9. Fontes do Campo Magnético

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "9. Fontes do Campo Magnético"

Transcrição

1 9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo O Cmpo Mgnético dum Solenóide. 1

2 Este cpítulo tt d oigem (fonte) do cmpo mgnético: cgs em movimento ou coentes eléctics. Lei de iot-svt: cálculo de povocdo, num ponto, po um elemento de coente Lei de iot-svt + pincípio de sobeposição: cálculo de dum distibuição de coentes. Lei de Ampèe: cálculo de p configuções muito simétics de coentes pemnentes. A pesenç dum copo mteil modific, em gel o que s coentes eléctics poduzem.

3 9.1. A Lei de iot-svt (cição de um cmpo mgnético) Um conduto, com um coente pemnente, exece um foç sobe um ímn (po exemplo: um coente eléctic num fio conduto pode desvi gulh mgnetizd de um bússol). A Lei de iot-svt diz que se um fio conduto tnspot um coente constnte, o cmpo mgnético cido,, num ponto P, ssocido um elemento do conduto,, tem s seguintes popieddes: ˆ 1. ( está n diecção d I) e (vecto unitáio diigido do elemento conduto té P). 1. (: distânci ente e P) ˆ θ P I 3

4 I 3. e o compimento do elemento conduto. 4. sen θ; θ: ângulo ente K m A Lei de iot-svt: cte 10 7 Wb SI A m ˆ e K m I ˆ ˆ θ P 1 I P K m µ 0 4π A Lei de iot-svt: µ 0 4π 10 7 Wb A m µ 4π 0 I ˆ Pemebilidde mgnétic do vzio! A Lei de iot-svt dá-nos o vlo do cmpo mgnético cido num ponto poduzido po um pequeno elemento do conduto. 4

5 O cmpo mgnético totl num ceto ponto P, devido um conduto de 0I ˆ 4π dimensões finits: som p todo : µ Integção sobe todo o conduto. (O integndo é um gndez vectoil.) P o cso de um fio conduto muito compido e dieito, expessão nteio tem como módulo de cmpo mgnético: µ 0I Lei de iot-svt do mgnetismo vesus Lei de Coulomb d electostátic: O elemento de coente poduz um cmpo mgnético. Um cg pontul poduz um cmpo eléctico. E, O de um cg pontul é dil 1 I E 1 O de um é o e o ˆ π Execícios 1, 5

6 9.. A Foç Mgnétic ente dois Condutoes Plelos. A foç mgnétic ctu sobe um conduto com um coente I colocdo num cmpo mgnético exteno. Um coente I num conduto ge o seu pópio cmpo mgnético. () Um fio conduto muito compido pecoido po um coente poduz linhs de cmpo mgnético que são concêntics com esse fio. Se colocmos váis gulhs de um bússol em edo do fio conduto, ep-se que els linhm-se n diecção do cmpo mgnético cido. (b) Pel eg d mão dieit, se o poleg estive n diecção e sentido d coente, o encuvmento d mão dá-nos diecção do cmpo mgnético. 6

7 Dois condutoes, cd qul com um coente I, execeão foçs mgnétics um sobe o outo. F m Dois fios condutoes ectilíneos, compidos, plelos, sepdos de, com I 1 e I n mesm diecção, sentidos difeentes (fig. esqued ) e mesmo sentido (fig. dieit). que ctu sobe um dos condutoes é oigind pelo outo F m conduto. 7

8 O fio ge um cmpo n posição onde está o fio 1. é o fio 1. A sobe o compimento l do fio 1 é: l F m F1 I1l Ve págin 5 O cmpo do fio é: F 1 µ 0I I1l I1l π lµ I π F 1 I1l µ 0I π Foç mgnétic po unidde de compimento: F 1 l F F 1 p bixo, p o fio ( p bixo) 0 1 () A sobe o fio é igul e opost à (tecei Lei de Newton) os fios tem-se mutumente qundo s coentes têm o mesmo sentido. 1 I F 1 l F m µ I I l π 0 1 Qundo s coentes tem sentidos opostos, s F m invetem-se e os fios epelem-se. I 8 I 1

9 9.3. A Lei de Ampèe Um conduto com um coente ge um cmpo mgnético. Qundo um fio fo pecoido po um I constnte, se o fio fo gdo pel mão dieit, com o poleg n diecção d I, os outos dedos d mão cuvm-se n diecção de. As linhs de são cicunfeêncis concêntics com o fio. cte P dum cicunfeênci que tenh o cento no fio e que estej num plno o fio. I ; 1 Ve exemplo bússols linh é tngente em cd ponto do cículo 9

10 Cálculo do e su som sobe um cículo centd no fio. Sobe est cuv cos0 cte µ I 0 sobe este cículo π cículo de io µ 0I 0 π ( π ) µ I Lei de Ampèe! O esultdo pode se plicdo o cso gel de um cuv fechd bitái tvessd po um coente constnte. 10

11 A Lei de Ampèe fim que o integl de linh de sobe qulque cuv fechd, é igul µ 0 I, onde I é coente constnte totl que pss po qulque supefície limitd pel cuv fechd. µ 0I Só vle p coentes constntes. Só tem utilidde no cálculo do cmpo mgnético dum configução de coentes que tenh um elevdo gu de simeti. Anlogi com Lei de Guss, onde somente tinh utilidde p clcul o cmpo eléctico em distibuições muito simétics de cgs. E da Q ε 0 Execícios 4,5 11

12 9.4. O Fluxo Mgnético da θ Elemento de áe da dum supefície bitái. : cmpo nesse elemento Fluxo mgnético tvés do elemento: da : é um vecto à supefície e cujo módulo é igul à áe O fluxo mgnético φ m tvés d supefície é ssim: φ m da da Cso especil: plno de áe A, cmpo unifome que fz um ângulo θ com da o vecto : φ A cosθ m fluxo tvés do plno 1

13 Se estive no plno θ 90, φ m 0 da Se o plno θ 0, φ m A (vlo máximo) da Uniddes SI []: Wb/m ou T [φ]: webe (Wb) 1 Wb 1 T m 13

14 9.5. A Lei de Guss do Mgnetismo φ e q i /ε 0, o númeo de linhs do cmpo eléctico que tvessm supefície depende somente d cg líquid no inteio d supefície. s linhs do cmpo eléctico pincipim em cgs eléctics. Nos cmpos mgnéticos, s linhs são contínus e são cuvs fech: s linhs do cmpo mgnético povocdo po um coente não pincipim nem cbm em ponto nenhum. Em supefície fechd o númeo de linhs que entm númeo de linhs que sem φ m (líquido) 0 14

15 A Lei de Guss do mgnetismo fim que o fluxo mgnético líquido tvés de qulque supefície fechd é sempe nulo: da 0 Afimção bsed no fcto expeimentl de nunc se teem obsevdo pólos mgnéticos isoldos (ou monopolos), que tlvez não existm mesmo. As únics fontes conheci dos cmpos mgnéticos são os dipolos mgnéticos (espis de coente), mesmo nos mteiis mgnéticos. Todos os efeitos mgnéticos nos meios mteiis podem se explicdos em temos dos momentos de dipolo mgnéticos (espis de coente efectivs) ssoci os electões e os núcleos. Execício 8 15

16 9.6. O Cmpo Mgnético dum Solenoide Um solenóide é constituído po um fio conduto compido, enoldo em fom dum hélice é possível te um zovelmente unifome, num pequeno volume no inteio do solenóide, cso s espis estejm suficientemente junts. Se s espis foem muito espç, cd qul pode se encd como um espi cicul, e o esultnte é igul à som vectoil dos cmpos poduzidos po cd um espis, dí s de cim cncelem s de bixo. S N espis espç espis muito ce Os cmpos mgnéticos cncelm-se 16

17 Solenóide idel: espis muito junts e compimento gnde em compção com o io espis no exteio é fco compdo com o no inteio; no inteio é unifome num egião de gnde volume. Lei de Ampèe: no inteio do solenóide idel d l c b µ 0I b no inteio é unifome e plelo o eixo no exteio 0 + c b + d c + d l

18 l µ 0NI ; N: nº espis no compimento l Lei de Ampèe Coente totl que tvess áe limitdo pelo ectângulo I em cd espi nº de espis. N µ 0 I µ 0n I l n: nº de espis po unidde de compimento Só vle p os pontos num vizinhnç do cento dum solenóide muito compido. pólo note Execício 9 18

3. Lei de Gauss (baseado no Halliday, 4a edição)

3. Lei de Gauss (baseado no Halliday, 4a edição) 3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom que poss simplific os csos que envolvem elevdo gu

Leia mais

3. Lei de Gauss (baseado no Halliday, 4a edição)

3. Lei de Gauss (baseado no Halliday, 4a edição) 3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom ue poss simplific os csos ue envolvem elevdo gu de

Leia mais

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante!

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante! cmpo e potecil elécticos: cição cmpo e potecil elécticos: efeito se um ptícul cegd,, fo colocd um cmpo eléctico: F Um cg potul ci um cmpo e um potecil à su volt ˆ; ke k e us sobeposição estão elciodos:

Leia mais

Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7

Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7 Aul 7-1 Cmps Mgnétics pduzids p Centes Lei de Bit-Svt Físic Gel e Expeimentl III Pf. Cláudi Gç Cpítul 7 Cmp B p cente elétic Expeiênci de Oested Fi n iníci d sécul XIX (em 180) que físic dinmquês Hns Chistin

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

4/10/2015. Física Geral III

4/10/2015. Física Geral III 4//5 Físic Gel III Aul Teóic (Cp. 7 pte /): ) Cpcitânci ) Cálculo d cpcitânci p cpcitoes de plcs plels, cilíndicos e esféicos 3) Associções de cpcitoes Pof. Mcio R. Loos Cpcito Um cpcito é um componente

Leia mais

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO AULA 3 MECÂNICA VETOES - INTODUÇÃO N Físic usmos dois gupos de gndezs: s gndezs escles e s gndezs vetoiis. São escles s gndezs que ficm ccteizds com os seus vloes numéicos e sus espectivs uniddes. São

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

Ondas Eletromagnéticas Interferência

Ondas Eletromagnéticas Interferência Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

E = E ds. o fluxo de campo elétrico através da superfície B do paralelepípedo da figura seria 2m 2m. Cm 2 C (2.3.3)

E = E ds. o fluxo de campo elétrico através da superfície B do paralelepípedo da figura seria 2m 2m. Cm 2 C (2.3.3) <x=4m,y=1m,z=1m> .3 A dedução d lei de Guss A lei de Guss desceve um popiedde de integis de fluxo do cmpo elético tvés de supefícies fechds. Então o objeto de inteesse do nosso estudo são gndezs do tipo Φ E = E ds (.3.1)

Leia mais

Análise Vetorial. Prof Daniel Silveira

Análise Vetorial. Prof Daniel Silveira nálise Vetoil Pof Dniel Silvei Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo Vetoes e Álgeb Vetoil Escles Vetoes

Leia mais

Soluções do Capítulo 9 (Volume 2)

Soluções do Capítulo 9 (Volume 2) Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies.

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies. Sistems de cooden otogonis - 1 ELECTROMGNETISMO s leis do electomgnetismo são invintes em elção o sistem de cooden utilido. Muits vees solução de um poblem específico eque utilição de um sistem de cooden

Leia mais

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo.

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo. 10. Lei de Faaday 10.1. A Lei de Faaday da Indução 10.2. A fem de indução num conduto em movimento 10.3. A Lei de Lenz 10.4. Fems Induzidas e Campos Elécticos Induzidos 10.5. Geadoes e Motoes 10.6. As

Leia mais

FOLHAS DE PROBLEMAS. (2º Ano da L.E.E.C. Ano Lectivo de 2001 / 2002) Maria Inês Barbosa de Carvalho

FOLHAS DE PROBLEMAS. (2º Ano da L.E.E.C. Ano Lectivo de 2001 / 2002) Maria Inês Barbosa de Carvalho FOLHS DE POBLEMS Disciplin de ELECTOMGNETSMO (º no d L.E.E.C. no Lectivo de / ) Mi nês Bos de Cvlho Deptmento de Engenhi Electotécnic e de Comptdoes (D.E.E.C.) Fcldde de Engenhi d Univesidde do Poto (F.E.U.P.)

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Módulo 1: Conteúdo programático Equação da quantidade de Movimento

Módulo 1: Conteúdo programático Equação da quantidade de Movimento Módulo 1: Conteúdo pogmático Equção d quntidde de Movimento Bibliogfi: Bunetti, F. Mecânic dos Fluidos, São Pulo, Pentice Hll, 007. Equção d quntidde de movimento p o volume de contole com celeção line

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Teste Final 11. o ano

Teste Final 11. o ano 1 Teste inl 11. o no 1. Obsee o gáfico efeente à posição do cento de mss de um co que se moe em linh ect. Admit que, qundo ele se moe, o moimento é unifomemente ido. x/m 50 00 150 100 50 0 10 0 30 40 t/s

Leia mais

Matemática para CG. Soraia Raupp Musse

Matemática para CG. Soraia Raupp Musse Mtemátic p CG Soi Rupp Musse 1 Sumáio Intodução Revisão Mtemátic Vetoes Mties Intodução Em CG, tlh-se com ojetos definidos em um mundo 3D Todos os ojetos têm fom, posição e oientção Pecismos de pogms de

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação ª Lei de Newton ª Lei de Newton: Se foç esultnte ctunte num ptícul é difeente de zeo, então ptícul teá um celeção popocionl à intensidde d foç esultnte n diecção dess esultnte. P um ptícul sujeit às foçs

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga Física II Eng. Infomática 003-004 1 Caga e densidade de caga As patículas elementaes caegadas são o electão e o potão. Possuem uma caga de igual valo, mas de sinal contáio. Caga do electão: e = -1.6010

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Electricidade e Magnetismo

Electricidade e Magnetismo Electicidade e Magnetismo 1. Campos Elécticos. A lei de Gauss 3. Potencial Eléctico 4. Capacidade e Dielécticos 5. Coentes e Resistência 6. Cicuitos de Coente Contínua 7. Cicuitos de Coente Altenada 8.

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

TRABALHO E POTENCIAL ELÉTRICO

TRABALHO E POTENCIAL ELÉTRICO NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO TRABALHO E POTENCIAL ELÉTRICO 01.INTRODUÇÃO O conceito de enegi potencil foi intoduzido no Cpítulo Enegi Mecânic em conexão com foçs consevtivs como gvidde e

Leia mais

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto.

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto. Suáio Unidde I MECÂNIC 1- Mecânic d ptícul Moviento de copos sujeitos ligções. - Foçs plicds e foçs de ligção. - Moviento du siste de copos ligdos nu plno hoizontl, plno veticl e plno inclindo, despezndo

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 2 Lei de Coulomb

Prof. A.F.Guimarães Questões Eletricidade 2 Lei de Coulomb Questão 1 of. A..Guimães Questões Eleticidde Lei de Coulomb (EI) Dus cgs puntifomes 1 + µ C e 6µ C estão fixs e sepds po um distânci de 6 mm no ácuo. Um tecei cg µ C é colocd no ponto médio do segmento

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SOL OLITÉNI UNIVSI SÃO ULO venid ofesso Mello Moes, nº 3 008-900, São ulo, S Telefone: (0xx) 309 337 x: (0xx) 383 886 eptmento de ngenhi Mecânic M 00 MÂNI de setembo de 009 QUSTÃO (3 pontos): figu most

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Solução da segunda lista de exercícios

Solução da segunda lista de exercícios UESPI Cmpu Pof. Alende Alve de Olve Cuo: ch. em Cênc d Computção Dcpln: Fíc 9h Pof. Olímpo Sá loco: Aluno: Dt: 9// Solução d egund lt de eecíco Quetão : N fgu, um fo eto de compmento tnpot um coente. Obte:

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 2.1.3 Micofone e altifalante O micofone é um dispositivo que, quando inseido num cicuito eléctico fechado,

Leia mais

Física III Escola Politécnica de maio de 2010

Física III Escola Politécnica de maio de 2010 P2 Questão 1 Físic - 4320203 Escol Politécnic - 2010 GABATO DA P2 13 de mio de 2010 Considere um cpcitor esférico formdo por um condutor interno de rio e um condutor externo de rio b, conforme figur. O

Leia mais

CFQ-4018 LABORATÓRIO DE ESTRUTURA DA MATÉRIA Turmas 421e 422 Licenciatura e Bacharelado em Física

CFQ-4018 LABORATÓRIO DE ESTRUTURA DA MATÉRIA Turmas 421e 422 Licenciatura e Bacharelado em Física unesp Univesidde Estdul Pulist "Júlio de Mesquit Filho" Cmpus de Gutinguetá - Fculdde de Engenhi Deptmento de Físic e Químic CFQ-018 LABOATÓIO DE ESTUTUA DA MATÉIA Tums 1e Licencitu e Bcheldo em Físic

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

CAPÍTULO 2 - CAMPOS ELÉCTRICOS II

CAPÍTULO 2 - CAMPOS ELÉCTRICOS II Polems CAPÍTULO 1 - CAMPOS ELÉCTRICOS I 1.1. Consideem-se tês cgs pontuis colocds nos vétices de um tiângulo (figu 1), com q 1 = q 3 = 5 µc, q = - µc (1 µc = 10-6 C) e = 0.1 m. Ach foç esultnte soe q 3.

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente

Leia mais

Matemática D Intensivo V. 1

Matemática D Intensivo V. 1 GRITO Mtemátic Intensivo V. ecícios 0) onstuímos et t, tl que t // s e t // : b t s et t divide o ângulo em dois ângulos e b. = 0 (ltenos intenos) b = = 0 = 7 Segue, b = (ltenos intenos). Logo, = 7. 0)

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015 Físic - 4323203 Escol olitécnic - 2015 GABARTO DA 2 14 de mio de 2015 Questão 1 Considere um csc esféric condutor de rios interno e externo e b, respectivmente, conforme mostrdo n figur o ldo. A resistividde

Leia mais

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010 P3 Questão 1 Físic - 4320301 Escol Politécnic - 2010 GABARTO DA P3 24 de junho de 2010 onsidere um fio infinito percorrido por um corrente estcionári. oplnr com o fio está um espir retngulr de ldos e b

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtnto de Engenhri Elétric Aul 2.3 Máquins Rottivs Prof. João Américo Vilel Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução à Eletrônic De Potênci. 7ª Edição,

Leia mais

SÍNTESE. 1. Geometria analítica no plano. 2. Cálculo vetorial no plano. Inequações cartesianas de semiplanos

SÍNTESE. 1. Geometria analítica no plano. 2. Cálculo vetorial no plano. Inequações cartesianas de semiplanos j h i TEMA III Geometi Anlíti 1. Geometi nlíti no plno Inequções tesins de semiplnos > < > + + < + + Sejm A( 1, ) e B( 1, ) dois pontos do plno: Distâni ente A e B. ( 1 1 ) + ( ) h 1 + 1 Ponto médio do

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

ELECTROMAGNETISMO Curso de Electrotecnia e de Computadores. 1º Ano 2º Semestre Capítulo IV Potencial Eléctrico

ELECTROMAGNETISMO Curso de Electrotecnia e de Computadores. 1º Ano 2º Semestre Capítulo IV Potencial Eléctrico LCTROMGNTISMO Cuso de lectoteci e de Computdoes º o º Semeste - Cpítulo IV Potecil léctico 4. Tblho e Potecil léctico 4.. Tblho e egi Potecil léctic Cosideemos um cg eléctic potul positi fix (Q > C) e

Leia mais

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB Guia do Pofesso Objeto de apendizagem: Fluxo e Lei de Gauss NOA UFPB 1. Intodução Apesentamos adiante instuções sobe como utiliza esse objeto de apendizagem com a intenção de facilita a constução de significados

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

Cinemática dos Corpos Rígidos

Cinemática dos Corpos Rígidos Sebent de Disciplin DR, Zuzn Dimitooá, DE/FT/UNL, 016 inemátic dos opos Rígidos Neste cpítulo seão considedos pens moimentos plnos dos copos ou conjuntos de copos ígidos. Os moimentos clssificm-se em:

Leia mais

Antenas de abertura. ANTENAS IST A. Moreira 1

Antenas de abertura. ANTENAS IST A. Moreira 1 tes de betu s tes de betu são usds s bds de UHF, SHF e HF, bds de fequêcis tmbém desigds po micoods ou ods cetimétics e milimétics s cofiguções mis comum dests tes são s que esultm d epsão de um gui de

Leia mais

Física II Aula A08. Prof. Marim

Física II Aula A08. Prof. Marim Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

Física Geral I F semestre, Aula 4 Movimento em duas e três dimensões

Física Geral I F semestre, Aula 4 Movimento em duas e três dimensões Físic Gel I F -18 semese, 1 Aul 4 Moimeno em dus e ês dimensões Moimeno em D e 3D Cinemáic em D e 3D Aceleção consne - celeção d gidde Moimeno cicul - moimeno cicul unifome - moimeno helicoidl Moimeno

Leia mais

Magnetismo: conhecido dos gregos, ~ 800 A.C. certas pedras (magnetite, Fe 3

Magnetismo: conhecido dos gregos, ~ 800 A.C. certas pedras (magnetite, Fe 3 8. Capos Magnéticos 8.1. Definição e popiedades do capo agnético. 8.2. Foça agnética nu conduto pecoido po ua coente. 8.3. Moento sobe ua espia de coente nu capo agnético unifoe 8.4. Moviento dua patícula

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

dv = πr 2 dx dv = π[f(x)] 2 dx b 8.2- Volume de Sólidos de Revolução

dv = πr 2 dx dv = π[f(x)] 2 dx b 8.2- Volume de Sólidos de Revolução 8.- Volume de Sóldos de Revolução Um egão tdmensonl (S) que possu s popeddes ) e ) segu é um sóldo: ) A fonte de S consste em um númeo fnto de supefíces lss que se nteceptm num númeo fnto de ests que po

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever 7.5 Aplicações da lei de Ampèe paa distibuições de coente com simetia De foma muito semelhante do uso de simetia com a lei de Gauss, pode-se detemina o campo magnético geado po uma distibuição de densidade

Leia mais