. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download ". Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E"

Transcrição

1 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais 7.4. Obtenção do Campo Eléctico pelo Potencial Eléctico 7.5. Potencial Eléctico devido a Distibuições Contínuas de Caga 7.6. Potencial Eléctico dum Conduto Caegado Neste capítulo utilizaemos o conceito de enegia em nosso estudo da electicidade. Como a foça electostática (dada pela lei de Coulomb) é consevativa, os fenómenos electostáticos podem convenientemente se descitos em temos de uma função enegia potencial eléctica. Este conceito nos pemite defini uma gandeza denominada potencial eléctico, que é uma função escala da posição e, assim, conduz a um meio mais simples de desceve alguns fenómenos electostáticos do que o método do campo eléctico. Como veemos nos capítulos subsequentes, o conceito de potencial eléctico é de gande valo pático Difeença de Potencial e Potencial Eléctico Quando uma caga pontual q é colocada em um campo eléctico E, a foça eléctica na patícula é q E. Essa foça é a soma vectoial das foças individuais execidas em q pelas váias cagas que poduzem o campo E. Segue que a foça q E é consevativa poque as foças individuais egidas pela lei de Coulomb são consevativas 1. Vamos considea um sistema que consiste na caga pontual e em todas as cagas-fonte que ciam o campo eléctico. Como o campo epesenta o efeito das cagas-fonte, podemos também considea o sistema como o campo eléctico e a caga q que colocam no campo, sem nos efeimos especificamente às cagas-fonte. Quando a caga pontual se move em esposta à foça eléctica no campo eléctico, um tabalho é ealizado sobe a patícula pelo campo. Paa um deslocamento infinitesimal ds de uma caga pontual q, o tabalho ealizado pelo campo eléctico sobe a caga é F e ds = qe. ds. O tabalho feito pelo campo numa caga pontual é simila ao tabalho feito po um campo gavitacional sobe um copo em queda live. Vimos em Física Geal I que a enegia potencial gavitacional de um sistema isolado campo copo se altea po uma quantidade igual ao negativo do tabalho feito pelo campo sobe o copo. Similamente, o tabalho ealizado pelo campo eléctico numa patícula caegada vaia a enegia potencial do sistema isolado campo caga po uma quantidade du = dw = q E ds. Paa um deslocamento finito de uma caga de pova q ente os pontos e, a vaiação da enegia potencial do sistema campo caga é U = U U = q E ds (7.1) 1 Uma foça é consevativa se o tabalho que ealiza sobe uma patícula é independente da tajectóia que a patícula pecoe ente dois pontos. Uma foça consevativa na mecânica não causa uma tansfomação de enegia mecânica em enegia intena. 111

2 integal na equação 7.1 é calculada ao longo da tajectóia na qual a patícula se desloca de paa é denominada integal da tajectóia ou integal de linha. Como a foça q E é consevativa, essa integal não depende da tajectóia ente e. enegia potencial U do sistema po unidade de caga q é independente do valo de q e tem um valo único em cada ponto do campo eléctico. gandeza U / q é chamada de potencial eléctico V (ou, simplesmente, o potencial): U V (7.2) q Como a enegia potencial é uma gandeza escala, o potencial eléctico também é uma gandeza escala. Obseve que o potencial não é uma popiedade do sistema campo caga poque dividimos a enegia potencial do sistema pela caga. É uma popiedade somente do campo. ssim, na situação física, podemos imagina que emovemos a caga de pova do campo. O potencial ainda existe no ponto em que a caga de pova ocupava e é devido às cagas fonte que estabelecem o campo eléctico. difeença de potencial = V V ente os pontos e é definida como a vaiação da enegia potencial do sistema campo caga quando a patícula de pova se desloca ente os pontos, dividida pela caga q da patícula de pova: U = q = E ds (7.3) difeença de potencial não deve se confundida com a difeença de enegia potencial. difeença de potencial ente dois pontos num campo eléctico é popocional à difeença de enegia potencial do sistema campo caga quando a caga está nos dois pontos, e vemos pela equação 7.3 que as duas gandezas estão elacionadas po U = q. Equação 7.3 define somente a difeença de potencial. O potencial fequentemente é consideado como sendo zeo em algum ponto conveniente, às vezes chamado um tea. Gealmente ajustamos em zeo o potencial devido a uma ou mais cagas fonte paa um ponto no infinito (isto é, um ponto infinitamente emoto em elação às cagas fonte poduzindo o campo eléctico). Com essa opção, podemos dize que o potencial eléctico num ponto abitáio devido às cagas fonte é igual ao tabalho necessáio paa taze uma patícula de pova do infinito a esse ponto dividido pela caga na patícula de pova. ssim, se tomamos V = no infinito na equação 7.3, então o potencial em algum ponto P seá V P P = E ds (7.4) onde E é o campo eléctico estabelecido pelas cagas fonte. Na ealidade, V P epesenta a difeença de potencial ente o ponto P e um ponto no infinito. ( equação 7.4 é um caso especial da equação 7.3.) o discuti potenciais em um cicuito eléctico, ajustaemos V = em algum ponto seleccionado no cicuito. Como o potencial é uma medida da enegia po unidade de caga, a unidade SI do potencial é o joule po coulomb, denominada volt (V): 1 V 1 J / C. 112

3 Significa que se libetamos uma patícula com uma caga de 1 C num campo eléctico e ela se desloca dum ponto de potencial elevado paa um ponto de potencial baixo com uma difeença de potencial de 1 V, ela teá 1J de tabalho feito sobe ela pelo campo e, consequentemente, alcançaá uma enegia cinética de 1 J (de acodo com o teoema do tabalho e da enegia cinética). De maneia altenativa, 1J de tabalho deve se ealizado po um agente exteno paa leva uma patícula com uma caga de 1 C atavés de uma difeença de potencial de + 1 V a velocidade constante (de acodo com o modelo do sistema não isolado). Equação 7.3 mosta que a difeença de potencial também tem as mesmas unidades que o campo eléctico vezes a distância. pati disso, segue-se que as unidades SI de campo eléctico, newtons po coulomb, podem Se expessas em volts po meto: 1 N / C 1 V / m. Isso sugee que o campo eléctico pode se intepetado como a taxa de vaiação do potencial eléctico no espaço. Um campo eléctico intenso coesponde a um potencial que vaia apidamente no espaço, enquanto um campo faco epesenta um potencial que vaia lentamente. Uma unidade de enegia gealmente utilizada na física é o electão volt (ev): 1 ev = (1 e)(1 V) = ( C) (l J / C) = J (7.5) Um ev é a enegia cinética ganha po uma patícula com caga e que está sendo aceleada po uma difeença de potencial de valo 1 V. Equação 7.5 pode se utilizada paa convete qualque enegia em joules paa electões volt. Po exemplo, um electão no feixe de um tubo de televisão típico pode te uma velocidade de m / s. Isso coesponde a uma enegia cinética de J, que é 3 equivalente a ev. Tal electão tem de se aceleado do epouso com uma difeença de potencial de 3.5 kv paa atingi essa velocidade Difeenças de Potencial num Campo Eléctico Unifome Nesta secção descevemos a difeença de potencial ente quaisque dois pontos num campo eléctico unifome. Considee um campo eléctico unifome diigido ao longo do eixo y negativo, como na Figua 7.1a. Vamos calcula a difeença de potencial ente dois pontos e, sepaados po uma distância d, onde d é medida paalelamente às linhas do campo. Se aplicamos a Equação 2.3 a essa situação, teemos V V = = E ds = o E cos ds = Eds Como E é constante, pode se colocado foa da integal, dando = E ds = E (7.6) O sinal negativo esulta do facto de que o ponto está num potencial mais baixo do que o ponto ; isto é, V < V. Em geal, as linhas do campo eléctico sempe apontam na diecção de diminuição do potencial eléctico. 113

4 Suponha agoa que uma caga de pova q se desloca de paa. vaiação da enegia potencial eléctica do sistema campo caga pode se encontada a pati das equações 7.3 e 7.6: = q = q Ed (7.7) U Po esse esultado, vemos que se q fo positiva, então U é negativa. Isso significa que, quando uma caga positiva se desloca no sentido do campo eléctico, a enegia potencial eléctica do sistema campo caga diminui. (Isso é análogo à mudança na enegia potencial gavitacional - mgd de um sistema campo - copo quando um copo com massa m cai de uma altua d num campo gavitacional unifome, como sugeido na Figua 7.1b.) Se uma patícula com uma caga positiva q é libetada do epouso no campo eléctico, sofe uma foça eléctica q E no sentido de E (paa baixo na Figua 7.1a). Consequentemente, ela acelea paa baixo, ganhando enegia cinética. Como a patícula caegada ganha enegia cinética, o sistema campo caga pede uma quantidade igual de enegia potencial. Esse esultado familia é simila ao que vimos paa as situações gavitacionais (Figua 7.1b). O enunciado é simplesmente o pincípio da consevação da enegia mecânica no modelo do sistema isolado paa campos elécticos. Figua 7.1. (a) Quando o campo eléctico E está dieccionado paa baixo, o ponto está num potencial eléctico mais baixo que o ponto. Quando uma caga positiva de pova se desloca de paa, o sistema caga campo pede enegia potencial eléctica. (b) Quando um copo com massa m se desloca paa baixo na diecção do campo gavitacional g, o sistema copo campo pede enegia potencial gavitacional. 114

5 Se q fo negativa, então U na Equação 7.7 é positiva e a situação está invetida. Se uma patícula negativamente caegada fo libeada do epouso no campo E, ela acelea na diecção oposta ao campo eléctico. O sistema campo - caga pede enegia potencial eléctica quando uma caga negativa se desloca na diecção oposta à do campo eléctico. Não temos nenhum análogo paa essa situação no caso gavitacional poque nenhuma massa negativa foi obsevada até o momento. Considee agoa o exemplo mais geal de uma patícula caegada que se desloca ente dois pontos quaisque num campo eléctico unifome, como na Figua 7.2. Se epesenta o vecto deslocamento ente os pontos e, a equação 7.3 nos fonece = E ds = E ds = E (7.8) onde novamente podemos emove E da integal poque ele é constante. lém disso, a vaiação na enegia potencial eléctica do sistema campo - caga é U = q V = q E (7.9) Figua 7.2. Uma patícula se desloca num campo eléctico unifome. O ponto está num potencial mais baixo que o ponto. Os pontos e C estão no mesmo potencial. Finalmente, nossos esultados mostam que todos os pontos num plano pependicula a um campo eléctico unifome estão no mesmo potencial. Isso pode se visto na Figua 7.2, onde a difeença de potencial V - V = E = E cosθ = - Ed = V C - V. Sendo assim, V = V C. O nome supefície equipotencial é dado a toda supefície que consista numa distibuição contínua de pontos que têm o mesmo potencial eléctico. Obseve que, como U = q, nenhum tabalho é necessáio paa move uma patícula de pova ente dois pontos quaisque e numa supefície equipotencial. s supefícies equipotenciais de um campo eléctico unifome consistem numa família de planos, todos pependiculaes ao campo. s supefícies equipotenciais paa campos com outas simetias seão descitas posteiomente. 115

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo.

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo. 10. Lei de Faaday 10.1. A Lei de Faaday da Indução 10.2. A fem de indução num conduto em movimento 10.3. A Lei de Lenz 10.4. Fems Induzidas e Campos Elécticos Induzidos 10.5. Geadoes e Motoes 10.6. As

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO CRG LÉTRIC caga elética é uma popiedade, dos mateiais, esponsável pelas inteações eletostáticas. xistem dois tipos de caga elética a que se convencionou chama caga positiva e caga negativa. LTRIZÇÃO POR

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga Física II Eng. Infomática 003-004 1 Caga e densidade de caga As patículas elementaes caegadas são o electão e o potão. Possuem uma caga de igual valo, mas de sinal contáio. Caga do electão: e = -1.6010

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos ísica e Química 11.º Ano Poposta de Resolução da icha N.º 3 oças e ovimentos 1. Dados: v = const a = 15,0 N R N = 6,0 N Gupo I Estando o copo em equilíbio R = 0 N ou seja: a = sen e R N = cos explicitando

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo Física II F 8 º semeste 01 aula : gavimetia, matéia escua, enegia potencial gavitacional e a expansão do univeso Revendo a aula passada: pincípio de supeposição (e coigindo um eo) m F F 1 z M b a M 1 Discussão

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça Aula 3_ Potencial lético II Física Geal e xpeimental III Pof. Cláudio Gaça Capítulo 3 Resumo da Aula () a pati de V() xemplo: dipolo quipotenciais e Condutoes Foma difeencial da Lei de Gauss Distibuição

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Departamento de Engenharia Mecânica e Gestão Industrial PREPARAÇÃO PARA A PROVA DE CONHECIMENTO ESPECÍFICO FÍSICA E QUÍMICA

Departamento de Engenharia Mecânica e Gestão Industrial PREPARAÇÃO PARA A PROVA DE CONHECIMENTO ESPECÍFICO FÍSICA E QUÍMICA Depatamento de Engenhaia Mecânica e Gestão Industial PREPARAÇÃO PARA A PROVA DE CONHECIMENTO ESPECÍFICO FÍSICA E QUÍMICA Depatamento de Engenhaia Mecânica e Gestão Industial RESUMO PROGRAMA BIBLIOGRAFIA

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Prof. Dr. Oscar Rodrigues dos Santos

Prof. Dr. Oscar Rodrigues dos Santos FÍSICA 017-1º. Semeste Pof. D. Osca Rodigues dos Santos oscasantos@utfp.edu.b ou pofoscafisica@gmail.com EMENTA Gavitação. Mecânica dos Fluidos. Oscilações. Ondas Mecânicas. Óptica Geomética. Tempeatua.

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Cicula Gabaito: Resposta da questão 1: [E] A fita F 1 impede que a gaota da cicunfeência extena saia pela tangente, enquanto que a fita F impede que as duas gaotas saiam pela tangente.

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Electricidade e Magnetismo

Electricidade e Magnetismo Electicidade e Magnetismo 1. Campos Elécticos. A lei de Gauss 3. Potencial Eléctico 4. Capacidade e Dielécticos 5. Coentes e Resistência 6. Cicuitos de Coente Contínua 7. Cicuitos de Coente Altenada 8.

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

ASPECTOS GERAIS E AS LEIS DE KEPLER

ASPECTOS GERAIS E AS LEIS DE KEPLER 16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

II Transmissão de Energia Elétrica (Teoria de Linhas)

II Transmissão de Energia Elétrica (Teoria de Linhas) II Tansmissão de Enegia Elética (Teoia de Linhas) Linhas de tansmissão : (Pela física) todos os elementos de cicuitos destinados ao tanspote de enegia elética ente dois pontos, independentemente da quantidade

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Experiência 2 - Filtro de Wien - 7 aulas

Experiência 2 - Filtro de Wien - 7 aulas Instituto de Física - USP FGE0213 - Laboatóio de Física III - LabFlex Estudo de uma patícula em um campo eletomagnético Aula 5 - (Exp 2.1) Filto de Wien Mapeamento de Campo Elético Manfedo H. Tabacniks

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss Eletomagnetismo As leis da Eletostática: A lei de Gauss Eletomagnetismo» As leis da Eletostática: A lei de Gauss 1 São duas as leis que egem o compotamento do campo elético nas condições especificadas

Leia mais

Campo Elétrico Carga Distribuída

Campo Elétrico Carga Distribuída Aula _ Campo lético Caga Distibuída Física Geal e peimental III Pof. Cláudio Gaça Capítulo Campos léticos de distibuições contínuas de caga elética Fundamentos: (Lei de Coulomb Pincípio da Supeposição)

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB Guia do Pofesso Objeto de apendizagem: Fluxo e Lei de Gauss NOA UFPB 1. Intodução Apesentamos adiante instuções sobe como utiliza esse objeto de apendizagem com a intenção de facilita a constução de significados

Leia mais

ENERGIA POTENCIAL ELÉTRICA

ENERGIA POTENCIAL ELÉTRICA Pof(a) Stela Maia de Cavalho Fenandes 1 NRGIA POTNCIAL LÉTRICA O que é enegia otencial elética? Comaando-se o modelo mecânico da mola, onde uma mola comimida ossui enegia otencial elástica é, devido a

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton ecânica e Ondas aguspak Cusos EI e EE Capítulo I Inteacção mecânica ei da atacção gavitacional de Newton Se consideamos duas massas pontuais m1 e m, a uma distância ente si, vai have uma foça de atacção

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

MOVIMENTO DE QUEDA LIVRE

MOVIMENTO DE QUEDA LIVRE I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Magnetismo: conhecido dos gregos, ~ 800 A.C. certas pedras (magnetite, Fe 3

Magnetismo: conhecido dos gregos, ~ 800 A.C. certas pedras (magnetite, Fe 3 8. Capos Magnéticos 8.1. Definição e popiedades do capo agnético. 8.2. Foça agnética nu conduto pecoido po ua coente. 8.3. Moento sobe ua espia de coente nu capo agnético unifoe 8.4. Moviento dua patícula

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos Accionamento de máquinas Estudo do moto eléctico, quando acoplado a uma máquina. A máquina accionada impõe duas condicionantes ao aanque: Bináio esistente Inécia das massas. Bináio esistente O conhecimento

Leia mais

Física GABRIEL DIAS DE CARVALHO JÚNIOR. ELETRICIDADE Carga Elétrica e Lei de Coulomb

Física GABRIEL DIAS DE CARVALHO JÚNIOR. ELETRICIDADE Carga Elétrica e Lei de Coulomb Física ELETRICIDADE Caga Elética e Lei de Coulomb 1 Intodução... 3 2 Condutoes e Isolantes... 3 3 Caga Elética... 3 4 Pocessos de Eletização... 4 5 Eletoscópios... 5 6 Lei de Coulomb... 6 Campo Elético

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Prof. A.F.Guimarães Questões Dinâmica 3 Trabalho, Potência e Energia

Prof. A.F.Guimarães Questões Dinâmica 3 Trabalho, Potência e Energia Questão 1 Po. A.F.Guimaães Questões Dinâmica Tabalho, Potência e Enegia (FUVEST) Uma patícula de massa kg, patindo do epouso, está sujeita à ação exclusiva de duas oças constantes F 1 e F pependiculaes

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS seto 116 1160409 1160409-SP ula 5 ELETIZÇÃO PO INDUÇÃO E TÇÃO DE COPOS NEUTOS = conduto ou isolante, inicialmente eletizado (induto) = conduto, inicialmente neuto (induzido) Passo 1: Passo : Passo 3: Passo

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Introdução à Física. Principio da pesquisa física

Introdução à Física. Principio da pesquisa física Intodução à Física S.J.Toise iência é a ate de estuda a natueza e este estudo pode se feito sob difeentes aspectos. ada um destes aspectos define um dos tês gandes amos da ciência: a iologia, a uímica

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 2.1.3 Micofone e altifalante O micofone é um dispositivo que, quando inseido num cicuito eléctico fechado,

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

- Física e Segurança no Trânsito -

- Física e Segurança no Trânsito - - Física e Seguança no Tânsito - - COLISÕES E MOMENTUM LINEAR - COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES O QUE É MELHOR: - Se atopelado

Leia mais

APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL

APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA TEXTO DE APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL Rui Lança, Eq. Pofesso Adjunto David Peeia, Eq. Pofesso Adjunto SETEMBRO DE

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais