FÍSICA III - FGE a Prova - Gabarito

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FÍSICA III - FGE a Prova - Gabarito"

Transcrição

1 FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo atavés e uma supefície fechaa epene apenas a soma e toas as cagas intenas a essa supefície. Como ambas as cagas estão foa ela, Φ e = 1

2 2) É ao um anel e aio a, isposto no plano xy como mosta a figua, e caegao com uma ensiae e caga linea constante e positiva λ. (a) Calcule o campo e o potencial eléticos, ciaos po essa istibuição, no ponto P que está a uma istância o plano xy sobe o seu eixo e simetia. (b) Obtenha a expessão o campo elético paa o caso >> a e intepete o seu esultao. Resposta: (a) É mais simples calcula pimeio o potencial elético. V = kq = kλl a2 + = kλaθ 2 a2 + 2 kλa 2π V = V = θ = a2 + 2 one q = λ2πa O campo elético poe se obtio a pati e V kλa2π a2 + 2 = kq a2 + 2, Po agumentos e simetia E ˆk Potanto Ou seja (b) Quano >> a E = V [ ] = kq 2 2(a ) 3/2 kq ˆk (a ) 3/2 (a ) = 3/2 3 ( a2 / 2 + 1) 1 3/2 2, pois a2 / 2 << 1. Potanto E kq ˆk 2 que coespone a lei e Coulomb paa uma caga pontual na oigem o sistema e cooenaas. 2

3 3) Uma esfea isolante e aio a, caegaa positivamente com uma ensiae volumética unifome ρ, é envolta po uma casca conutoa esféica e aio inteno 2a e aio exteno 3a. (a) Qual a ensiae supeficial e cagas nas supefícies intena e extena a casca esféica? Justifique sua esposta. (b) Calcule o campo e o potencial eléticos em too o espaço. (c) Faça gáficos epesentano V e o móulo e E em função a istância ao cento o sistema. () O que mua no poblema quano a casca esféica é ligaa à tea? Resposta: (a) Escolheno como supefície e Gauss uma esfea concêntica as esfeas o poblema com aio tal que 2a < < 3a, então po esta egião coespone a um conuto, o que implica em E(2a < < 3a) =, Φ = E ˆnA = Ou seja, sabeno que em um conuto toa a caga fica na supefície e veno que Φ = Q int ɛ então a caga na supefície e aio 2a tem que te a mesma magnitue e sinal oposto o que a caga a esfea: A istibuição supeficial é obtia então como σ 2a = Q 2a = Q esf = ρ 4 3 πa3 Q 2a 4π(2a) 2 = ρ4 1 3 πa3 4π(2a) 2 Ou seja, σ 2a = ρa 12 Como a caga no conuto ea inicialmente neuta, então E potanto σ 3a = Q 3a = Q 2a = Q esf Q 3a 4π(3a) 2 = ρ4 1 3 πa3 4π(3a) 2, o que implica em σ 3a = ρa 27 (b) Em toas as egiões o espaço, escolho como supefície e Gauss uma esfea e aio concêntica as esfeas o poblema. Po simetia, em toas as egiões o espaço o campo elético seá aial e como ˆn = ˆ, então E ˆn. Além isso, aina po aões e simetia, o campo elético seá sempe constante ao longo a esfea Gaussiana. Assim: Φ = E ˆnA = E A = E A = E A = E 4π 2 Paa pocee com os cálculos, ivio o meu poblema em quato egiões: 3

4 < a a < < 2a 2a < < 3a E 4π 2 = Q int ɛ ρ ˆ E 4π 2 = Q int ɛ = 1 ɛ ρ 4 3 π3 = 1 ɛ ρ 4 3 πa3 ρa3 2 ˆ E 4π 2 = Q int ɛ = > 3a E 4π 2 = Q int ɛ = 1 ɛ (Q esf + Q 2a + Q 3a ) = Q esf ɛ = 1 ɛ ρ 4 3 πa3 ρa3 2 ˆ Assim ρ ˆ, < a 2 ˆ, a < < 2a 2a < < 3a 2 ˆ > 3a A pati o campo elético, calculo o potencial usano a elação Vou efini V B V A = B A V ( ) = Novamente, ivio o meu poblema em quato egiões: E > 3a V = E( > 3a) = ρa3 = ρa3 2 ( 1 ) V ( > 3a) = ρa3 2a < < 3a V V (3a) = E(2a < < 3a) = 3a }{{} = V (2a < < 3a) = V (3a) = ρa2 9ɛ 4

5 a < < 2a V V (2a) = E(a < < 2a) = ρa3 2a 2a = ρa3 ( 1 ) 2 3ɛ 2a ( V ρa2 = ρa3 1 9ɛ 1 ) 2a V = ρa3 ρa2 18ɛ < a V V (a) = E( < a) = ρ a a = ρ ( ) 2 2 a = ρ2 6ɛ + ρa2 6ɛ V 5 ρa 2 = ρ2 + ρa2 18 ɛ 6ɛ 6ɛ V = ρ2 + 4 ρa 2 6ɛ 9 ɛ Potanto, o potencial elético em too o espaço poe se ao po ρ2 6ɛ + 4 ρa 2 9 ɛ < a V = ρa2 18ɛ ρa 2 9ɛ a < < 2a 2a < < 3a > 3a (c) E V () Quano a casca esféica é ligaa a tea, cagas negativas seão inuias paa a supefície intena a casca. O campo e o potencial paa < 2a não sofeão alteação. Mas paa > 2a, o potencial eletostático seá o mesmo a tea (constante) e potanto, o campo elético seá nulo. 5

6 4) Consiee uma placa isolante semi-infinita e espessua 2, centaa no plano xy e peencheno too o espaço ente = e =, como mosta a figua. e a ensiae volumética e cagas na placa é aa po ρ() = ρ Calcule E e V em toos os pontos o espaço. Respota: A figua abaixo ilusta a istibuição e caga em função a istância. ρ Escolho como supefície e Gauss um cilino paalelo ao eixo com compimento e áea a base A. O cilino está isposto com uma e suas bases na oigem e outa em. Resolveei o poblema apenas paa > pois o esultao é simético e poe, em seguia, se expanio paa <. Paa < Φ e = E ˆnA = bases EA = E A = E(A), bases one usei o fato e que, po simetia, o campo na base que se enconta na oigem é nulo Aplicano a lei e Gauss Φ e = Q int = 1 ρ() v ɛ ɛ }{{} = A ρ = A ρ ɛ 2ɛ 2 A Potanto ρ 2 2ɛ ˆk 6

7 Paa >, toos os cálculos se epetem, exceto pela caga intena que se tona Ou seja Assim, Q int = ρ ρ 2ɛ ˆk ρ 2 2ɛ ˆk, ρ 2ɛ ˆk, = ρ 2 < > Paa <, basta toca ˆk ( ˆk). Paa calcula o potencial, efino V ( = ) = Como o potencial é uma ganea escala, e como a istibuição e cagas é simética paa > e <, então posso eui que o potencial paa > seá exatamente o mesmo que o potencial paa <. Faei os cálculos paa >. Assim: < > V = E = ρ 2ɛ 2 = ρ 2ɛ V V () = E ( ) 3 3 = ρ 3 6ɛ V + ρ 2 6ɛ = ρ 2ɛ = ρ ( ) = ρ 2 ρ 2ɛ 2ɛ 2ɛ Finalmente V = V = ρ 2 ρ 2 ρ3 6ɛ, ρ 2ɛ < ρ 2ɛ, > O compotamento e E e V estão mostaos no gáfico abaixo. E V 7

ELETROMAGNETISMO 1 o Semestre de 2014 Prof. Maurício Fabbri. Campo elétrico e a lei de Gauss Leitura e Exercícios

ELETROMAGNETISMO 1 o Semestre de 2014 Prof. Maurício Fabbri. Campo elétrico e a lei de Gauss Leitura e Exercícios LTROMAGNTIMO 1 o emeste e 01 of. Mauício Fabbi Campo elético e a lei e Gauss Leitua e xecícios 01 O CAMO LÉTRICO (I) O conceito e campo (em inglês, fiel) é um os mais úteis já inventao na física. Imaginamos

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

Campo Elétrico Carga Distribuída

Campo Elétrico Carga Distribuída Aula _ Campo lético Caga Distibuída Física Geal e peimental III Pof. Cláudio Gaça Capítulo Campos léticos de distibuições contínuas de caga elética Fundamentos: (Lei de Coulomb Pincípio da Supeposição)

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POBLMAS SOLVIDOS D FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências xatas Univesidade Fedeal do spíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Projeto rumo ao ita. Campo Elétrico e Lei de Gauss. Exercícios. ITA/IME Pré-Universitário

Projeto rumo ao ita. Campo Elétrico e Lei de Gauss. Exercícios. ITA/IME Pré-Universitário Pojeto uo ao ita Capo lético e Lei e Gauss 4 figua abaio osta u copo e assa e caga q, abanonao na posição sob a ação e seu peso P baio o plano hoizontal π, atua u capo elético unifoe, vetical e e intensiae

Leia mais

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO CRG LÉTRIC caga elética é uma popiedade, dos mateiais, esponsável pelas inteações eletostáticas. xistem dois tipos de caga elética a que se convencionou chama caga positiva e caga negativa. LTRIZÇÃO POR

Leia mais

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb uso e Física Básica - H Mosés Nussenzveig Resolução o Volue III apítulo A Lei e oulob - Moste que a azão a atação eletostática paa a atação gavitacional ente u eléton e u póton é inepenente a istância

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

LISTA COMPLETA PROVA 02. Fig Exercício 6.

LISTA COMPLETA PROVA 02. Fig Exercício 6. LISTA COMPLETA PROVA CAPÍTULO 6 5E. Quando um eléton se move de A até B ao longo da linha de campo elético, mostada na Fig. 6-4, o campo elético ealiza um tabalho de 3,94 1 19 J sobe ele. Quais são as

Leia mais

1. Introdução. Uma antena quando alimentada sinusoidalmente, radia ondas electromagnéticas, com variação sinusoidal.

1. Introdução. Uma antena quando alimentada sinusoidalmente, radia ondas electromagnéticas, com variação sinusoidal. . Intoução Uma antena quano alimentaa sinusoialmente, aia onas electomagnéticas, com vaiação sinusoial.. Raiação a pati e um ipolo elementa Tem compimento l e oientao seguno o eixo os zz I é a coente que

Leia mais

Exame de recurso de Física II Curso de Engenharia Electrotécnica e de Computadores Segunda-Feira, 7 de Julho, 2003, 14:30

Exame de recurso de Física II Curso de Engenharia Electrotécnica e de Computadores Segunda-Feira, 7 de Julho, 2003, 14:30 Exame e ecuso e Física II Cuso e Engenhaia Electotécnica e e Computaoes Seguna-Feia, 7 e Julho,, 4: NOME Inicações geais Não esagae o ponto; Maue apenas uma cuz em caa conjunto e opções po pegunta; Se

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 4 Energia e Potencial Elétrico Questão 1

Prof. A.F.Guimarães Questões Eletricidade 4 Energia e Potencial Elétrico Questão 1 Pof FGuimaães Questões Eleticiae 4 Enegia e Potencial Elético Questão (CESESP) Na figua abaixo, a placa é aquecia libeano elétons com velociaes muito pequenas, paticamente nulas Devio à bateia e volts,

Leia mais

Capítulo III Lei de Gauss

Capítulo III Lei de Gauss ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 3.1 Fluxo eléctico e lei de Gauss Capítulo III Lei de Gauss A lei de Gauss aplicada ao campo eléctico, pemite-nos esolve de

Leia mais

FLUXO ELÉTRICO E LEI DE GAUSS

FLUXO ELÉTRICO E LEI DE GAUSS 11 FLUXO ELÉTRICO E LEI E GAUSS.1 - A LEI E GAUSS Eta lei é egida po pincípio muito imple e de fácil entendimento. O conceito geal de fluxo como endo o ecoamento de um campo vetoial que atavea uma ecção

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,

Leia mais

Experiência 2 - Filtro de Wien - 7 aulas

Experiência 2 - Filtro de Wien - 7 aulas Instituto de Física - USP FGE0213 - Laboatóio de Física III - LabFlex Estudo de uma patícula em um campo eletomagnético Aula 5 - (Exp 2.1) Filto de Wien Mapeamento de Campo Elético Manfedo H. Tabacniks

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Análise Vetorial. Sistemas de coordenadas

Análise Vetorial. Sistemas de coordenadas Análise Vetoial Sistemas de coodenadas Retangula (,, ), cilíndico (, φ, ) e esféico (, θ, φ) são os tês sistemas de coodenadas mais utiliados em eletomagnetismo. No sistema etangula, um ponto P é definido

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Neste capítulo, vamos discutir o modelo clássico de condução e a distribuição de energia em circuitos elétricos

Neste capítulo, vamos discutir o modelo clássico de condução e a distribuição de energia em circuitos elétricos CAPÍTULO 7 DISTRIBUIÇÃO DE EERGIA EM UM CIRCUITO: ASPECTOS TEÓRICOS este capítulo, vaos iscuti o oelo clássico e conução e a istibuição e enegia e cicuitos eléticos Moelo Clássico e Conução A esistência

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Medidas elétricas em altas frequências

Medidas elétricas em altas frequências Medidas eléticas em altas fequências A gande maioia das medidas eléticas envolve o uso de cabos de ligação ente o ponto de medição e o instumento de medida. Quando o compimento de onda do sinal medido

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga Física II Eng. Infomática 003-004 1 Caga e densidade de caga As patículas elementaes caegadas são o electão e o potão. Possuem uma caga de igual valo, mas de sinal contáio. Caga do electão: e = -1.6010

Leia mais

ELETROMAGNETISMO I 44

ELETROMAGNETISMO I 44 ELETROMAGNETIMO I 44 6 CORRENTE ELÉTRICA Nos capítulos anteioes estudamos os campos eléticos quando geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo faemos o estudo da coente elética,

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

Electricidade e Magnetismo

Electricidade e Magnetismo Electicidade e Magnetismo 1. Campos Elécticos. A lei de Gauss 3. Potencial Eléctico 4. Capacidade e Dielécticos 5. Coentes e Resistência 6. Cicuitos de Coente Contínua 7. Cicuitos de Coente Altenada 8.

Leia mais

Z 1 Z x 2 dydx + Z 2 Z 2. p y x 2 y: 0 y 1 e Z 1 Z 2. y dxdy: A (D) = p y

Z 1 Z x 2 dydx + Z 2 Z 2. p y x 2 y: 0 y 1 e Z 1 Z 2. y dxdy: A (D) = p y Gabaito A - manhã Áea o Integal Dula A áea de uma egião D do lano x é dada o:. Esboce o gá co da egião D. Z Z x ddx + Z Z x ddx: D é a egião do imeio quadante, delimitada elo eixo x, ela aábola = x (ou

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

DISPERSÃO E PODER RESOLVENTE DUM PRISMA

DISPERSÃO E PODER RESOLVENTE DUM PRISMA Aulas páticas de Óptica e Acústica º semeste de / DISPERSÃO E PODER RESOLVENTE DUM PRISMA Conceitos envolvidos: Equações de Maxwell, dispesão, polaizabilidade, índice de efacção, pisma, ede de difacção

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

3. Lei de Gauss (baseado no Halliday, 4a edição)

3. Lei de Gauss (baseado no Halliday, 4a edição) 3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom ue poss simplific os csos ue envolvem elevdo gu de

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS seto 116 1160409 1160409-SP ula 5 ELETIZÇÃO PO INDUÇÃO E TÇÃO DE COPOS NEUTOS = conduto ou isolante, inicialmente eletizado (induto) = conduto, inicialmente neuto (induzido) Passo 1: Passo : Passo 3: Passo

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Resolução da Prova de Raciocínio Lógico

Resolução da Prova de Raciocínio Lógico ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. opuspi@ymail.com 1 21 Um io pincipal tem, ao passa em deteminado

Leia mais

Ligações iônicas. Molécula estável E(KCl) < E(K) + E(Cl) Física Moderna 2 Aula 15

Ligações iônicas. Molécula estável E(KCl) < E(K) + E(Cl) Física Moderna 2 Aula 15 Ligações iônicas? Molécula estável E(KCl) < E(K) + E(Cl) 43376 - Física Modena Aula 5 ,7 nm ke U ( ) + EExcl + E Ion E Ion enegia necessáia paa foma o cátion e o ânion sepaados. E Ion,7 ev paa o KCl. E

Leia mais

ENERGIA POTENCIAL ELÉTRICA

ENERGIA POTENCIAL ELÉTRICA Pof(a) Stela Maia de Cavalho Fenandes 1 NRGIA POTNCIAL LÉTRICA O que é enegia otencial elética? Comaando-se o modelo mecânico da mola, onde uma mola comimida ossui enegia otencial elástica é, devido a

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica, LISTA 3 - Pof Jason Gallas, DF UFPB 1 de Junho de 13, às 18: Execícios Resolvidos de Física Básica Jason Alfedo Calson Gallas, pofesso titula de física teóica, Douto em Física pela Univesidade Ludwig Maximilian

Leia mais

4200V Fig. 1 C 1. 10V C 2 Fig. 2

4200V Fig. 1 C 1. 10V C 2 Fig. 2 a lista de execícios de Física 3 - Pof alos Felipe Pinheio apacitoes 1) eja E o o campo elético no inteio (vácuo) de um capacito de placas planas e paalelas Ao intoduzimos um dielético ente as placas desse

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

MATERIAIS DIELÉTRICOS E RELAÇÕES DE FRONTEIRA NO CAMPO ELÉTRICO

MATERIAIS DIELÉTRICOS E RELAÇÕES DE FRONTEIRA NO CAMPO ELÉTRICO LTROMAGNTISMO I 53 7 MATRIAIS ILÉTRICOS RLAÇÕS FRONTIRA NO CAMPO LÉTRICO e acodo com a teoia atômica clássica, os átomos são constituídos de um núcleo cental fomado basicamente po pótons e nêutons, obitados

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Exercícios Resolvidos Astronomia (Gravitação Universal)

Exercícios Resolvidos Astronomia (Gravitação Universal) Execícios Resolvios Astonoia (Gavitação Univesal) 0 - Cite as leis e Keple o oviento os copos celestes I "As óbitas que os planetas esceve ao eo o Sol são elípticas, co o Sol ocupano u os focos a elipse"

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

APÊNDICE DO CAPÍTULO 12.

APÊNDICE DO CAPÍTULO 12. APÊNDICE DO CAPÍTULO 12. GRAVITAÇÃO A foça gavitacional é o paadigma de foça em mecˆanica newtoniana. Este esumo visa auxilia o estudo dessa foça no capítulo 12 do livo-texto, cujas figuas e exemplos complementam

Leia mais

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11 1-0-011 Mecânica Gavitação 1ª Pate Pof. Luís Pena 010/11 Teoia geocêntica Foi com Ptolomeu de Alexandia que sugiu, po volta de 150 d.c. no seu livo Almagest, uma descição pomenoizada do sistema sola. Cláudio

Leia mais

Introdução ao Método de Elementos Finitos

Introdução ao Método de Elementos Finitos Intodução ao Método de Elementos Finitos Jaime Atuo Ramíe Unidade 1 1 Método de Elementos Finitos Apesentação do cuso O que se estuda aqui? O que é peciso sabe? O que amos fae? 2 Apesentação do cuso O

Leia mais

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação:

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação: Capítulo Gavitação ecusos com copyight incluídos nesta apesentação: Intodução A lei da gavitação univesal é um exemplo de que as mesmas leis natuais se aplicam em qualque ponto do univeso. Fim da dicotomia

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

Capítulo 23: Lei de Gauss

Capítulo 23: Lei de Gauss Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de

Leia mais

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton ecânica e Ondas aguspak Cusos EI e EE Capítulo I Inteacção mecânica ei da atacção gavitacional de Newton Se consideamos duas massas pontuais m1 e m, a uma distância ente si, vai have uma foça de atacção

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

SOLUÇÃO IDEAL: ALTERNATIVA E. ρ = d = = m ρ ρ

SOLUÇÃO IDEAL: ALTERNATIVA E. ρ = d = = m ρ ρ Questão 0. Consiee um copo esféico e aio totalmente enolio po um fluío e iscosiae η com elociae méia. De acoo com a lei e Stokes paa baixas elociaes, esse copo sofeá ação e um foça e aasto iscoso aa po

Leia mais

O sofrimento é passageiro. Desistir é pra sempre! Gravitação

O sofrimento é passageiro. Desistir é pra sempre! Gravitação O sofimento é passageio. Desisti é pa sempe! Gavitação 1. (Upe 015) A figua a segui ilusta dois satélites, 1 e, que obitam um planeta de massa M em tajetóias ciculaes e concênticas, de aios 1 e, espectivamente.

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

GEO046 Geofísica. Campo magnético. Campo magnético. Campo magnético dipolar

GEO046 Geofísica. Campo magnético. Campo magnético. Campo magnético dipolar GEO046 Geofísica Aula n o 06 MÉTODO MAGNÉTICO Teoia básica e paleomagnetismo Campo magnético Mateiais que apesentavam um compotamento inteessante (magnetismo) ea conhecido desde a antigüidade. Esse conhecimento

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA 81 1 SOLENÓDE E NDUTÂNCA 1.1 - O SOLENÓDE Campos magnéticos prouzios por simples conutores, ou por uma única espira são, para efeitos práticos, bastante fracos. Uma forma e se prouzir campos magnéticos

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais