, inicialmente em epouso, é posto em movimento sob a ação de uma foça e adquie, após pecoe 3,5 m, uma velocidade de 2 m/s. Detemine o valo da foça aplicada no copo. 10)Um copo de massa 5 kg é lançado veticalmente paa cima com velocidade igual a 10 m/s. Detemine a enegia potencial gavitacional, em elação ao solo, ao atingi a altua máxima. 1ºS /

6 1) Uma patícula está sujeita ao sistema de foças da figua, onde F 1 = 100N, aplicada hoizontalmente paa a dieita, F 2 = 200N, fomando um ângulo de 37 com a hoizontal, F 3 = 150N, fomando um ângulo de 37 com a vetical e F 4 = 250N, veticalmente paa baixo, confome a figua abaixo. Detemine as caateísticas da esultante do sistema de foças. F 2 37º F 1 F 3 30º x 45º F 4 2) Detemina as tações T 1, T 2, T 3 e o peso do copo Q no sistema em equilíbio abaixo. onsidee os fios ideais e o peso do copo P igual a 200 kgf. 60º 37º T 1 T 3 T 2 P Q 3) Os blocos e estão em equilíbio na posição indicada na figua abaixo. O peso do bloco vale 6,0kgf e o peso de vale 10kgf. Sabendo-se que o coeficiente de atito ente os blocos é 0,4 e que a intensidade da foça F, aplicada no bloco vale 12kgf, detemine: a) a tação na coda hoizontal D b) o coeficiente de atito ente o bloco e o plano hoizontal. 1ºS /

7 D 60 F 4) Dois blocos e de pesos P = 80 N e P = 70 N, espectivamente, ligados po um fio ideal, estão em equilíbio na posição indicada na figua. Sabendo-se que a tação no cabo D é T D = 30 N, e que o plano inclinado é liso, detemina o coeficiente de atito estático ente o bloco e o plano hoizontal. D 53º 37º 5) Uma viga homogênea, hoizontal, de compimento L = 8,00m e peso P = 200N, está aticulada em, em uma paede vetical, que pemite a sua otação em um plano vetical. Na outa extemidade, a viga é supotada po um cabo, que faz um ângulo θ = 53º com a hoizontal, confome mosta a figua abaixo. Se uma pessoa de 600N estive a 2,00m da paede, pede-se: a) O diagama das foças que atuam na viga. b) tensão no cabo. c) O módulo da eação na aticulação em. 53 1ºS /

8 6) baa homogênea de peso P = 40 kgf está aticulada em e sustenta o copo de peso Q = 20 kgf no ponto. O ponto é supotada po um fio ideal D. Detemine a tação no fio e a eação vincula em. Dados: = 80,0cm e = 20 cm. D 53º Q 7) baa homogênea, de peso P = 60,0 kgf, está apoiada em, sobe um plano hoizontal ugoso e é mantida em equilíbio na posição esquematizada da figua abaixo, atavés de uma mola de constante elástica k = 1000 kgf/m. Sabendo-se que o peso do copo suspenso em é Q = 10,0 kgf e que = 60,0 cm e = 50,0cm, pede-se: a) o diagama de foças atuando na baa b) a defomação da mola. c) o coeficiente de atito ente a baa e o piso hoizontal. D Q 53º 1ºS /

9 8) baa homogênea de compimento 8,00 m e peso P = 500 N está aticulada em e em equilíbio na posição indicada na figua abaixo, po meio de um cabo D ideal. Sabendo-se que o peso do copo suspenso em é Q = 100 N e que = 5,00 m, detemine a) a tação no cabo D. b) a eação na aticulação em ( R ). D 30º Q 53º 9) Uma baa homogênea e unifome de 4,00m de compimento, tem peso de 60,0 kgf. Há um ponto em tono do qual a baa pode gia. baa epousa em. Um homem pesando 90,0 kgf está andando sobe a baa, patindo de. Pede-se: a) detemina as eações vinculaes em e quando o homem estive a uma distância 2,20 m da extemidade da baa b) detemina a máxima distância que o homem podeá afasta-se de e ainda mante o equilíbio da baa. x 2,50 m 1ºS /

10 RESPOSTS 1 INEMÁTI 1) a) 180 km; b) 65,45 km/h 2) a) t (s) x (m) b) 10 x(m) 0 5 t(s) g.t.s. - 5 c) -5 m; d) 1,67s; e) 7 s; f) 15 m; 3 m/s; g) a velocidade é constante e igual a 3 m/s 3) b ; 4) d 2 5) a) x = t 2t (m); v = 12 4t (m/s); b) 1 s e 5 s; c) 3 s; 8 m; d) gáficos x(m) 8 12 v(m/s) a ( m/s 2 ) 0 t(s) t(s) 0 3 t(s) ) a) gáfico v(m/s) 20 g.t.s. 10 b) 425 m; 17 m/s t(s) g.t.s. 2 7) a) y = 15t 4,9t (m); v = 15 9,8t (m/s); a = 9, 8 (m/s 2 ); b) 3,06 s; c) 11,48 m; 0 m/s 8) a) 1,22 s; b) 12,68 m; c) 10,39 m/s; -5,96 m/s; d) 11,98 m/s π 2 π 9) a) ad/s; b) π m/s; c) 12 s; d) m/s ) f a d e c b 2 DINÂMI 1) 12 N ; 2) 4 m/s 2 ; 3) a) 48 N; b) 18 N ; 4) a) 10 N ; b) 3 m/s 2 ; 5) 8,3 N ; 6) a) 5 m/s ; b) 2,5 m/s ; 7) a) 4 m/s ; b) 2 m/s ; 8) 27 J ; 9) 0,6 N ; 10) 5 m. 1ºS /

11 3 ESTÁTI 1) R = 362 N ; θ R = 175º ; sentido: voltado paa o 2º quadante 2) T 1 = 231 N ; T 2 = 115 N ; T 3 = 144 N ; T 4 = 86,6 N 3) a) T D = 2,4 N ; b) µ = 0,64 4) µ = 0,65 5) a) R V N T H 6) T D =45 kgf ; R = 36 kgf R H P b) T = 312 N ; c) R 582 N 7) a) N F el F at P Q 8) a) T D = 371 N ; b) R = 384 N 9) a) R = 23 kgf ; R = 127 kgf ; b) x = 2,83 m b) x = 0,036 m ; c) µ = 0,51 1ºS /

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais: UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Cicula Gabaito: Resposta da questão 1: [E] A fita F 1 impede que a gaota da cicunfeência extena saia pela tangente, enquanto que a fita F impede que as duas gaotas saiam pela tangente.

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura?

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura? 1. (Espcex (Aan) 17) U cubo de assa 4 kg está inicialente e epouso sobe u plano hoizontal se atito. Duante 3 s, aplica-se sobe o cubo ua foça constante, hoizontal e pependicula no cento de ua de suas faces,

Leia mais

MOVIMENTO DE QUEDA LIVRE

MOVIMENTO DE QUEDA LIVRE I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção

Leia mais

- Física e Segurança no Trânsito -

- Física e Segurança no Trânsito - - Física e Seguança no Tânsito - - COLISÕES E MOMENTUM LINEAR - COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES O QUE É MELHOR: - Se atopelado

Leia mais

Prof. A.F.Guimarães Questões Dinâmica 3 Trabalho, Potência e Energia

Prof. A.F.Guimarães Questões Dinâmica 3 Trabalho, Potência e Energia Questão 1 Po. A.F.Guimaães Questões Dinâmica Tabalho, Potência e Enegia (FUVEST) Uma patícula de massa kg, patindo do epouso, está sujeita à ação exclusiva de duas oças constantes F 1 e F pependiculaes

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

LISTA 02. r 2. puxam uma banana split (sorvete com calda e banana) em um balcão sem atrito. (a) Determine o vetor força resultante F r 1

LISTA 02. r 2. puxam uma banana split (sorvete com calda e banana) em um balcão sem atrito. (a) Determine o vetor força resultante F r 1 01 UNIVERSIDADE CATÓLICA DE GOIÁS Depatamento de Matemática e Física Coodenado da Áea de Física Disciplina: Física Geal e Expeimental I (MAF 01) LISTA 0 CAPÍTULO 05 1. (Pegunta 01) Duas foças hoizontais,

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

Bola, taco, sinuca e física

Bola, taco, sinuca e física Revista Basileia de Ensino de ísica, v. 29, n. 2, p. 225-229, (2007) www.sfisica.og. Bola, taco, sinuca e física (Ball, cue, snooke and physics) Eden V. Costa 1 Instituto de ísica, Univesidade edeal luminense,

Leia mais

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos ísica e Química 11.º Ano Poposta de Resolução da icha N.º 3 oças e ovimentos 1. Dados: v = const a = 15,0 N R N = 6,0 N Gupo I Estando o copo em equilíbio R = 0 N ou seja: a = sen e R N = cos explicitando

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL

APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA TEXTO DE APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL Rui Lança, Eq. Pofesso Adjunto David Peeia, Eq. Pofesso Adjunto SETEMBRO DE

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL MOVIMENOS CURVILÍNEOS LANÇAMENO HORIZONAL COM RESISÊNCIA DO AR DESPREZÁVEL ata-se de um moimento composto po dois moimentos. Um deles obsea-se no plano hoizontal (componente hoizontal) e o outo no plano

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

Prof. Dr. Oscar Rodrigues dos Santos

Prof. Dr. Oscar Rodrigues dos Santos FÍSICA 017-1º. Semeste Pof. D. Osca Rodigues dos Santos oscasantos@utfp.edu.b ou pofoscafisica@gmail.com EMENTA Gavitação. Mecânica dos Fluidos. Oscilações. Ondas Mecânicas. Óptica Geomética. Tempeatua.

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

Movimentos dos Satélites Geostacionários

Movimentos dos Satélites Geostacionários Movimentos dos Satélites Geostaionáios Os satélites geostaionáios são satélites que se enontam paados elativamente a um ponto fixo sobe a Tea, gealmente sobe a linha do equado. 6 hoas mais tade Movimentos

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

TENSÃO SUPERFICIAL. Prof. Harley P. Martins Filho. Tensão superficial 7/28/2017

TENSÃO SUPERFICIAL. Prof. Harley P. Martins Filho. Tensão superficial 7/28/2017 TENSÃO SUPERFICIAL Pof. Haley P. Matins Filho 1 Tensão supeficial o Oigem: desbalanceamento de foças coesivas nas moléculas da supefície de um líquido Esquema de distibuição molecula em uma massa de líquido:

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton ecânica e Ondas aguspak Cusos EI e EE Capítulo I Inteacção mecânica ei da atacção gavitacional de Newton Se consideamos duas massas pontuais m1 e m, a uma distância ente si, vai have uma foça de atacção

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

setor 1214 Aulas 35 e 36

setor 1214 Aulas 35 e 36 seto 114 1140509 1140509-SP Aulas 35 e 36 LANÇAMENTO HORIZONTAL E OBLÍQUO O oviento de u copo lançado hoizontalente no vácuo (ou e cicunstâncias tais que a esistência do a possa se despezada) é a coposição

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS seto 116 1160409 1160409-SP ula 5 ELETIZÇÃO PO INDUÇÃO E TÇÃO DE COPOS NEUTOS = conduto ou isolante, inicialmente eletizado (induto) = conduto, inicialmente neuto (induzido) Passo 1: Passo : Passo 3: Passo

Leia mais

Estudo Dirigido de Plano Inclinado

Estudo Dirigido de Plano Inclinado Curso: Engenharia Civil Disciplina: Física Geral e Experimental I Período: 1 período Data: 30/03/2012 Prof.a: Érica Estanislau Muniz Faustino 1ª Etapa Estudo Dirigido de Plano Inclinado 1- O bloco representado

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

a) 3,6 b) 18 c) 1,0 d) 6,0 e) 10

a) 3,6 b) 18 c) 1,0 d) 6,0 e) 10 Questão - (FUVEST) Um acobata, de massa M A = 60kg, que ealiza uma apesentação em que, seguando uma coda suspensa em um ponto Q fixo, petende descee um cículo de aio = 4,9m, de tal foma que a coda mantenha

Leia mais

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta

Leia mais

O sofrimento é passageiro. Desistir é pra sempre! Gravitação

O sofrimento é passageiro. Desistir é pra sempre! Gravitação O sofimento é passageio. Desisti é pa sempe! Gavitação 1. (Upe 015) A figua a segui ilusta dois satélites, 1 e, que obitam um planeta de massa M em tajetóias ciculaes e concênticas, de aios 1 e, espectivamente.

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Física I. Momento Linear,

Física I. Momento Linear, Física I Momento Linea, Impulso e Colisões Pofesso: Rogeio M. de Almeida email: menezes@id.uff.b Sala: C9 https://sites.google.com/site/ogeiomenezesdealmeida/ Momento linea O momento linea (ou quantidade

Leia mais

ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA

ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA Curso: Engenharia Civil Disciplina: Física Geral Experimental I Período: 1 período Data: 04/16/2014 Prof.a: Érica Estanislau Muniz Faustino ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA 1-

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Física Conteúdo: A seguir apresenta-se o conteúdo contemplado no programa de recuperação: Aplicação da 2ª Lei e Newton: Força Peso, Força

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A figua acima ilusta um sistema constuído de dois blocos de massas M e m, com M > m, ligados po um fio que passa po uma polia de aio R de massa não despezível. Os blocos, ao se

Leia mais

Universidade. Curso: Ciência

Universidade. Curso: Ciência Univesidade Fedeal Rual do Semi Áido PROGRAD Cuso: Ciência e Tecnologia Disciplina: Mecânica Clássica UFERSA Po Reitoia de Gaduação Lista I Cinemática e Leis de Newton 1. O micômeto (1 μm) é feqüentemente

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais