Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2.

Tamanho: px
Começar a partir da página:

Download "Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2."

Transcrição

1 1 1. Análise das elocidades Figua 1 - Sólido obseado simultaneamente de dois efeenciais Consideemos um ponto P, petencente a um espaço ígido em moimento, S 2. Suponhamos que este ponto está a se isto po obseadoes, ligados espectiamente aos espaços ígidos S 2, S 1 e S 0. Claamente, o obseado ligado a S 2 imagina o ponto P, fixo. Os obseadoes ligados a S 1 e S 0, êem-no em moimento, mas com tajectóias, elocidades e aceleações difeentes. Vejamos que elação existe ente os moimentos obseados a pati de cada um destes efeenciais. A elocidade total ou absoluta do ponto P, aquela que o obseado ligado a S 0 pode e, pode calcula-se pela deiada em odem ao tempo, do ecto O0P. A elocidade elatia ao efeencial S1, seá a deiada em odem ao tempo do ecto O 1 P, calculada como se o efeencial S1 fosse fixo. Patamos do ecto O P 0. Pode decompo-se do seguinte modo O P = O O + O P (1) Deiando este ecto em odem ao tempo, obteemos O P = O O + O P (2) P = O + O 1P/ S (3) 20 0 P = O + O1P/ S + wx O1P (4) 20 1 = + ( + w xo P ) (5) P20 P O 1 A soma contida dento do paêntesis, pode econhece-se como sendo o alo da elocidade (total, absoluta) de um ponto do espaço ígido S 1, neste instante coincidente com o ponto P 2. Com efeito, moel.doc

2 2 coesponde às pacelas da 1ª equação de Mozzi, utilizada paa defini os campos de elocidades contempoâneas de todos os pontos de um espaço ígido. Teemos pois = + (6) P20 P P A elocidade absoluta do ponto P 2 pode assim se decomposta na soma de duas pacelas: a elocidade elatia a S 1 e a elocidade de tanspote com S 1. A elocidade elatia a S 1, é a elocidade que um obseado ligado a este efeencial consegue medi. A elocidade de tanspote com S 1, é a elocidade absoluta de um ponto P 1, de S 1 que instantaneamente coincide com o ponto P 2. A decomposição de elocidades descita na equação (6) paa o ponto P 2 é álida paa um qualque ponto do espaço ígido S 2. Que isto dize que também podemos afima que um campo de elocidades contempoâneas absolutas pode se decomposto na soma de um campo de elocidades elatias a dado efeencial com um campo de elocidades de tanspote, que é o campo de elocidades absolutas deste último efeencial. Atendendo a que se tata de campos de momentos, as coodenadas ectoiais num ponto do campo de elocidades contempoâneas absolutas seão a soma das coodenadas ectoiais nesse mesmo ponto, dos campos de elocidades elatias e de tanspote. Ou seja, P S = + 2 P20 P P (7) implica que = + w = w + w P20 P P 20 (8) Analisemos o seguinte exemplo de um mecanismo em moimento plano (figua 2) Fig 2 - Mecanismo em moimento plano O mecanismo da figua 2 é constituído po dois copos. O copo 1, tem moimento de otação em tono de O. O copo 2, tem um moimento composto de dois moimentos: Um elatio ao copo 1, que é uma tanslação na diecção OA; e um de tanspote com o copo 1, que é uma otação em tono de O. Qualque ponto do copo 2, po exemplo o ponto A ou o ponto B, tem uma elocidade total, absoluta, que pode considea-se decomposta na soma de duas pacelas: a elocidade elatia ao copo 1, que há-de se paalela a OA isto o moimento elatio se uma tanslação nessa diecção; e a elocidade de tanspote com o copo 1, que é a elocidade absoluta do ponto do espaço ígido S 1, nesse instante moel.doc

3 3 coincidente com o ponto em análise. Esta última componente coesponde a uma otação em tono de O, isto se esse o moimento absoluto do copo 1. Neste exemplo, o campo de elocidades absolutas do copo 2 tem uma distibuição cilíndica em tono de um eixo que passa po I 20 ; o campo de elocidades elatias ao copo 1, é unifome; e o campo de elocidades de tanspote, tem uma distibuição cilíndica em tono de um eixo que passa po I, neste caso sempe coincidente com O. A teoia do moimento elatio pemite simplifica muito a análise de moimentos complexos, decompondo estes na soma de moimentos mais simples. Podemos te um espaço ígido em moimento elatio a outo, que po sua ez se moe elatiamente a um teceio igualmente móel e assim po diante, até podemos enconta um espaço de efeência suposto fixo. Este espaço é aquele em que nos encontamos, como obseadoes. Mesmo que não seja fixo, não pecebemos o seu moimento, pelo que, paa nós tudo se passa como seja fixo. É potanto possíel escee w Pn 0 Pn 0 = P = w n,n 1 Pn,n 1 + P n + w 1,n 2 Pn 1,n P w P (9) Esta simplicidade na análise das elocidades, infelizmente não se epete na análise das aceleações, como eemos em seguida. 2. Análise das aceleações Patamos da equação (6) que pemite decompo as elocidades de acodo com a teoia do moimento elatio. Vamos deia em odem ao tempo a elocidade absoluta de P 2, de modo a obte a aceleação total, absoluta, desse ponto P = P P + 20 / S 0 () Estas deiadas em odem ao tempo, são deiadas totais, isto é, calculadas elatiamente ao efeencial fixo S 0, como sabemos. Note-se que, de acodo com o teoema das deiadas elatias, w P = P + P (11) e também, atendendo a que = + w O P, P O 1 w OP w O P P = O S S S / 0 (12) moel.doc

4 4 w OP w O P w w O P P = O + + S S S (13) Patindo da expessão () e atendendo a que de cálculo paa as aceleações: P = a P,..., teemos a seguinte expessão a P = a P + ao + w O P w w O P w ( 1 ) + 2 P (14) a = a + a + w (15) P P P 2 20 P Como emos, a aceleação absoluta do ponto P 2 pode decompo-se na soma de uma aceleação elatia a S 1 com uma aceleação de tanspote com S 1 e mais uma pacela exta, habitualmente designada po aceleação complementa de Coiolis, com a foma que pode e-se na equação (15). A aceleação elatia, é a que um obseado ligado ao efeencial S 1 consegue medi. A aceleação de tanspote, é a aceleação absoluta de um ponto P 1, do efeencial S 1, nesse instante coincidente com o ponto P 2. A aceleação complementa de Coiolis, que não tem um significado físico eidente, esulta da existência de otação no efeencial intemédio S 1. É uma pacela necessaiamente nula quando o moimento de tanspote é uma tanslação. Também na análise de aceleações pode efectua-se uma decomposição de um moimento complexo na soma de diesos moimentos mais simples, como acontecia na análise de elocidades e estaa sugeido na expessão (9). Só que, agoa, temos de faze apaece uma aceleação complementa po cada moimento elatio consideado. Pode facilmente mosta-se que, paa as aceleações seá álida uma decomposição do tipo a =... + a + a + a w + 2 w (16) Pn0 P32 P P 20 P32 P Como paa as elocidades, as expessões (15) e (16) são álidas paa qualque ponto do espaço S 2. Ou seja, o campo de aceleações absolutas é decomponíel na soma de campos de aceleações elatias, de tanspote e complementaes. A aceleação elatia pode pois também obte-se pela análise do campo de aceleações no moimento elatio, isto é, pela aplicação da 2ª equação de Mozzi, sem a deiação explícita em odem ao tempo, da elocidade elatia. Neste caso, coném lemba que os ectoes otação e aceleação angula são apenas coespondentes ao moimento elatio. O ecto aceleação angula esultaá, potanto, da deiada do ecto otação, calculada elatiamente ao efeencial S 1. Ou seja, podemos faze a = a + α A P + w ( w A P) (17) P A 1 1 moel.doc

5 5 = w α /S1 (18) Analisemos o mecanismo epesentado na figua 3 Fig 3 -Mecanismo em moimento 3D Neste mecanismo, o copo 1 tem moimento de otação em tono de um eixo etical, enquanto o copo 2 tem um moimento composto de uma otação em elação ao copo 1, mais o pópio moimento do copo 1. Paa qualque ponto do copo 2, podemos escee = + P20 P P (19) Calculando cada uma das pacelas pela análise dos campos de elocidades contempoâneas, podeemos escee = w CP + w OP P 20 (20) Paa análise das aceleações, teemos a = a + a + w () P P P 2 20 P Po análise dos espectios campos de aceleações contempoâneas, podeemos escee ap = CP w w CP OP w w OP w P + + α ( ) α ( ) + (22) Agoa, paa podemos efectua estes cálculos, teíamos apenas de pojecta todos os ectoes num deteminado sistema de eixos, po exemplo (mas não necessaiamente) ligado ao copo 1. moel.doc

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE 1 1 Genealidades Consideemos o caso epesentado na figua, em que o copo 2 contacta com o copo 1, num ponto Q. Teemos então, sobepostos neste instante, um ponto Q 2 e um ponto Q 1, petencentes, espectivamente

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema:

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema: Colisões.F.B, 004 Física 004/ tua IFA AULA 3 Objetio: discuti a obseação de colisões no efeencial do cento de assa Assuntos:a passage da descição no efeencial do laboatóio paa o efeencial do cento de assa;

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época nomal) 17/01/2003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Uma patícula desceve um movimento no espaço definido pelas seguintes tajectóia

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época de ecuso) 11/0/003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Diga, numa fase, o que entende po Cento Instantâneo de Rotação (CIR). Sabendo

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Física I para Engenharia. Aula 9 Rotação, momento inércia e torque

Física I para Engenharia. Aula 9 Rotação, momento inércia e torque Física I paa Engenhaia 1º Semeste de 014 Instituto de Física- Uniesidade de São Paulo Aula 9 Rotação, momento inécia e toque Pofesso: Valdi Guimaães E-mail: aldi.guimaaes@usp.b Fone: 3091.7104 Vaiáeis

Leia mais

Figura 1 Bolas em rota de colisão

Figura 1 Bolas em rota de colisão As equações do poblema Objeto de apendizagem: Colisões bidimensionais Romeo Taaes omeo@fisica.ufpb.b NOA - UFPB Poblema Vamos considea uma bola que se moe com elocidade I, na dieção de uma outa bola que

Leia mais

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME Dinâmica de um Sistema de atículas Da. Diana Andade, Da. Angela Kabbe, D. Caius Lucius & D. Ségio illing 4 MOVIMENTO CIRCULAR UNIFORME Se um onto se moe numa cicunfeência, seu moimento é cicula, odendo

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL MOVIMENOS CURVILÍNEOS LANÇAMENO HORIZONAL COM RESISÊNCIA DO AR DESPREZÁVEL ata-se de um moimento composto po dois moimentos. Um deles obsea-se no plano hoizontal (componente hoizontal) e o outo no plano

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Física Geral 2010/2011

Física Geral 2010/2011 Física Geal / 3 - Moimento a duas dimensões: Consideemos agoa o moimento em duas dimensões de um ponto mateial, ataés do estudo das quantidades ectoiais posição, elocidade e aceleação. Vectoes posição,

Leia mais

Aula Invariantes Adiabáticos

Aula Invariantes Adiabáticos Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

(Eq. conservação da quantidade de movimento para V.C., cont) Caso particular: escoamento uniforme permanente

(Eq. conservação da quantidade de movimento para V.C., cont) Caso particular: escoamento uniforme permanente (Eq. consevação da quantidade de movimento paa.c., cont) Caso paticula: escoamento unifome pemanente Se há apenas uma entada e uma saída, a Eq. da q.d.m. tona-se: = ρ ρ da eq. da continuidade: 2 A222 1A1

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas.

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas. MECÂNICA DOS FLUIDOS I Engenhaia Mecânica e Naval Exame de ª Época 0 de Feveeio de 00, 7h 00m Duação: hoas Se não consegui esolve alguma das questões passe a outas que lhe paeçam mais fáceis abitando,

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2) UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda

Leia mais

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange Modelagem Matemática de Sistemas Mecânicos Intodução às Equações de Lagange PTC 347 Páticas de Pojeto de Sistemas de Contole º semeste de 7 Buno Angélico Laboatóio de Automação e Contole Depatamento de

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Depatamento de Engenhaia de Mateiais (DEMAR) Escola de Engenhaia de Loena (EEL) Univesidade de São Paulo (USP) LOM30 - Teoia da Elasticidade Aplicada Pate 3 - Fundamentos da Teoia da Elasticidade (Coodenadas

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

SOLUÇÃO PRATIQUE EM CASA - FÍSICA

SOLUÇÃO PRATIQUE EM CASA - FÍSICA SOLUÇÃO PRATIQUE EM CASA - FÍSICA SOLUÇÃO PC1. A análise da situação pemite conclui que o caetel F gia no mesmo sentido que o caetel R, ou seja, hoáio. Como se tata de uma acoplamento tangencial, ambos

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios MECÂNICA DO MEIO CONTÍNUO Execícios Mecânica dos Fluidos 1 Considee um fluido ideal em epouso num campo gavítico constante, g = g abendo que p( z = 0 ) = p a, detemine a distibuição das pessões nos casos

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNC Recuso 08/02/2002 Não esqueça de esceve o nome NOME: 1) ESCOLH MÚLTPL ssinale nas quadículas vedadeio V ou falso F. Nota: Podeão eisti nenhuma ou mais do que uma esposta

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

Teo Torque magnético

Teo Torque magnético Teo. 13 - Toqe magnético 13.1 Intodção S.J.Toise Sabemos qe a foça é capaz de podzi tanto movimento de tanslação como movimento de otação. Estdemos agoa o fato de qe a foça magnética qando ata sobe ma

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

Modelo quântico do átomo de hidrogénio

Modelo quântico do átomo de hidrogénio U Modelo quântico do átomo de hidogénio Hidogénio ou átomos hidogenóides (núcleo nº atómico Z com um único electão) confinado num poço de potencial de Coulomb ( x, y, z) U ( ) 4πε Ze Equação de Schödinge

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA ecânica PE 00 Pova de Recupeação /07/014 Duação da Pova: 100 minutos (Não é pemitido o uso de calculadoas, celulaes, tablets e/ou outos equipamentos similaes) 1ª uestão (4,0 pontos) No sistema indicado

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica M MÂNI Substitutia de uho de 9 Duação da oa: minutos não é pemitido uso de cacuadoas QUSÃ, pontos. diagama abaio mosta um sistema em equiíbio. peso do boco K é e o peso da poia é /. Despee outos pesos.

Leia mais

Fluido Perfeito/Ideal Força Exercida por um Escoamento Plano em Torno de um Sólido Potencial complexo do escoamento em torno de um cilindro

Fluido Perfeito/Ideal Força Exercida por um Escoamento Plano em Torno de um Sólido Potencial complexo do escoamento em torno de um cilindro eodinâmica Foça Eecida po um Escoamento Plano Potencial compleo do escoamento em tono de um cilindo a W elocidade complea a i Na supefície do cilindo ae sen( ) eodinâmica Foça Eecida po um Escoamento Plano

Leia mais

QUESTÃO 1. r z = b. a) y

QUESTÃO 1. r z = b. a) y QUESTÃO 1 Uma longa baa cilíndica condutoa, de aio R, está centada ao longo do eixo z. A baa possui um cote muito fino em z = b. A baa conduz em toda sua extensão e no sentido de z positivo, uma coente

Leia mais

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE TRABALHO PRÁTICO ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objectivo Petende-se estuda o movimento ectilíneo e unifomemente aceleado medindo o tempo gasto po um

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

Plano de Aulas. Matemática. Módulo 20 Corpos redondos

Plano de Aulas. Matemática. Módulo 20 Corpos redondos Plano de Aulas Matemática Módulo 0 Copos edondos Resolução dos execícios popostos Retomada dos conceitos 8 CAPÍTULO 1 1 No cilindo equiláteo, temos: ] 6 ] cm A lateal s ] A lateal s 6 ] ] A lateal.704s

Leia mais

INFORMAÇÃO COMPLEMENTAR

INFORMAÇÃO COMPLEMENTAR INFORMAÇÃO-PROVA MATEMÁTICA A 208 Pova 5 2.º Ano de Escolaidade (Deceto-Lei n.º 9/202, de 5 de julho) INFORMAÇÃO COMPLEMENTAR Na sequência da Infomação-Pova do exame final nacional de Matemática A 5, de

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume J. SEBASTAO E SLVA. 3. ntepetação geomética da multiplicação de númeos compleos. Comecemos pelo seguinte caso paticula: Poduto do númeo i po um númeo compleo qualque, z = + iy (, y e R).,------- *' "--

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras)

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras) PME Mecânica B ª Pova 3/3/9 Duação: minutos (Não é pemitido o uso de calculadoas) ª Questão (3, pontos) O eixo esbelto de compimento 3L e massa m é apoiado na aticulação e no anel B e possui discos de

Leia mais

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório Física Expeimental: Mecânica Aula 1 Intodução ao laboatóio 1 Conteúdo desta aula: -Objetivos... slides 3 6 -Divisão de gupos... slides 6 8 -Uso de equipamentos... slides 9 11 -Unidades Intenacionais...

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução 4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

apresentar um resultado sem demonstração. Atendendo a que

apresentar um resultado sem demonstração. Atendendo a que Aula Teóica nº 2 LEM-26/27 Equação de ot B Já sabemos que B é um campo não consevativo e, potanto, que existem pontos onde ot B. Queemos agoa calcula este valo: [1] Vamos agoa apesenta um esultado sem

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO CRITÉRIOS GERAIS DE CLASSIFICAÇÃO Dado a pova apesenta duas vesões, o examinando teá de indica na sua folha de espostas a vesão a que está a esponde. A ausência dessa indicação implica a atibuição de zeo

Leia mais

Física 1 Unidade 03 Cinemática em 2 e 3 dimensões Prof. Hamilton José Brumatto - DCET/UESC

Física 1 Unidade 03 Cinemática em 2 e 3 dimensões Prof. Hamilton José Brumatto - DCET/UESC Física 1 Unidade 03 Cinemáica em e 3 dimensões Pof. Hamilon José Bumao - DCET/UESC Gandeas da Cinemáica Posição Deslocameno Velocidade média Velocidade insanânea Aceleação média Aceleação insanânea Moimenos

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Licenciatura em Engenharia Civil MECÂNICA I

Licenciatura em Engenharia Civil MECÂNICA I Licenciatua em Engenhaia Civil MECÂNIC I Exame de Época Nomal 04/07/2003 NOME: 1) (3 VL.) a) Considee o sistema de foças τ { F,F, } magnitude F 1 = 2kN ; F 2 = 2 2 kn 1 2 F3, de ; F 3 = 2 kn. z 2 F 1 Nota:

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [A] A velocidade linea de cada ponto da hélice é popocional ao aio: v ωr I A intensidade da foça de atito é popocional à velocidade linea: Fat kv II O toque da foça

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais