Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas"

Transcrição

1 Controle de Sistemas O Método do Lugar das Raízes Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas

2 Introdução No projeto de um sistema de controle, é fundamental se determinar como a localização das raízes da equação característica no plano S umda com a variação de um parâmetro. Essa localização das raízes, ou Lugar das Raízes (LR), é normalmente feita por um método gráfico conhecido como Gráfico do Lugar das Raízes. 2/28

3 Conceito de Lugar das Raízes O Lugar das Raízes, uma apresentação gráfica dos polos a malha fechada em função da variação de um parâmetro de sistema, é um poderoso método de análise e projeto. Ele permite a- nálises qualitativa e quantitativa, e fornece mais informações do que os demais métodos que já estudamos. 3/28

4 Conceito de Lugar das Raízes Entrada Sinal atuante Função de Transferência do canal direto Saída Modificações no ganho alteram os polos da malha fechada! Função de Transferência da retroação (a) Sistema a Malha Fechada. (b) Função de Transferência Equivalente. 4/28

5 Representação Vetorial de Números Complexos Plano s Plano s (a) s = σ + jω (b) (c) ( s+ a) ( s+ a) Plano s Plano s (c) ( 7) s j s + (5+ 2) ( s a) + é um nº complexo, e pode ser representado por um vetor traçado a partir do zero da função até o ponto s. 5/28

6 Representação Vetorial de Números Complexos Fs () m ( s+ zi ) = i= n = ( s+ p ) j= i fatores complexos do numerador fatores complexos do denominador Cada fator do numerador e do denominador é um número complexo, que pode ser representado por um vetor. A função define a aritmética complexa a ser executada para calcular F(s) em qualquer ponto s. 6/28

7 Representação Vetorial de Números Complexos Plano s Fs () = ( s + ) ss ( + 2) 7/28

8 Representação Vetorial de Números Complexos Considerando a representação vetorial, tem-se, para a magnitude: M comprimentos dos zeros = = comprimentos dos pólos m i= n j= ( s+ z ) i ( s+ p ) i O comprimento de um zero é a magnitude do vetor traçado a partir do zero de F(s) em zi até o ponto s, e o comprimento de um polo é a magnitude do vetor traçado a partir do polo de F(s) em pi até o ponto s. 8/28

9 Representação Vetorial de Números Complexos Considerando a representação vetorial, tem-se, para o ângulo: θ = ângulos dos zeros m θ = ( s+ z ) ( s+ p ) i i= j= O ângulo de um zero é o ângulo, medido no sentido trigonométrico, a partir do eixo real, de um vetor traçado do zero de F(s) em zi até o ponto s, e o ângulo de um pólo é o ângulo, medido no sentido trigonométrico, a partir do eixo real, de um vetor traçado do pólo de F(s) em pi até o ponto s. n ângulos dos pólos i 9/28

10 Conceito de Lugar das Raízes a) O sistema CameraMan Presenter Camera rastreia automaticamente um objeto que utiliza sensores de infravermelho frontal e traseiro (o sensor frontal é também um microfone); comandos de rastreamento e de áudio são passados ao Camera- Man por meio de um enlace de radiofrequência de uma unidade utilizada pelo objeto. Posição do objeto Sensores Amplificador Motor e câmara Posição da câmara (b) Diagrama de blocos. (c) Função de transferência a malha fechada. onde 0/28

11 Conceito de Lugar das Raízes Localização dos Polos em Função do Ganho do Sistema Polo Polo ,47 8,87 8,6 7, j2, j3,6 5 + j3, j4, j5 0 0,53,3,84 2, j2,24 5 j3,6 5 j3,87 5 j4,47 5 j5 /28

12 Conceito de Lugar das Raízes Plano s (a) Diagrama de Polos. (b) Lugar das Raízes. Plano s Que conclusões podemos tirar por meio da análise do lugar das raízes do CameraMan? 2/28

13 Conceito de Lugar das Raízes As conclusões para um sistema simples como o CameraMan podem parecer triviais. Todavia, é importante perceber que o Lugar das Raízes representa uma técnica importante para analisar sistemas de ordem maior do que dois... 3/28

14 Propriedades Lugar das Raízes Seja o seguinte sistema: Rs () + - Gs () Y() s Função de Transferência da Malha Fechada: Gs () T () s = + G () s Equação Característica: () s = + Gs () Gs () = = + j0 Gs () = Gs ( ) = 80 ± k360, k = 0,,2, Forma Polar 4/28

15 Propriedades Lugar das Raízes Assim, para que um ponto s pertença ao Lugar das Raízes, é necessário que: Gs () = Gs ( ) = 80 ± k360, k = 0,,2, 5/28

16 Propriedades Lugar das Raízes Exemplo: Gs () = ss ( + 2) Equação Característica: () s = + Gs () = + = 0 s( s + 2) 2 () 2 0 s = s + s+ = Lugar das raízes: Gs () = = ss ( + 2) G( s) =± 80, ± 540, 6/28

17 Propriedades Lugar das Raízes Vamos calcular as raízes da equação característica para variando de zero até infinito... = = 0 = = () s s 2s 0 Equação Característica: = + + = { 2,0} {.707, } {, } { j} ± = 5 = 0 = 0 = { j2} { j9.9499} ± ± { 3 ± j0 } { 7 ± j3.6 0 } Para = 0, têm-se os polos da malha aberta. Para muito grande, os polos vão para infinito... Agora é só fazer o desenho... 7/28

18 Propriedades Lugar das Raízes 8/28

19 Propriedades Lugar das Raízes Root Locus () s = + = 0 s( s + 2) Imaginary Axis Matlab: >>rlocus([],[ 2 0]) Real Axis 9/28

20 Propriedades Lugar das Raízes Para que um ponto pertença ao Lugar das Raízes, qual condição deve ser satisfeita? A condição de ângulo, sendo que a condição de módulo fornece o valor do ganho que aloca a raiz naquele ponto! Pode-se observar que, para que a condição de ângulo seja obedecida, o LR corresponde a uma linha vertical, para ζ < (subamortecimento), e uma linha horizontal, para ζ > (sobreamortecimento). Vamos analisar essas conclusões nos dois próximos slides... 20/28

21 Propriedades Lugar das Raízes Para um ponto qualquer, sc, sobre a reta vertical, obtém-se a contribuição dos dois polos, s e s2, da seguinte maneira: = sc ( sc + 2) = [(80 θ) + θ] = 80 s( s + 2) s= s c 2/28

22 Propriedades Lugar das Raízes E como determinar o ganho no ponto sc? = = = sc sc + 2 ss ( + 2) s s+ 2 s= s c c c 22/28

23 Propriedades Lugar das Raízes Consideremos a EC escrita na forma: () s= + Fs () F() s = m i= n l= ( s+ z ) i ( s+ p ) Sabemos que: Fs () = + j0 l Logo: m ( s+ zi ) m n i= = e ( s+ zi) ( s+ pl) = 80 ± k360 n i= l= ( s+ p ) l= l 23/28

24 Propriedades Lugar das Raízes Exemplo: (a) Sistema de exemplo. (b) Diagrama de polos e zeros de G(s). O ponto (-2 + j3) pertence ao lugar das raízes? E o ponto (-2 + j( 2/2))? 24/28

25 Propriedades Lugar das Raízes Exemplo: Plano s Plano s Representação Vetorial de G(s) 25/28

26 Propriedades Lugar das Raízes Exemplo: Plano s θ = ângulos dos zeros - m θ = ( s+ z ) ( s+ p ) i i= j= θ = θ + θ θ θ n ângulos dos pólos = = i Representação Vetorial de G(s) O ponto (-2 + j3) não pertence ao lugar das raízes, isto é, não representa um polo a malha fechada para nenhum valor de ganho. 26/28

27 Propriedades Lugar das Raízes Exemplo: Plano s Para o ponto (-2 + j( 2/2)), o ângulo vale 80, e ele pertence ao lugar das raízes, isto é, representa um pólo a malha fechada para algum valor de ganho... ( s+ zi ) comprimentos dos zeros i= M = = = n comprimentos dos pólos ( s+ p ) j= comprimentos dos pólos = = M comprimentos dos zeros m i Representação Vetorial de G(s) LL LL 3 4 = = = 2 2 (,22) 2 0,33 (2,2)(, 22) 27/28

28 Cenas do Próximo Capítulo... O LR mostra como os polos em malha fechada variam em função de um ou mais parâmetros ajustáveis. Traçar o LR direto pelo conceito não é algo prático. Será apresentado um procedimento prático geral que permite o esboço do Gráfico do Lugar das Raízes em função da variação de um dado parâmetro. 28/28

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Universidade Presbiteriana Mackenzie. Controle II

Universidade Presbiteriana Mackenzie. Controle II Universidade Presbiteriana Mackenzie Curso de Engenharia Elétrica Controle II Notas de Aula Prof. Marcio Eisencraft Segundo semestre de 004 Universidade Presbiteriana Mackenzie Curso de Engenharia Elétrica

Leia mais

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Hector Bessa Silveira e Daniel Coutinho 2012/2 1 Objetivos Neste próximos laboratórios, utilizar-se-á

Leia mais

EA616B Análise Linear de Sistemas Resposta em Frequência

EA616B Análise Linear de Sistemas Resposta em Frequência EA616B Análise Linear de Sistemas Resposta em Frequência Prof. Pedro L. D. Peres Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre 2013 Resposta em Frequência

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Sistemas a Tempo Discreto - Projeto

Sistemas a Tempo Discreto - Projeto Sistemas a Tempo Discreto - Projeto 1. Especificações de Projeto no domínio discreto 2. Projeto via Emulação 2.1 Controladores Equivalentes Discretos 2.2 Mapeamento pólo-zero 2.3 Avaliação do projeto pag.1

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional

Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional Aula

Leia mais

Método do Lugar das Raízes

Método do Lugar das Raízes Método do Lugar das Raízes 1. Conceito do Lugar das Raízes 2. Virtudes do Lugar das Raízes (LR) pag.1 Controle de Sistemas Lineares Aula 8 No projeto de um sistema de controle, é fundamental determinar

Leia mais

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Baseado no trabalho Controlo de Velocidade de um motor DC de E. Morgado, F. Garcia e J. Gaspar João Miguel Raposo Sanches 1 o

Leia mais

Experimento 3 # Professor: Data: / / Nome: RA:

Experimento 3 # Professor: Data: / / Nome: RA: BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado

Leia mais

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 5: APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM COLEGIADO DE ENGENHARIA

Leia mais

CONTROLO DE SISTEMAS

CONTROLO DE SISTEMAS UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS Lugar Geométrico das Raízes PROJECTO E ANÁLISE DA RESPOSTA TRANSITÓRIA E ESTABILIDADE Parte 1/3 - Compensação

Leia mais

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO João Baptista Bayão Ribeiro USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO Rio de Janeiro 2014 2 ÍNDICE USO DO SCILAB PARA REALIZAÇÃO...1 EM COMPUTADOR DE UM PROJETO...1

Leia mais

PROJETO DE ESTABILIZADORES DE SISTEMAS DE POTÊNCIA POR POSICIONAMENTO PARCIAL DE PAR DE PÓLOS COMPLEXOS CONJUGADOS

PROJETO DE ESTABILIZADORES DE SISTEMAS DE POTÊNCIA POR POSICIONAMENTO PARCIAL DE PAR DE PÓLOS COMPLEXOS CONJUGADOS PROJETO DE ESTABILIZADORES DE SISTEMAS DE POTÊNCIA POR POSICIONAMENTO PARCIAL DE PAR DE PÓLOS COMPLEXOS CONJUGADOS CARLOS HENRIQUE COSTA GUIMARÃES GLAUCO NERY TARANTO SERGIO GOMES JR. NELSON MARTINS COPPE/UFRJ

Leia mais

Capítulo 3 Sistemas de Controle com Realimentação

Capítulo 3 Sistemas de Controle com Realimentação Capítulo 3 Sistemas de Controle com Realimentação Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Sistemas de Controle com

Leia mais

RELATÓRIO FINAL PROJETO DESAFIO CONTROLE DE POSIÇÃO ATRAVÉS DE MOTOR DE CORRENTE CONTÍNUA

RELATÓRIO FINAL PROJETO DESAFIO CONTROLE DE POSIÇÃO ATRAVÉS DE MOTOR DE CORRENTE CONTÍNUA RELATÓRIO FINAL PROJETO DESAFIO CONTROLE DE POSIÇÃO ATRAVÉS DE MOTOR DE CORRENTE CONTÍNUA Laboratório De Controle I (LECI) Professor: Reinaldo Martinez Palhares Integrantes : Antônio J. R. Chaves, Marcelo

Leia mais

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO João Baptista Bayão Ribeiro USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO EXEMPLO 7.04 DO OGATA Rio de Janeiro 2014 2 ÍNDICE USO DO SCILAB PARA REALIZAÇÃO...1

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

Prova 2 - Sistemas de Controle Projetos

Prova 2 - Sistemas de Controle Projetos Prova - Sistemas de Controle Projetos Pedro Batista (887) - pedro@ufpa.br Paulo Victor Mocbel (887) - pvmocbel@gmail.com December 4, Projeto de Controlador PI ideal Desejamos adicionar um controlador proporcional

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do

Leia mais

Projeto de sistemas de controle

Projeto de sistemas de controle Projeto de sistemas de controle Os controladores clássicos encontrados na literatura podem ser classificados como: Controladores de duas posições (ou on-off). Controladores proporcionais. Controladores

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

CAPÍTULO 12. Projeto de controladores discretos

CAPÍTULO 12. Projeto de controladores discretos CAPÍULO 2 Projeto de controladores discretos 2. Introdução O projeto de controladores discretos pode ser realizado por emulaçào, onde um controlador contínuo é projetado, usando as mesmas técnicas vistas

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

INTRODUÇÃO À ENGENHARIA

INTRODUÇÃO À ENGENHARIA INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO

TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO Professor: Tiago Dezuo 1 Objetivos Desenvolver técnicas de controle por variáveis de estado clássicas e ótimas, realizando comparações de desempenho entre

Leia mais

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C.

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C. Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2005/2006 Controlo de velocidade de um motor D.C. Elaborado por E. Morgado 1 e F. M. Garcia 2 Reformulado

Leia mais

MECÂNICA GERAL PARA ENGENHEIROS

MECÂNICA GERAL PARA ENGENHEIROS MEÂNI GER R ENGENHEIRS apítulo rofª: cilayne Freitas de quino Forças no lano sobre um orpo Rígido R RGID Em mecânica elementar assumimos que a maior parte dos corpos são rígidos, isto é, as deformações

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Transformações Lineares 1 Definição e Exemplos 2 Núcleo e Imagem

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Resposta em Frequência de Amplificadores. Aula 10 Prof. Nobuo Oki

Resposta em Frequência de Amplificadores. Aula 10 Prof. Nobuo Oki Resposta em Frequência de Amplificadores Aula 10 Prof. Nobuo Oki Considerações Gerais (1) Polo Simples Efeito Miller Multiplicador do capacitor usando efeito Miller Considerações Gerais (2) Aplicabilidade

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

ESPAÇOS MUNIDOS DE PRODUTO INTERNO

ESPAÇOS MUNIDOS DE PRODUTO INTERNO ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.

Leia mais

x d z θ i Figura 2.1: Geometria das placas paralelas (Vista Superior).

x d z θ i Figura 2.1: Geometria das placas paralelas (Vista Superior). 2 Lentes Metálicas Este capítulo destina-se a apresentar os princípios básicos de funcionamento e dimensionamento de lentes metálicas. Apresenta, ainda, comparações com as lentes dielétricas, cujas técnicas

Leia mais

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Saulo Dornellas Universidade Federal do Vale do São Francisco Juazeiro - BA Dornellas (UNIVASF) Juazeiro - BA 1 / 44 Análise do

Leia mais

Sessão Prática: Simulação e Controle com LabVIEW

Sessão Prática: Simulação e Controle com LabVIEW Sessão Prática: Simulação e Controle com LabVIEW 1 Visão geral Este tutorial mostra as características dos controles proporcional (P), integral (I) e derivativo (D), e como utilizálos para obter a resposta

Leia mais

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0 1 - FUNÇÃO QUADRÁTICA UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 01 É toda função do tipo f(x)=ax 2 +bx+c, onde a, b e c são constantes reais com a 0. Ou, simplesmente, uma função polinomial de grau

Leia mais

CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger

CAP. 3 - EXTENSÔMETROS - STRAIN GAGES Exemplo: extensômetro Huggenberger CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG437 Sistemas de Controle Digitais Introdução Controladores PID Prof. Walter Fetter Lages 2 de maio

Leia mais

"SISTEMAS DE COTAGEM"

SISTEMAS DE COTAGEM AULA 6T "SISTEMAS DE COTAGEM" Embora não existam regras fixas de cotagem, a escolha da maneira de dispor as cotas no desenho técnico depende de alguns critérios. A cotagem do desenho técnico deve tornar

Leia mais

Introdução ao Estudo de Sistemas Dinâmicos

Introdução ao Estudo de Sistemas Dinâmicos Introdução ao Estudo de Sistemas Dinâmicos 1 01 Introdução ao Estudo de Sistemas Dinâmicos O estudo de sistemas dinâmicos envolve a modelagem matemática, a análise e a simulação de sistemas físicos de

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Apresentação Caule e Folha. Exemplo

Apresentação Caule e Folha. Exemplo Análise Exploratória de Dados As técnicas de análise exploratória de dados consistem em gráficos simples de desenhar que podem ser utilizados para resumir rapidamente um conjunto de dados. Uma destas técnicas

Leia mais

Circuito RC: Processo de Carga e Descarga de Capacitores

Circuito RC: Processo de Carga e Descarga de Capacitores Departamento de Física - IE - UFJF As tarefas desta prática têm valor de prova! Leia além deste roteiro também os comentários sobre elaboração de gráficos e principalmente sobre determinação de inclinações

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller ÁLGEBRA LINEAR Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo Prof. Susie C. Keller Núcleo de uma Definição: Chama-se núcleo de uma transformação linear T: V W ao conjunto

Leia mais

Tipos de Antenas e suas propriedades

Tipos de Antenas e suas propriedades Tipos de Antenas e suas propriedades TV Antenas Lineares: Yagi-Uda Log-Periódica Painel Dipolos MO/OC/X Painel H (Duplo Delta) Superturnstile (Batwing) Antenas de Abertura: Parabólica Slot Figura 2 - Tipos

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Gráficos de funções em calculadoras e com lápis e papel (*)

Gráficos de funções em calculadoras e com lápis e papel (*) Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

ELEMENTOS DE MÁQUINAS I

ELEMENTOS DE MÁQUINAS I UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA ELEMENTOS DE MÁQUINAS I APOSTILA PARA O CURSO 2 o Semestre de 2001 Molas Helicoidais e Planas AUTOR: P ROF. DR. AUTELIANO A NTUNES DOS

Leia mais

TEORIA UNIDIMENSIONAL DAS

TEORIA UNIDIMENSIONAL DAS Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: O conhecimento das velocidades do fluxo de

Leia mais

Análise de Erro Estacionário

Análise de Erro Estacionário Análise de Erro Estacionário Sistema de controle pode apresentar erro estacionário devido a certos tipos de entrada. Um sistema pode não apresentar erro estacionário a uma determinada entrada, mas apresentar

Leia mais

ESTÁTICA DEC - COD 3764 I - 2007

ESTÁTICA DEC - COD 3764 I - 2007 ESTÁTICA DEC - COD 3764 I - 2007 Resumo das notas de aula do professor. Adaptação do material de vários professores, e do livro Mecânica vetorial para engenheiros, Ferdinand. Beer e E. Russell Johnston,

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

Na Cinemática Aplicada estuda-se a aplicação dos conceitos da Cinemática na Síntese e Análise dos Mecanismos.

Na Cinemática Aplicada estuda-se a aplicação dos conceitos da Cinemática na Síntese e Análise dos Mecanismos. . MECA!ISMOS.0 Algumas definições Um mecanismo é um conjunto de elementos de máquinas ligados de forma a produzir um movimento específico. Podem ser subdivididos conforme suas aplicações: mecanismos com

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

Fresando engrenagens cilíndricas com dentes helicoidais

Fresando engrenagens cilíndricas com dentes helicoidais Fresando engrenagens cilíndricas com dentes helicoidais A UU L AL A Na aula passada você viu como fresar engrenagens cilíndricas de dentes retos, utilizando o aparelho divisor universal e divisão indireta.

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID AÇÕES E CONTROLE Açõe de Controle Relação Controlador/Planta Controlador roorcional Efeito integral Efeito derivativo Controlador PI Controle de Sitema Mecânico - MC - UNICAMP Açõe comun de controle Ação

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

Capítulo IV. Dispositivos de proteção Parte II. Proteção e seletividade. 26 O Setor Elétrico / Abril de 2010. Relé direcional de potência

Capítulo IV. Dispositivos de proteção Parte II. Proteção e seletividade. 26 O Setor Elétrico / Abril de 2010. Relé direcional de potência 26 Capítulo IV Dispositivos de proteção Parte II Por Cláudio Mardegan* Relé direcional de potência Quando instalado na interconexão com Em concepção, os relés direcionais de potência são relés que operam

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching"

Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching" 1 Com suas palavras explique o que é Reconhecimento de Padrões- RP. Quais são os fases clássicas que compõem

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô 1. Introdução Modelo Matemático e Controle de um Robô Móvel Nesta aula serão apresentadas leis de controle que permitem a um robô móvel nãoholonômico navegar de maneira coordenada desde uma localização

Leia mais

utilizando o software geogebra no ensino de certos conteúdos matemáticos

utilizando o software geogebra no ensino de certos conteúdos matemáticos V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 utilizando o software geogebra no ensino de certos conteúdos matemáticos ermínia de

Leia mais

Matemática para Engenharia

Matemática para Engenharia Matemática para Engenharia Profa. Grace S. Deaecto Faculdade de Engenharia Mecânica / UNICAMP 13083-860, Campinas, SP, Brasil. grace@fem.unicamp.br Segundo Semestre de 2013 Profa. Grace S. Deaecto ES401

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Comprimentos de Curvas e Coordenadas Polares Aula 38

Comprimentos de Curvas e Coordenadas Polares Aula 38 Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

2. Simbologia e Nomenclatura

2. Simbologia e Nomenclatura 2. Simbologia e Nomenclatura Nessa seção simbologia e nomenclatura é apresentado os termos mais utilizados e padronizados em instrumentação industrial. Sua compreensão é de suma importância para o entendimento

Leia mais

Método analítico para o traçado da polar de arrasto de aeronaves leves subsônicas aplicações para a competição Sae-Aerodesign

Método analítico para o traçado da polar de arrasto de aeronaves leves subsônicas aplicações para a competição Sae-Aerodesign SIMPÓSIO INTERNAIONA E IÊNIAS INTEGRAAS A UNAERP AMPUS GUARUJÁ Método analítico para o traçado da polar de arrasto de aeronaves leves subsônicas aplicações para a competição Sae-Aerodesign uiz Eduardo

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

Aula 13 Análise no domínio da frequência

Aula 13 Análise no domínio da frequência Aula 13 Análise no domínio da frequência A resposta em frequência é a resposta do sistema em estado estacionário (ou em regime permanente) quando a entrada do sistema é sinusoidal. Métodos de análise de

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais