2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático"

Transcrição

1 2. Lei de Gauss 1

2 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb. - Outo pocedimento paa o cálculo dos campos elécticos. mais indicado paa o cálculo do campo eléctico de distibuições de caga simética. - Guia paa o entendimento de poblemas mais complicados. 2

3 2.1. Fluxo Eléctico Base quantitativa a ideia de linhas do campo eléctico. Fluxo eléctico é uma medida do númeo de linhas do campo eléctico que atavessam uma deteminada supefície. Quando a supefície atavessada envolve uma deteminada quantidade de caga eléctica, o númeo líquido de linhas que atavessam a supefície é popocional à caga líquida no inteio da supefície. O númeo de linhas contado é independente da foma da supefície que envolve a caga (Lei de Gauss) 3

4 E Campo eléctico unifome (em módulo e diecção), áea A ao campo Áea A O númeo de linhas po unidade de áea é popocional ao módulo do campo eléctico. Φ E A (N.m 2 /C) Fluxo Eléctico Campo Eléctico Áea da supefície ao campo 4

5 Se a supefície não fo ao campo o númeo de linhas (ou o fluxo) atavés dela pode se meno. A θ E A A A cos θ θ : ângulo ente a nomal à supefície, A, e o campo eléctico unifome. Nº Linhas que atavessam A é igual ao númeo de linhas que atavessam a áea pojectada A (pependicula a ). Logo, neste caso: Φ A ΦA' E 5

6 Φ E A cos θ E A Fluxo atavés de uma supefície de áea fixa, tem: Valo máximo, E A, quando a supefície é pependicula ao campo eléctico (cos 0º 1) Valo nulo, quando a supefície é paalela ao campo eléctico (cos 90º 0) Em situações mais geais, o campo eléctico pode vaia sobe a supefície consideada. E cosθ θ 6

7 Exemplo 1: Supefície Gaussiana φ i E. A. cosθ i i E A i i Poduto escala A B ABcosθ 7

8 Φ lim E A E da A 0 i i i supeficie Definição geal do fluxo eléctico Integal sobe uma supefície hipotética Em geal o valo de Ф depende da configuação do campo e da supefície que se tive escolhido. Usualmente: calcula-se o fluxo atavés de uma supefície fechada (supefície que divide o espaço em uma egião inteio e uma exteio); ex: uma esfea A i são nomais à supefície (apontam paa foa ). Fig. anteio: 1: está paa o inteio e θ > 90º u E u E 3: está paa foa e θ < 90º φ E A < 0 u u φ E A> 0 8

9 O fluxo total ou líquido, atavés da supefície, é popocional ao númeo líquido de linhas que atavessam a supefície. nº de linhas que saem nº de linhas que entam Saem > entam fluxo líquido positivo Entam > saem fluxo líquido negativo Fluxo líquido: Φ E da E n da Integal sobe uma supefície fechada Componente do campo eléctico àsupefície O cálculo do fluxo líquido atavés de uma supefície fechada pode se muito tabalhoso Poém, se o campo E à supefície, em cada ponto, e tive módulo constante cálculo diecto. Execício 2.1 9

10 Execício 1: Um campo eléctico não unifome é dado po : E 3x(N/C m)ˆ i + 4(N/C) ˆj Atavessa a supefície gaussiana cúbica mostada na figua. Calcule o fluxo eléctico atavés da face dieita e atavés da face do topo. Face dieita: Face topo Face dieita 10

11 Execício: (cont.) x 3 m Face topo: Nota: tente calcula agoa o fluxo na face esqueda 11

12 2.2. Lei de Gauss Relação geal ente o fluxo eléctico líquido atavés de uma supefície fechada (supefície Gaussiana) e a caga pontual no inteio da supefície. Caga +q no cento de uma esfea de aio : Supefície Gaussiana +q da E q E k ˆ 2 na supefície Gaussiana. E adial E // Ai, i E A E A cos 0º E A Φ i n i i da EdA E da q k E n 2 da E cte. na supefície 12

13 Supefície Gaussiana Esféica da A 4π 2 kq 2 q Φ 2 ( 4π ) 4πkq ε 0 1 k 4πε O fluxo é independente de 0 O fluxo líquido atavés duma supefície Gaussiana esféica é popocional à caga, q, no inteio da supefície. q S 1 S 2 S 3 Ф ao númeo de linhas que atavessam a supefície. O fluxo líquido atavés de qualque supefície fechada que envolve uma caga pontual q é dado po Фq/ε 0 13

14 Caga pontual no exteio de uma supefície fechada. q nº de linhas que entam nº de linhas que saem Logo: O fluxo líquido atavés de uma supefície fechada que não envolve nenhuma caga, é nulo. 14

15 Caso geal de muitas cagas pontuais, ou de uma distibuição continua de cagas. Pincípio de sobeposição: o campo eléctico de muitas cagas é igual à soma vectoial dos campos elécticos povocados pelas cagas individuais. Logo o fluxo total seá: E da ( E + E + E... ) da S q 1 q 2 q 3 S S q1 Φ S ε 0 q + q 2 3 Φ S ' ε 0 Φ S '' 0 15

16 Resumo: Lei de Gauss: Φ E da q in ε 0 Caga líquida no inteio da supefície Campo eléctico em qualque ponto da supefície Gaussiana O fluxo eléctico líquido, atavés de qualque Supefície Gaussiana fechada, é igual à caga líquida no inteio da supefície, dividida po ε 0. q in : caga eléctica líquida no inteio da Supefície Gaussiana. E : campo eléctico total (contibuições das cagas no inteio e no exteio da Supefície Gaussiana). 16

17 Na pática, a Lei de Gauss só é útil num limitado númeo de situações, nas quais existe um elevado gau de simetia (distibuições de cagas que têm simetia esféica, cilíndica ou plana). A Supefície Gaussiana é uma supefície matemática. Se a Supefície Gaussiana é cuidadosamente escolhida o integal do fluxo seá fácil de calcula. 17

18 2.3. Aplicações da Lei de Gauss. E Cálculo do campo eléctico,, de uma dada distibuição de cagas. A Lei de Gauss é útil quando há um elevado gau de simetia na distibuição de cagas: e.g., esfeas, cilindos compidos ou chapas planas, todas unifomemente caegadas. A supefície deve se sempe escolhida de modo que tenha a mesma simetia da distibuição de caga. 18

19 a) Campo eléctico de uma caga pontual Supefície Gaussiana esféica, aio Supefície Gaussiana +q da E Campo adial, paa foa E à supefície P sup. E // da E da E da cos0º E da Lei de Gauss: Φ E da q in ε 0 2 EdA E da E.4π q ε 0 E cte. na supefície 19

20 Módulo do campo q E πε k q Foça electostática sobe uma segunda caga pontual q 0 Módulo F q E 0 k qq 0 2 Lei de Coulomb 20

21 b) Distibuição de caga num isolante com simetia esféica Esfea isolante; aio a; densidade de caga σ unifome; caga total +Q. 1) Intensidade do campo num ponto exteno à esfea, > a. a Φ Supefície Gaussiana esféica, aio concêntica E da q in ε 0 2 EdA E da E.4π E k ε 2 0 Resultado equivalente ao que foi obtido paa uma caga pontual!!! Q Q 21

22 2) Intensidade do campo no inteio da esfea ( < a). Esfea Gaussiana a q in no inteio da Supefície Gaussiana de Volume V é < Q qin ρ dv ρ 4 π 3 3 Exemplo a) E cte; E Sup. Gauss. P sup 22

23 Lei de Gauss < a 2 EdA E da E.4π qin ε 0 E 3 q ρ 4 3π ρ 2 4 4πε ε in 2 ( πε ) Como ρ Q V Q 4 π a 3 3 (Definição) Q kq 3 4 πε paa: < a a a E

24 E 0 quando 0 (simetia) 1 Quando : E E em 2 0!! a (fisicamente impossível) kq E 3 a E E kq 2 a 24

25 c) Distibuição de cagas num isolante com simetia cilíndica E Acha à distância de uma ecta unifomemente caegada, com caga +q, com compimento infinito e densidade de caga linea constante (λq/l cte.) E Simetia : ecta e tem diecção adial. E E l da E Vista das faces do cilindo Supefície Gaussiana q in λl Sobe a Supefície Gaussiana S: E cte, E S Psup ( E // da) Fluxo nas pates teminais do cilindo Gaussiano é nulo. ( E // faces; E da) 25

26 Lei de Gauss: φ c E da E da qin ε λl 0 ε 0 A 2π l (áea da supefície cilíndica) E 1 λ l λ λ E da E( 2π l) E 2k 1 ε 2πε 0 Cálculo mais tabalhoso pela Lei de Coulomb. Recta finita E 1 E 0 cte; E / Sup. P sup q in λl Lei de Gauss não tem utilidade paa o cálculo de uma ecta finita caegada. Pontos vizinhos da ecta, e afastados das extemidades 1 boa estimativa do valo eal do campo. Pouca simetia na distibuição de caga é necessáio calcula dediante a Lei de Coulomb 26

27 d) Folha Isolante Plana e Infinita Electicamente Caegada Densidade de caga σ po unidade de áea unifome E plano folha, diecção oposta em cada face. E Cilindo ecto equidistante do plano. E // supefície cilíndica S Ф sup 0 Sup. Gaussiana Ф paa foa, de cada base do ( ) cilindo ФE A E base Fluxo total Ф total 2EA E E() (a qualque distância do plano o campo é unifome) q ε in Φ 2EA σ A ε 0 0 E σ 2ε 0 27

28 2.4. Condutoes em Equilíbio Electostático Um bom conduto eléctico (ex: cobe) contém cagas (e - ) que não estão ligadas a nenhum átomo e podem desloca-se no seu inteio. Conduto em equilíbio electostático: quando não há um movimento líquido de cagas no inteio do metal. Popiedades de um conduto em equilíbio electostático: 1. O campo eléctico é nulo em qualque ponto no inteio do conduto. 2. Qualque excesso de caga, num conduto isolado, deve esta, necessáia e inteiamente, na supefície do conduto. 3. O campo eléctico na face extena da supefície de um conduto é pependicula à supefície do conduto e tem o módulo igual a Eσ/ε 0, onde σ é densidade a caga po unidade de áea no ponto da supefície. 4. Num conduto com foma iegula, a caga tende a acumula-se nos locais onde o aio de cuvatua da supefície é pequeno, isto é, onde a supefície é pontiaguda. 28

29 Popiedade 1 Placa condutoa num campo eléctico E E E d O campo inteno opõe-se ao campo exteno E E + d 0 No inteio do conduto Bom conduto equilíbio em ~ s (~ instantâneo) E 0! Se as cagas lives seiam aceleadas. 29

30 Popiedade 2 Lei de Gauss Supefície. Gaussiana Conduto com foma abitáia E 0 E 0 (1.) em todos os pontos do inteio do conduto em qualque ponto da Supefície Gaussiana Ф0 Lei de Gauss q in 0 Como não pode have caga líquida no inteio da Supefície Gaussiana que está abitaiamente póxima da supefície do conduto qualque excesso de caga, num conduto, deve esta na supefície do conduto. A Lei de Gauss não nos diz como o excesso de caga se distibui sobe a supefície (seá povado mais a fente). 30

31 Popiedade 3 Lei de Gauss Consideando uma supefície Gaussiana cilíndica: Ф supefície 0 (atavés da supefície cilíndica) Ф (fluxo líquido) E n A (atavés da base) campo eléctico na face extena pependicula à supefície. Lei de Gauss: Φ E da E A qin ε σa n n 0 ε 0 q in σ A E n σ ε 0 Caga (local) po Unidade de áea Áea da base do cilindo Execício

32 Popiedade 4 Lei de Gauss: elaciona o campo eléctico sobe a face extena da supefície de um conduto em equilíbio com a distibuição de caga no conduto à supefície. E inteio Ф 0 (q in 0) atavés da supefície gaussiana inteio. pependicula á supefície (se tivesse uma componente E A intodução de um campo exteno num conduto sem caga (1) poduz deslocamento dos electões lives (2) de modo a que a caga induzida na supefície anule o campo no inteio do conduto (3) tangencial, as cagas lives desloca-se-iam sobe a supefície, ciaiam coentes, e o conduto não estaia em equilíbio). E 32

33 Exemplo (Gaiola de Faaday) Gaiola de Faaday. Os copos dento da gaiola condutoa isolada estão potegidos dos aios extenos, mesmo ao tocaem a pate inteio da gaiola. Este fenómeno é chamado de blindagem electostática. Os passageios de automóveis e aviões ficam potegidos dos aios em dias de tempestade, dado estaem isolados da tea. 33

34 Exemplo (Gaiola de Faaday) Como funciona? A gaiola de Faaday consiste numa blindagem eléctica que é conseguida ao ciamos uma supefície oca feita com uma ede ou malha metálica, isolada da tea. No caso da gaiola da página anteio, a cavidade ocupa a maio pate do volume do mateial. Se a ede ou malha metálica fo elativamente fina, as cagas podeão se espalha unifomemente na supefície extena da gaiola. Esta estutua pevine que sinais elécticos muito fotes, po exemplo povenientes de um elâmpago, ciem campo elécticos muito intensos dento da gaiola. Isto é conseguido pelo facto que de o campo eléctico exteno induzi a mobilidade de cagas na supefície da gaiola cujo campo eléctico vai cancela o campo eléctico exteno no inteio da supefície da gaiola. Este fenómeno eléctico ocoe natualmente e está pevisto pela Lei de Gauss. Deste modo um demonstado dento da gaiola não sofe qualque choque eléctico ao toca a supefície intena quando esta é atingida po uma descaga eléctica poveniente de um aio. É pecisamente este pincípio que faz com que os viajantes de um automóvel ou de um avião pemaneçam em seguança em condições advesa de tempestades elécticas. 34

35 Exemplo (balde de Faaday) A figua seguinte mosta outa expeiência de Faaday elacionada com o equilíbio electostático de um mateial conduto. Ao apoximamos uma esfea caegada positivamente de um balde de foma cicula, que se enconta electicamente isolado (a), veificamos que ocoe um desvio no ponteio do electómeto ligado ao balde quando a esfea se enconta no seu inteio (b). A deflexão no ponteio deve-se ao facto que a caga positiva da esfea induzi uma caga negativa (atacção) na supefície intena do balde e uma distibuição de caga positiva (epulsão) na supefície extena do balde. Faaday constatou que o ponteio não se desviou mais, mesmo quando a esfea tocou no fundo do balde (C) e quando foi etiada do balde (d). Contudo constatou que após etia a esfea do balde esta encontava-se agoa descaegada. Apaentemente, quando a esfea tocou no fundo do balde houve uma passagem de uma quantidade de caga negativa, do balde paa a esfea, exactamente igual à quantidade de caga positiva que se encontava na esfea, logo ficando electicamente neuta (equilíbio electostático). O balde ao pede a caga negativa ficou só com uma quantidade de caga positiva exactamente igual à que a esfea possuía. 35

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas

Leia mais

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça Aula 3_ Potencial lético II Física Geal e xpeimental III Pof. Cláudio Gaça Capítulo 3 Resumo da Aula () a pati de V() xemplo: dipolo quipotenciais e Condutoes Foma difeencial da Lei de Gauss Distibuição

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Electricidade e Magnetismo

Electricidade e Magnetismo Electicidade e Magnetismo 1. Campos Elécticos. A lei de Gauss 3. Potencial Eléctico 4. Capacidade e Dielécticos 5. Coentes e Resistência 6. Cicuitos de Coente Contínua 7. Cicuitos de Coente Altenada 8.

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo.

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo. 10. Lei de Faaday 10.1. A Lei de Faaday da Indução 10.2. A fem de indução num conduto em movimento 10.3. A Lei de Lenz 10.4. Fems Induzidas e Campos Elécticos Induzidos 10.5. Geadoes e Motoes 10.6. As

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

Capítulo III Lei de Gauss

Capítulo III Lei de Gauss ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 3.1 Fluxo eléctico e lei de Gauss Capítulo III Lei de Gauss A lei de Gauss aplicada ao campo eléctico, pemite-nos esolve de

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB Guia do Pofesso Objeto de apendizagem: Fluxo e Lei de Gauss NOA UFPB 1. Intodução Apesentamos adiante instuções sobe como utiliza esse objeto de apendizagem com a intenção de facilita a constução de significados

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

Campo Elétrico Carga Distribuída

Campo Elétrico Carga Distribuída Aula _ Campo lético Caga Distibuída Física Geal e peimental III Pof. Cláudio Gaça Capítulo Campos léticos de distibuições contínuas de caga elética Fundamentos: (Lei de Coulomb Pincípio da Supeposição)

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POBLMAS SOLVIDOS D FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências xatas Univesidade Fedeal do spíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

9. Fontes do Campo Magnético

9. Fontes do Campo Magnético 9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.

Leia mais

DISPERSÃO E PODER RESOLVENTE DUM PRISMA

DISPERSÃO E PODER RESOLVENTE DUM PRISMA Aulas páticas de Óptica e Acústica º semeste de / DISPERSÃO E PODER RESOLVENTE DUM PRISMA Conceitos envolvidos: Equações de Maxwell, dispesão, polaizabilidade, índice de efacção, pisma, ede de difacção

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

LISTA COMPLETA PROVA 02. Fig Exercício 6.

LISTA COMPLETA PROVA 02. Fig Exercício 6. LISTA COMPLETA PROVA CAPÍTULO 6 5E. Quando um eléton se move de A até B ao longo da linha de campo elético, mostada na Fig. 6-4, o campo elético ealiza um tabalho de 3,94 1 19 J sobe ele. Quais são as

Leia mais

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga Física II Eng. Infomática 003-004 1 Caga e densidade de caga As patículas elementaes caegadas são o electão e o potão. Possuem uma caga de igual valo, mas de sinal contáio. Caga do electão: e = -1.6010

Leia mais

ELETROMAGNETISMO 1 o Semestre de 2014 Prof. Maurício Fabbri. Campo elétrico e a lei de Gauss Leitura e Exercícios

ELETROMAGNETISMO 1 o Semestre de 2014 Prof. Maurício Fabbri. Campo elétrico e a lei de Gauss Leitura e Exercícios LTROMAGNTIMO 1 o emeste e 01 of. Mauício Fabbi Campo elético e a lei e Gauss Leitua e xecícios 01 O CAMO LÉTRICO (I) O conceito e campo (em inglês, fiel) é um os mais úteis já inventao na física. Imaginamos

Leia mais

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever 7.5 Aplicações da lei de Ampèe paa distibuições de coente com simetia De foma muito semelhante do uso de simetia com a lei de Gauss, pode-se detemina o campo magnético geado po uma distibuição de densidade

Leia mais

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

LEI DE GAUSS. Figura 102-Lei de Gauss Na figura acima, o fluxo de linhas de força através de A 1

LEI DE GAUSS. Figura 102-Lei de Gauss Na figura acima, o fluxo de linhas de força através de A 1 Capítul 9-Lei de Gauss LI D GUSS Quand se clca fubá (u simila) na supefície de um óle viscs nde existem cagas eléticas apaecem linhas. Faaday pecebeu que a dieçã da linha em cada pnt d espaç ea a dieçã

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência 3. Elementos de Sistemas Eléticos de Potência Pofesso: D. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss Eletomagnetismo As leis da Eletostática: A lei de Gauss Eletomagnetismo» As leis da Eletostática: A lei de Gauss 1 São duas as leis que egem o compotamento do campo elético nas condições especificadas

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

TENSÃO SUPERFICIAL. Prof. Harley P. Martins Filho. Tensão superficial 7/28/2017

TENSÃO SUPERFICIAL. Prof. Harley P. Martins Filho. Tensão superficial 7/28/2017 TENSÃO SUPERFICIAL Pof. Haley P. Matins Filho 1 Tensão supeficial o Oigem: desbalanceamento de foças coesivas nas moléculas da supefície de um líquido Esquema de distibuição molecula em uma massa de líquido:

Leia mais

II Transmissão de Energia Elétrica (Teoria de Linhas)

II Transmissão de Energia Elétrica (Teoria de Linhas) II Tansmissão de Enegia Elética (Teoia de Linhas) Linhas de tansmissão : (Pela física) todos os elementos de cicuitos destinados ao tanspote de enegia elética ente dois pontos, independentemente da quantidade

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo Física II F 8 º semeste 01 aula : gavimetia, matéia escua, enegia potencial gavitacional e a expansão do univeso Revendo a aula passada: pincípio de supeposição (e coigindo um eo) m F F 1 z M b a M 1 Discussão

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

ELETROMAGNETISMO I 44

ELETROMAGNETISMO I 44 ELETROMAGNETIMO I 44 6 CORRENTE ELÉTRICA Nos capítulos anteioes estudamos os campos eléticos quando geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo faemos o estudo da coente elética,

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 2.1.3 Micofone e altifalante O micofone é um dispositivo que, quando inseido num cicuito eléctico fechado,

Leia mais

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S Questão paa eflexão: em sítios, não é incomum nos fogões a lenha te-se uma tubulação que aquece água, a qual é conduzida paa os chuveios e toneias sem o uso de bombas. Explique o po quê. (figua extaída

Leia mais

Área projectada. Grandezas Radiométricas

Área projectada. Grandezas Radiométricas Áea pojectada Conceito de áea pojectada (fontes extensas) Tata-se da áea pojectada num plano pependicula à diecção de popagação da p dω da Também se aplica paa o caso de uma supefície eflectoa (emboa aí

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

I.2 Capacitância, Reatância Capacitiva das Linhas de Transmissão

I.2 Capacitância, Reatância Capacitiva das Linhas de Transmissão I.2 Capacitância, Reatância Capacitiva das Linhas de Tansmissão a) Intodução: ifeença de potencial Condutoes de uma linha de tansmissão Placas de um capacito Mesmo compotamento Condutoes das linhas de

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

4200V Fig. 1 C 1. 10V C 2 Fig. 2

4200V Fig. 1 C 1. 10V C 2 Fig. 2 a lista de execícios de Física 3 - Pof alos Felipe Pinheio apacitoes 1) eja E o o campo elético no inteio (vácuo) de um capacito de placas planas e paalelas Ao intoduzimos um dielético ente as placas desse

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO CRG LÉTRIC caga elética é uma popiedade, dos mateiais, esponsável pelas inteações eletostáticas. xistem dois tipos de caga elética a que se convencionou chama caga positiva e caga negativa. LTRIZÇÃO POR

Leia mais