Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez"

Transcrição

1 Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez

2 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex: tubos, dutos, bocais, difusoes, contações e expansões súbitas, álulas e acessóios. Os escoamentos intenos podem se laminaes ou tubulentos. Como foi discutido na aula 5, o egime de escoamento em um tubo é deteminado pelo númeo de eynolds.

3 A Figua a segui ilusta o escoamento lamina na egião de entada de um tubo cicula. O escoamento tem a elocidade unifome U o na entada do tubo. Paa escoamento lamina e tubulento, o compimento de entada, L, é uma função do númeo de eynolds, ( lamina ) L D ρd,6 μ ( ) ( tubulemto ) L D ρd, μ /6 ( )

4 Escoamento lamina em um tubo pode se espeado apenas paa númeos de eynolds menoes que. Assim, o compimento de entada paa escoamento lamina em tubos pode se tão gande quanto,6 L,6 ed D 8D ( ) ou apoximadamente ezes o diâmeto do tubo. Se o escoamento fo tubulento, a mistua intensa ente camadas de fluido causa o cescimento mais ápido da camada limite. Expeiências mostam que o pefil de elocidades médias tona-se plenamente desenolido paa distâncias ente 5 e diâmetos de tubo a pati da entada.

5 8. Escoamento lamina completamente desenolido em um tubo hoizontal. Paa escoamento laminaes inteiamente desenolido no inteio de um tubo hoizontal, o fluxo esultante de quantidade de moimento ataés da supefície de contole é zeo. A componente x da equação da quantidade de moimento é: F Sx F Bx udv ud. t Consideações: Tubo hoizontal, F Bx = Escoamento pemanente Escoamento incompessíel Escoamento inteiamente desenolido VC SC A ( ) F Sx ( ) 5

6 Elemento cilíndico de fluido L x P P x L P Fluxo F Sx P P L P x x P L ( ) 6

7 x x d d x P L P L d d P L P d L o lei de Newton da iscosidade constante d P C L ( ) 7

8 Condição de contono: Paa =, = P L Substituindo a equação em, temos: C P C ( ) L P L P L P L P L ( ) 8

9 Distibuição da tensão de cisalhamento A tensão de cisalhamento é dado po: d P x ( 5 ) d L Vazão em olume no tubo cicula em função da queda de pessão A.dA d ΔP L d P 8L ( 6 ) PD 8L ( 7 ) A equação 7 é utilizada paa escoamento lamina (num tubo hoizontal) e é conhecida como sendo de Hagen-Poiseuille (89). A equação 7 é conhecida como Lei de Hagen-Poiseuille. Obs.: Gotthilf Heinich Ludwig Hagen (89-Alemanha) Jean Léonad Maie Poiseuille (88-Fança) 9

10 Velocidade média A ( 8 ) ΔP 8L ( 6 ) P 8L Substituindo a equação 7 na 8, fica: P 8L ( 9 ) A PD 8L D PD L ( )

11 Velocidade máxima Paa detemina o ponto de elocidade máxima, fazemos igual a zeo e esolemos paa o alo coespondente de na equação. d d P L ( ) d d P L d d P L

12 máx L 8 P L P máx ( ) Condição de contono: Paa =, d/d =, a elocidade é máxima no cento do tubo, potanto temos: L P máx L P máx ( )

13 O pefil de elocidade (equação ) pode se escito em temos da elocidade máxima (na linha de cento), como: P L V máx máx ( ) A equação () epesenta o pefil paabólico paa escoamento inteiamente desenolido, em egime lamina, num tubo hoizontal.

14 Exemplo : Um iscosímeto simples e peciso pode se feito com um tubo capila. Se a azão em olume e a queda de pessão foem medidas, e a geometia do tubo fo conhecida, a iscosidade de um fluido newtoniano podeá se calculada a pati da equação 7. Um teste de um ceto líquido num iscosímeto capila foneceu dados: Vazão em olume: 88 mm /s Compimento do tubo: m Diâmeto do tubo:,5 mm ueda de pessão:, MPa

15 Consideações: - Escoamento lamina. - Escoamento pemanente. - Escoamento incompessíel. - Escoamento completamente desenolido. 5- Tubo hoizontal. PD 8L PD 8L x,x 8 ( Equação 7 ) 6 N m x,5 s mm x 88mm x m m x mm,7x N.s/m 5

16 Exemplo : O pefil de elocidade paa escoamento completamente desenolido ente placas paalelas estacionáias é dado po onde a é uma constante, h é o espaçamento ente as placas e y é a distância medida a pati da linha de cento da folga. Desenola a azão. Solução: / máx (y) h a y y x h 6

17 A elocidade é máxima quando d/dy = paa y = : d ay dy () h a d dy Pela definição de elocidade média, temos: máx ; y h a A da A wh A wdy da (y) h a y 7

18 wh a h ah 6 h/ h/ h 8 h a y wdy h h 8 a h y h h y a h h/ h/ h h máx ah 6 h a máx 8

19 Exemplo : Um óleo iscoso escoa em egime pemanente ente duas placas paalelas estacionáias. O escoamento é lamina e completamente desenolido. O espaçamento ente as placas é h = 5 mm. A iscosidade do óleo é,5 N.s/m e o gadiente de pessão é - N/m /m. Detemine a magnitude e o sentido da tensão de cisalhamento sobe a placa supeio e a azão em olume ataés do canal po meto de lagua. h P 8 x y h y x h = 5mm 9

20 Solução: yx d dy h P 8 x y h d dy yx h P 8 x y P x 8y h y P x P y x Paa a placa supeio, y = h/ yx yx P y x,5n/m h (paa a P x dieita),5m N/m m

21 b A h/ y h h da y y b h/ h P 8 x h h/ h/ h P 8 x h/ h P 8 x h P 8 x y h h P d h bdy y h y h bdy y d h 8 x d

22 b h P 8 x h P x b,5 m m N,5N.s m b,8x 5 m /s/m

23 8. Escoamento lamina completamente desenolido em um tubo inclinado. O ajuste necessáio paa lea em consideação a inclinação do tubo no modelo de escoamento lamina paa tubo hoizontal é bastante simples pois basta inclui o efeito gaitacional da foça peso (W) na dieção x (W x ).

24 Elemento cilíndico de fluido x L P P P W W x W x = Mgsen = Vgsen = Vsen = Lsen P P P γ Lsenθ L x x P γsenθ L ( )

25 x x d d P L x P L P L d d P γsenθ γsenθ γsenθ d γsenθ L o lei de Newton da iscosidade constante d P senθ γ C L ( ) 5

26 Condição de contono: Paa =, = P L γsenθ P C senθ γ L C ( ) Substituindo a equação em, temos: P L γsenθ P L P L γsenθ γsenθ P γ senθ L ( ) 6

27 Distibuição da tensão de cisalhamento A tensão de cisalhamento é dado po: d P x γ senθ ( 5 ) d L Vazão em olume no tubo cicula em função da queda de pessão A.dA d ΔP L γ senθ d P γ Lsenθ 8L ( 6 ) P γ Lsenθ 8L D ( 7 ) 7

28 Velocidade média A ( 8 ) 8 ΔP L γ senθ ( 6 ) P γ Lsenθ 8L P γ Lsenθ 8L ( 9 ) Substituindo a equação 7 na 8, fica: A P γ Lsenθ 8L D D P γ Lsenθ L D ( ) 8

29 Velocidade máxima Paa detemina o ponto de elocidade máxima, fazemos igual a zeo e esolemos paa o alo coespondente de na equação. d d P L γ senθ ( ) d d P γ senθ L d d P L γ senθ 9

30 Condição de contono: Paa =, d/d =, a elocidade é máxima no cento do tubo, potanto temos: máx P L γ senθ máx P L γ senθ ( ) máx P L γ senθ P γ Lsenθ 8L máx ( )

31 O pefil de elocidade (equação ) pode se escito em temos da elocidade máxima (na linha de cento), como: P γ senθ L V máx máx ( )

32 Exemplo : Um óleo (iscosidade dinâmica =, N.s/m e massa específica = 9 kg/m ) escoa num tubo que apesenta diâmeto inteno, D = mm. a) ual é a queda de pessão, P = P P, necessáia paa poduzi uma azão de =,x -5 m /s se o tubo fo hoizontal com L = m? b) ual dee se a inclinação do tubo,, paa que o óleo escoe com a mesma azão que na pate (a), mas com P = P? c) Paa as condições da pate (b), detemine a pessão em L = 5 m, sabendo que P = kpa. D,67 m/s,x,m m /s 5 e e ρd μ,87 9kg/m,67m/s,m (Lamina),kg/m.s

33 a) Como o escoamento é lamina e o tubo está na hoizontal, podemos calcula a queda de pessão, P, ataés da equação de Hagen-Poiseuille. PD 8L P 8μL πd 8 5,kg/m.s m x m /s,m P N/m, kpa

34 b) Paa P = e utilizando a equação 6 paa tubos inclinados, temos: P γ Lsenθ 8L D senθ 8 γd 8 ρgd 8 5,kg/m.s x m /s 9kg/m 9,8m/s,m senθ, θ,

35 c) P = P P e utilizando a equação 6 paa tubos inclinados, paa P = kpa e L = 5m, temos: P γ Lsenθ 8L 8L P γ Lsenθ D 8L P P γ Lsenθ D 8L P P γ Lsenθ D N 8,kg/m.s 5m x m /s kg m P x 9 9,8 5m sen, m,m m s 5 D N ,5 m P 79,7 kpa 5

36 6 Exemplo 5: Paa escoamento lamina completamente desenolido em um tubo hoizontal, detemine a distância adial a pati do eixo do tubo na qual a elocidade iguala-se à elocidade média. Paa fluxo lamina completamente desenolido em tubo hoizontal, temos: A elocidade média é dado pela seguinte equação: x P A d da A A

37 A A A da d P x d P x d P x P 8 x P x 7

38 Igualando a elocidade do fluido com a elocidade média com, temos: P x P 8 x,77 8

39 Exemplo 6: Água ( = 6, lbf/ft ) escoa, de modo plenamente desenolido, num tubo com ft de diâmeto. A tensão de cisalhamento na paede é,85 lbf/in. Detemine o gadiente de pessão,, onde x é a dieção do escoamento, se o tubo fo (a) hoizontal, (b) etical com escoamento ascendente e (c) etical com escoamento descendente. a) Tubo hoizontal, = P x P L P L P x P x x P L x D P x D x P 7, lbf/ft γsenθ (equação) γsenθ entada γsen P saída,85lbf/ft ft = 9

40 b) Tubo etical, = 9, com escoamento ascendente. P L P L P x P x x P L x D P x D x γsenθ γsenθ P 69,8 lbf/ft entada γsen9 P saída,85lbf/ft ft 6, lbf/ft = 9

41 c) Tubo etical, = -9, com escoamento descendente. P L P L P x P x x P L x D P x D x P 55lbf/ft γsenθ γsenθ entada γsen( 9 P saída ),85lbf/ft ft 6, lbf/ft = -9

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio Fenômenos de Tanspote Equações Básicas na Foma Integal - I Pof. M. Sc. Lúcio P. Patocínio Objetivos Entende a utilidade do teoema de Tanspote de Reynolds. Aplica a equação de consevação da massa paa balancea

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO 1. Leis Físicas Fundamentais 3 leis escoamentos independentes da natueza do fluido Leis Básicas Equações Fundamentais Lei da Consevação de Massa Equação

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação Pontifícia Uniesidade Católica do Rio de Janeio Depatamento de Engenhaia Mecânica Pojeto Final de Gaduação ANÁLISE DO PROCESSO DE DESLOCAMENTO DE LÍQUIDOS EM POÇOS COM EXCENTRICIDADE VARIÁVEL Aluno: Benado

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

Resoluções dos exercícios do capítulo 4. Livro professor Brunetti

Resoluções dos exercícios do capítulo 4. Livro professor Brunetti Resoluções dos exercícios do caítulo 4 Liro rofessor Brunetti 4. Determinar a elocidade do jato do líquido no orifício do tanque de grandes dimensões da figura. Considerar fluido ideal Resolução do 4.

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Questão 2. Questão 1. Resposta. Resposta

Questão 2. Questão 1. Resposta. Resposta Atenção: Esceva a esolução COMPLETA de cada questão no espaço esevado paa a mesma. Não basta esceve apenas o esultado final: é necessáio mosta os cálculos e o aciocínio utilizado. Utilize g 10m/s e π3,

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

HGP Prática 9 11/12/ HIDRÁULICA GERAL PRÁTICA N 9

HGP Prática 9 11/12/ HIDRÁULICA GERAL PRÁTICA N 9 Tubulento Lamina HGP Pátia 9 11/12/2013 52 TEMA: Medida de azão. HIDÁULICA GEAL PÁTICA N 9 OBJETIOS: Estabeleimento de itéios paa medida de vazões em função do onheimento do pefil de veloidades. FUNDAMENTOS:

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

a ± g Polícia Rodoviária Federal Física Aula 2 de 5 Prof. Dirceu Pereira 2.5.4. MOVIMENTO VERTICAL NO VÁCUO

a ± g Polícia Rodoviária Federal Física Aula 2 de 5 Prof. Dirceu Pereira 2.5.4. MOVIMENTO VERTICAL NO VÁCUO Polícia odoiáia edeal Pof. Diceu Peeia ísica ula de 5.5.4. MOVIMENTO VETIL NO VÁUO O moimento etical de um copo póimo ao solo é chamado de queda lie quando o copo é abandonado no ácuo ou se considea despezíel

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas Poceeding Seies of te Bazilian Society of Applied and Computational Matematics, Vol., N. 1, 14. Tabalo apesentado no CMAC-Sul, Cuitiba-PR, 14. Análise do Pefil de Tempeatuas no Gás de Exaustão de um Moto

Leia mais

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998 Romeo Taaes Vestibulaes da UFPB Poas de Física Resolidas de 994 até 998 João Pessoa, outubo de 998 Pof. Romeo Taaes - (8)5-869 Apesentação Romeo Taaes é Bachael em Física pela Uniesidade Fedeal de Penambuco,

Leia mais

Rolamentos rígidos de esferas

Rolamentos rígidos de esferas Rolamentos ígidos de esfeas Os olamentos ígidos de esfeas estão disponíveis em váios tamanhos e são os mais populaes ente todos os olamentos. Esse tipo de olamento supota cagas adiais e um deteminado gau

Leia mais

Dimensionamento de uma placa de orifício

Dimensionamento de uma placa de orifício Eata de atigo do engenheio Henique Bum da REBEQ 7-1 Po um eo de fechamento de mateial de ilustação, pate do atigo do Engenheio Químico Henique Bum, publicado na seção EQ na Palma da Mão, na edição 7-1

Leia mais

Lista de Exercícios de Fenômeno de Transporte II

Lista de Exercícios de Fenômeno de Transporte II Lista de Execícios de Fenômeno de Tanspote II Exemplo.) Considee a tansfeência de calo em estado estacionáio ente duas supefícies gandes mantidas a tempeatua constantes de 300 e 00 K e que estão sepaadas

Leia mais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais Mecânica Clássica (icenciatuas em Física Ed., Química Ed.) Folha de oblemas 4 Movimentos de coos sob acção de foças centais 1 - Uma atícula de massa m move-se ao longo do eixo dos xx, sujeita à acção de

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Experiência. Bocal convergente

Experiência. Bocal convergente Experiência Bocal conergente O inesquecíel Professor Azeedo Neto (Em seu liro Manual de Hidráulica editado pela Editora Edgard Blücher Ltda na 7ª edição página 66) define de uma forma clara os bocais:

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica, LISTA 3 - Pof Jason Gallas, DF UFPB 1 de Junho de 13, às 18: Execícios Resolvidos de Física Básica Jason Alfedo Calson Gallas, pofesso titula de física teóica, Douto em Física pela Univesidade Ludwig Maximilian

Leia mais

Mecânica dos Fluidos. Aula 10 Escoamento Laminar e Turbulento. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 10 Escoamento Laminar e Turbulento. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 10 Escoamento Laminar e Turbulento Tópicos Abordados Nesta Aula Escoamento Laminar e Turbulento. Cálculo do Número de Reynolds. Escoamento Laminar Ocorre quando as partículas de um fluido movem-se

Leia mais

Equações de Conservação

Equações de Conservação Equações de Consevação Equação de Consevação de Massa (continuidade) Equação de Consevação de Quantidade de Movimento Linea ( a Lei de Newton) Equação de Benoulli Equação de Enegia (1 a Lei da temodinâmica)

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Fenômenos de anspote Pof a. Maa Nilza Estanislau Reis º semeste 008 Fenômenos de anspote 0/008 Disciplina: Fenômenos de anspote Cusos: Engenhaia de Contole e utomação Engenhaia Elética Pof a.: Maa Nilza

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 8 a de agosto de 00 Campina Gande Paaíba - Basil August 8, 00 Campina Gande Paaíba Bazil MODELAGEM NUMÉRICA DE

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

No interior do horizonte de um buraco negro de Schwarzschild

No interior do horizonte de um buraco negro de Schwarzschild No inteio do hoizonte de um buaco nego de Schwazschild Matheus Peeia Lobo Instituto de Física Teóica, Uniesidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, SP, Basil e-mail: lobo@ftogb

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação:

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação: Capítulo Gavitação ecusos com copyight incluídos nesta apesentação: Intodução A lei da gavitação univesal é um exemplo de que as mesmas leis natuais se aplicam em qualque ponto do univeso. Fim da dicotomia

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

BENEFICIAMENTO 1. INTRODUÇÃO

BENEFICIAMENTO 1. INTRODUÇÃO 1. INTRODUÇÃO 1.1 AGITAÇÃO MECÂNICA Em muitas indústias, a gaantia de seus podutos está dietamente ligada ao sucesso dos seus pocessos de fabicação e podução. Quando um poduto final ou intemediáio depende

Leia mais

Considere um jato de água conforme a figura abaixo. Determine a altura h. Despreze as perdas por atrito.

Considere um jato de água conforme a figura abaixo. Determine a altura h. Despreze as perdas por atrito. Univesiae o Estao o Rio e Janeio Instituto Politécnico Cuso e Engenhaia Mecânica IPRJ02-11893 Mecânica os Fluios I (2016-1 Pof. a Livia Jatoba Lista e Execícios 03 Balanço integal e ifeencial as ganezas

Leia mais

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler).

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler). 3 - DESCRIÇÃO DO EEVADOR Abaixo apesentamos o diagama esquemático de um elevado (obtido no site da Atlas Schindle). Figua 1: Diagama esquemático de um elevado e suas pates. No elevado alvo do pojeto, a

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

Primeiro simulado de FTI (preparatório para a P1)

Primeiro simulado de FTI (preparatório para a P1) Simulado P1 / 1º.Semeste 006 / Tumas D e 4C Pimeio simulado de FTI (pepaatóio paa a P1) Instuções: Em uma folha de papel almaço coloque seu nome, númeo, tuma e assine. Resolva detalhadamente cada questão.

Leia mais

2.6 RETRODISPERSÃO DE RUTHERFORD. 2.6.1 Introdução

2.6 RETRODISPERSÃO DE RUTHERFORD. 2.6.1 Introdução Capítulo Técnicas de Caacteização Estutual: RS.6 RETRODISPERSÃO DE RUTHERFORD.6. Intodução De modo a complementa a análise estutual das váias amostas poduzidas paa este tabalho, foi utilizada a técnica

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia MÓDULO 03 - PROPRIEDADES DO FLUIDOS Bibliografia 1) Estática dos Fluidos Professor Dr. Paulo Sergio Catálise Editora, São Paulo, 2011 CDD-620.106 2) Introdução à Mecânica dos Fluidos Robert W. Fox & Alan

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

Capítulo III Lei de Gauss

Capítulo III Lei de Gauss ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 3.1 Fluxo eléctico e lei de Gauss Capítulo III Lei de Gauss A lei de Gauss aplicada ao campo eléctico, pemite-nos esolve de

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

= (1) ρ (2) f v densidade volumétrica de forças (N/m 3 ) ρ densidade volumétrica de carga (C/m 3 )

= (1) ρ (2) f v densidade volumétrica de forças (N/m 3 ) ρ densidade volumétrica de carga (C/m 3 ) Analise de Esfoços Eletomecânicos em Tansfomadoes Amofos ataés de Modelagem Computacional compaando à Noma IEC 60076-5 W.S. onseca, GSEI, UPA, Belém, PA, Basil; M.Sc A.C. Lopes, UNIAP, Macapá, AP, Basil;

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

Prova Teórica. Terça-feira, 5 de Julho de 2005

Prova Teórica. Terça-feira, 5 de Julho de 2005 36 a Olimpíada Intenacional de Física. Salamanca (Espanha) 5 Pova Teóica Teça-feia, 5 de Julho de 5 Po favo, le estas instuções antes de inicia a pova:. O tempo disponível paa a pova teóica é de 5 hoas..

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL MOVIMENOS CURVILÍNEOS LANÇAMENO HORIZONAL COM RESISÊNCIA DO AR DESPREZÁVEL ata-se de um moimento composto po dois moimentos. Um deles obsea-se no plano hoizontal (componente hoizontal) e o outo no plano

Leia mais

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO NÁLIE D IBILIDDE D REDE DE TRNPORTE E DITRIBUIÇÃO. Maciel Babosa Janeio 03 nálise da iabilidade da Rede de Tanspote e Distibuição. Maciel Babosa nálise da iabilidade da Rede de Tanspote e Distibuição ÍNDICE

Leia mais

Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente.

Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente. Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente. Bocais e Difusores São normalmente utilizados em motores

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Pofissional SENAI Plínio Gilbeto Köeff MECÂNICA TÉCNICA Pofesso: Dilma Codenonsi Matins Cuso: Mecânica de Pecisão São Leopoldo 2009 1 SUMÁRIO

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais