Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida...

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida..."

Transcrição

1 Curso: Pós-graduação / MBA Campus Vrtual Cruzero do Sul Professor Resposável: Carlos Herque de Jesus Costa Professores Coteudstas: Carlos Herque e Douglas Madaj UNIVERSIDADE CRUZEIRO DO SUL Cohecedo a teora I Dscpla: Métodos Quattatvos Aplcados a Gestão Professores Tutores: Carlos Herque e Douglas Madaj MATEMÁTICA FINANCEIRA 1.2 Í N D I C E Séres de Pagametos ou Redas Reda Imedata ou Postecpada Reda Atecpada Reda Dferda Bblografa SÉRIES DE PAGAMENTOS OU RENDAS Chamamos de redas ou séres de pagametos os captas que dspomos perodcamete para algum fm. Pagar uma prestação, aplcar a poupaça ou fazer algum vestmeto são os exemplos mas comus de redas. Classfcação: Termos da reda: sucessão de depóstos ou de prestações. Período da reda: tervalo de tempo que decorre etre os vecmetos de dos termos cosecutvos. Redas certas ou audades: ocorrem quado o úmero de termos, seus vecmetos e seus respectvos valores podem ser prefxados (você cohece as parcelas). Exemplo: Compra de bes a prazo. 1

2 Redas aleatóras: ocorrem quado pelo meos um dos elemetos ão pode ser prevamete determado. Exemplo: Pagameto de um seguro de vda (o úmero de termos é determado). Quato à data do vecmeto do prmero termo, uma reda uforme pode ser: o Imedata ou Postecpada: ocorre quado o vecmeto do prmero termo se dá o fm do prmero período a cotar da data zero, sto é, da data da assatura do cotrato. Assm, o vecmeto do últmo termo ocorre o fm do período. Exemplo: Compra de um bem a prazo, em prestações mesas, pagado a prmera prestação um mês após a assatura do cotrato. (30/60/90...) o Atecpada: ocorre quado o vecmeto do prmero termo se dá a data zero. O vecmeto do últmo termo ocorre o íco do período. Exemplo: Depósto mesal de uma mesma quata em cadereta de poupaça, durate um prazo determado. (0/30/60/...) o Dferda: ocorre quado o vecmeto do prmero termo se dá o fm de um determado úmero de períodos, a cotar da data zero. O vecmeto do últmo termo ocorre o fm de c + períodos. Exemplo: compra de um bem a prazo, em prestações mesas, pagado a prmera prestação o fm de um determado úmero de meses. Observação: A sére uforme é a sére de pagametos mas comum a prátca. Resumdo, as séres de pagametos uformes podem ser: IMEDIATA ou POSTECIPADA (Sem Etrada, 0 +, END), ANTECIPADA (Com Etrada, 1 +, BEGIN) ou DIFERIDA (Com Carêca, c + ). 2

3 Teclas 1 e Fuções Faceras a Calculadora HP12C, que utlzaremos os próxmos exemplos: * - calcula o prazo, período; * - calcula a taxa; * - calcula o valor presete (captal); * - calcula a prestação (parcelas); * - calcula o valor futuro (motate); * CHS - troca um sal de um úmero de postvo para egatvo ou vce e versa; * g [END] - para cálculos de séres uformes de pagametos postecpados (0 + ); * g [BEG] - para cálculos de séres de pagametos atecpados (1 + ); * f [FIN] - lmpa as fuções faceras; * f [REG] - lmpa todas as fuções. OBS: Para efetuarmos cálculos de uma prestação ou facameto com etrada a HP-12C, será ecessáro troduzr o dsplay da calculadora a fução BEGIN, que é faclmete obtda através da sequêca de teclas g [BEG], ou seja, BEGIN = pagameto o íco do período. 1 As termologas (teclas a HP-12-C) usadas acma vêm do glês: Iterest que sgfca Taxa ou Juro; Preset Value que sgfca Valor Presete ou Captal Ical; Future Value que sgfca Valor Futuro ou Motate; Number que sgfca Número de Períodos; CHS Chage Sg que sgfca Mudar o Sal servdo para troduzr ou trar um sal egatvo de um úmero; Paymet que sgfca Pagameto ou Recebmeto; END que sgfca Fm servdo para cálculos de séres de pagametos Postecpados ( 0 + ) e BEG Beg que sgfca Começar servdo para cálculos de séres de pagametos Atecpados ( 1 + ). 3

4 RENDA IMEDIATA OU POSTECIPADA (SEM ENTRADA 0/30/60/... FUNÇÃO END NA HP-12C) Algumas fórmulas para o cálculo algébrco: Ode: = Valor Futuro = Valor da Prestação = Taxa = Prazo da prestação L = Logartmo Neperao (1 ). 1 LN. 1 LN. (1 ) LN.. LN (1 ) 1 e

5 EXEMPLO 1: Um automóvel custa à vsta o valor de R$ ,00 (), e pode ser facado em 72 () parcelas mesas guas, sem etrada, com a taxa de 2,1% () ao mês. Determar o valor das prestações (). Solução: Dados: Reda Imedata ou Postecpada (END): sem etrada = R$ ,00 = 72 meses = 2,1% ao mês ou 0,021 ao mês =? 1ª Resolução: Calculadora Facera HP 12C f [REG] CHS etrado com o valor à vsta do carro egatvo 72 etrado com o prazo de facameto 2,1 etrado com a taxa de facameto calculado o motate fal (depóstos + juros) R$ 1.233,94 2ª Resolução: Algébrca (Fórmula) ,021 x 0, x , , x 0, x 4, x 0, ,94 5

6 EXEMPLO 2: Uma pessoa deposta em uma facera, o fm de cada mês, durate 5 () meses, a quata de R$ 100,00 (). Calcule o motate () da reda, sabedo que essa facera paga juros compostos de 2% () ao mês, captalzados mesalmete. Solução: Dados: Reda Imedata (END): o fm de cada mês = R$ 100,00 = 5 meses = 2% ao mês ou 0,02 ao mês =? 1ª Resolução: Calculadora Facera HP 12C f [REG] 100 CHS etrado com o valor da quata mesal egatvo 5 prazo da aplcação 2 taxa da aplcação calculado o motate fal (depóstos + juros) R$ 520,40 2ª Resolução: Algébrca (Fórmula) x 1 0,02 0, , x 0,02 x 5, ,40 6

7 RENDA ANTECIPADA (COM ENTRADA): As séres uformes de pagametos atecpadas são aquelas em que o prmero pagameto ocorre a data focal 0 (zero). Este tpo de sstema de pagameto é também chamado de sstema de pagameto com etrada (1+ ), ou seja, a reda atecpada ocorre quado o vecmeto do prmero termo se dá a data zero e o vecmeto do últmo termo ocorre o íco do período. Esquemas de Fluxo de Caxa: a) Do poto de vsta de quem va receber os pagametos: *...* Ode: = pagametos ou prestação b) Do poto de vsta de quem va fazer os pagametos: *...* Ode: = pagametos ou prestação Algumas fórmulas (cálculo algébrco): (1 ) (1 ) Ode: = Valor Futuro = Valor da Prestação = Taxa = Prazo da prestação 7

8 EXEMPLO 3: Um automóvel que custa à vsta R$ ,00 () pode ser facado em 36 () pagametos guas; com o prmero pagameto o ato da compra, sabedo-se que a taxa de facameto é de 1,99% () ao mês, calcule o valor da prestação mesal deste facameto (). Solução: Dados: Reda Imedata (BEGIN): com o prmero pagameto o ato da compra = R$ ,00 = 36 meses = 1,99% ao mês ou 0,0199 ao mês =? 1ª Resolução: Calculadora Facera HP 12C f [REG] g 7 [BEGIN] cálculo de prestações com etrada CHS etrado com o valor da quata mesal egatvo 36 1,99 calculado o valor da parcela R$ 683,62 2ª Resolução: Algébrca (Fórmula) 1. (1 ) ,0199 x 0, x 36 (1 0,0199) 1 0, x 1, x 0, ,62 8

9 RENDA DIFERIDA OU SÉRIE UNIFORME DE PAGAMENTOS DIFERIDA (COM PRAZO DE CARÊNCIA): São aquelas em que os períodos ou tervalos de tempo etre as prestações () ocorrem pelo meos a partr do 2º período, ou seja, se cosderarmos um período qualquer como sedo (), o período segute será (+1), o próxmo será (+2) e assm sucessvamete. Podemos dzer também que são aquelas em que o prmero termo é exgível a partr de certo período de carêca. Observe o dagrama de fluxo de caxa Algumas fórmulas (cálculo algébrco): 1 1. c 1 (1 ) LN 1.( 1 1 )..( 1 ) 1 LN 1 c 1 c 1. Ode: = Valor Futuro = Valor da Prestação = Taxa = Prazo da prestação L = Logartmo Neperao 9

10 EXEMPLO 4: Uma mercadora ecotra-se em promoção e é comercalzada em 5 () prestações guas de R$ 150,00 (); a loja está oferecedo ada uma carêca de 3 (c) meses para o prmero pagameto. Determe o valor à vsta () desta mercadora, sabedo-se que a taxa de juros pratcada pela loja é de 3% () ao mês. Solução: Dados: Reda Dferda (BEGIN): a loja está oferecedo ada uma carêca = 150,00 = 5 meses c = 3 meses 3 meses usar o modo [BEGIN] a HP12C 3 1 = 2 meses usar o modo [END] a HP12C = 3% ao mês =? 1ª Resolução: Calculadora Facera HP 12C MODO [BEGIN] UTILIZANDO CARÊNCIA = 3 MESES : f [REG] - LIMPAR REGISTROS g 7 BEGIN - SÉRIE DE PAGAMENTO ANTECIPADA ENTRANDO COM O VALOR DA PARCELA 5 - PRAZO 3 - JUROS P V 707,56-1º VALOR PRESENTE DA MERCADORIA CHS - 1º VALOR DA MERCADORIA VIRA VALOR FUTURO 0 - VALOR DA PARCELA DA CARÊNCIA 3 - PERÍODO DE CARÊNCIA PARA O MODO [BEGIN] 647,52 - VALOR À VISTA DA MERCADORIA 10

11 MODO [END] UTILIZANDO CARÊNCIA 3 MESES 1 MÊS = 2 MESES: f [REG] - LIMPAR REGISTROS g 8 END - SÉRIE DE PAGAMENTO POSTECIPADA ENTRANDO COM O VALOR DA PARCELA 5 - PRAZO 3 - JUROS P V 686,96-1º VALOR PRESENTE DA MERCADORIA CHS - 1º VALOR DA MERCADORIA VIRA VALOR FUTURO 0 - VALOR DA PARCELA DA CARÊNCIA 2 - PERÍODO DE CARÊNCIA PARA O MODO [END] 647,52 - VALOR À VISTA DA MERCADORIA 2ª Resolução: Algébrca (Fórmula) 1 1. c 1 (1 ) 150 x 4, , , x 0, (1 0,03) 5 647,52 11

12 BIBLIOGRAFIA: GIMENEZ, C.M., Matemátca Facera com HP12C e Excel, São Paulo: PEARSON, SAMANEZ, C.P., Matemátca Facera, 4. ed., São Paulo: PEARSON, SCIPIONE, J.T., Matemátca Facera, São Paulo: PEARSON, COMPLEMENTAR: BRANCO, A.C.C., Matemátca Facera Aplcada: Método Algébrco, HP-12C, Mcrosoft Excel. São Paulo: Poera Thomso Learg, VERAS, L.L., Matemátca Facera: Uso de Calculadoras Faceras Aplcações ao Mercado Facero. 4. ed. São Paulo: Atlas, OBS.: VEJA TAMBÉM AS RESOLUÇÕES DOS EXEMPLOS DADOS POR MEIO DA PLANILHA DE CÁLCULO EM EXCEL, VOCÊ ENCONTRARÁ O ARQUIVO EM EXCEL LOGO ABAIXO DESTE DOCUMENTO NO MESMO ITEM DA UNIDADE CONHECENDO A TEORIA NÃO SE ESQUEÇA DE ACESSAR O ITEM PRATICANDO DESTA UNIDADE... VOCÊ ENCONTRARÁ NOSSA ATIVIDADE AVALIATÓRIA ELETRÔNICA... REALIZAMOS UM QUIZ ELETRÔNICO PARA VOCÊ ACESSAR E RESPONDER QUESTÕES SOBRE SÉRIES DE PAGAMENTO NÃO DEIXE DE PARTICIPAR!!! OBS: Caso teha dúvdas, quato ao coteúdo e/ou exemplos resolvdos, coloque-as dretamete o tem SANANDO DÚVIDAS, desta Udade. 12

13 13

MATEMÁTICA FINANCEIRA. UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagamentos ou Rendas)

MATEMÁTICA FINANCEIRA. UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagamentos ou Rendas) 1 UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagametos ou Redas) Elemetos ou Classificação: - Redas: Sucessão de depósitos ou de prestações, em épocas diferetes, destiados a formar

Leia mais

Matemática Financeira II

Matemática Financeira II Matemática Financeira II Material Teórico Séries de Pagamentos ou Rendas Responsável pelo Conteúdo: Prof. Ms. Carlos Henrique de J.Costa Revisão Textual: Profa. Esp. Vera Lidia de Sa Cicaroni Unidade

Leia mais

4 Capitalização e Amortização Compostas

4 Capitalização e Amortização Compostas 4.1 Itrodução Quado queremos fazer um vestmeto, podemos depostar todos os meses uma certa quata em uma cadereta de poupaça; quado queremos comprar um bem qualquer, podemos fazê-lo em prestações, a serem

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

( Sistema Francês de Amortização )

( Sistema Francês de Amortização ) NA PRÁTICA A TEORIA É A MESMA ( Sstema Fracês de Amortzação ) Em um Cogresso, um Grupo de Professores e Autores composto por Admstradores, Ecoomstas, Cotadores e, todos Pertos Judcas, apresetam os segutes

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Matemática Financeira

Matemática Financeira 1)Um vestdor aplcou R$6,, gerado uma remueração de R$3, ao fal de um período de um ao (36 das). Calcular a taxa de juros paga a operação. = J/ = 3/6 =, ou % ou 63 = 6 (1+ 1) 63 = 6 + 6 63 6 = 6 3 = 6 =

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Apêndice. Uso de Tabelas Financeiras

Apêndice. Uso de Tabelas Financeiras Apêdce C Uso de Tabelas Faceras 1. INTRODUÇÃO...2 2. SIMBOLOGIA ADOTADA E DIAGRAMA PADRÃO...2 3. RELAÇÃO ENTRE PV E FV...2 3.1. DADO PV ACHAR FV: FATOR (FV/PV)...3 3.1.1. EXEMPLOS NUMÉRICOS...5 3.2. DADO

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA CENTRO: GESTÃO ORGANIZACIONAL CÁLCULOS DE FINANÇAS MATEMÁTICA FINANCEIRA Semestre: A/2008 PROFESSOR: IRANI LASSEN CURSO: ALUNO: SUMÁRIO CÁLCULOS DE FINANÇAS INTRODUÇÃO...3. OBJETIVO:...3.2 FLUXO DE CAIXA...4.3

Leia mais

Métodos Quantitativos Aplicados a Contabilidade

Métodos Quantitativos Aplicados a Contabilidade Isttuto de Pesqusas e Estudos Cotábes MBA GESTÃO CONTÁBIL DE EMPRESAS INTEGRADA À CONTABILIDADE INTERNACIONAL Métodos Quattatvos Aplcados a Cotabldade Professor Reato Ragel Felpe Noroha Sumáro. Itrodução...

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

Métodos Quantitativos Aplicados a Gestão

Métodos Quantitativos Aplicados a Gestão Métodos Quantitativos Aplicados a Gestão Sistemas de Amortização de Empréstimos e Financiamentos Responsável pelo Conteúdo: Prof. Carlos Henrique de Jesus Costa Prof. Douglas Mandaji Unidade Sistemas

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

OPERAÇÃO 1 OPERAÇÃO 2 OPERAÇÃO 3 OPERAÇÃO mês 10% a.m. 100,00 110,00 121,00

OPERAÇÃO 1 OPERAÇÃO 2 OPERAÇÃO 3 OPERAÇÃO mês 10% a.m. 100,00 110,00 121,00 Módulo 7 J uros Compostos Os juros compostos são cohecidos, popularmete, como juros sobre juros. 7.1 Itrodução: Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

1.1 Apresentação. do capítulo

1.1 Apresentação. do capítulo apítulo Matemátca Facera. Apresetação do capítulo A Matemátca Facera trata da comparação de valores moetáros que estão dspersos ao logoo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária.

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária. 1 UTOR: Emeta Luz Herque M da Slva 1 Defções de razão e proporção, propredades; Graduado em Matemátca e habltado em ísca pelo UNIEB 2 Gradezas dretamete proporcoas e versamete proporcoas, Regra de três;

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

( ) Editora Ferreira - Toque de Mestre. Olá Amigos!

( ) Editora Ferreira - Toque de Mestre. Olá Amigos! Olá Amgos! Hoje coloco à dsposção de vocês aqu a seção Toque de Mestre da Edtora Ferrera (www.edtoraferrera.com.br) as questões de Matemátca Facera cobradas o últmo cocurso da axa Ecoômca Federal (EF),

Leia mais

Matemática Financeira e Suas Aplicações Alexandre Assaf Neto 8ª Edição Capítulo 1 Conceitos Gerais e Juros Simples

Matemática Financeira e Suas Aplicações Alexandre Assaf Neto 8ª Edição Capítulo 1 Conceitos Gerais e Juros Simples Matemátca Facera e Suas Aplcações Aleadre Assaf Neto 8ª Edção Resolução dos Eercícos Propostos Capítulo Cocetos Geras e Juros Smples ),44 a), ou,% a.m.,68 b), 7 ou,7% a.m. 4,4 c), 9 ou,9% a.m. 6,4 d),

Leia mais

09/03/2014 RETORNO. I Conceitos Básicos. Perguntas básicas. O que é matemática financeira? Por que estudar matemática financeira?

09/03/2014 RETORNO. I Conceitos Básicos. Perguntas básicas. O que é matemática financeira? Por que estudar matemática financeira? 09/0/04 I Cocetos Báscos Matemátca Facera Aplcaa ao Mercao Facero e e Captas Proessor Roalo Távora Pergutas báscas O que é matemátca acera? Por que estuar matemátca acera? = RETORNO Matemátca Facera Aplcaa

Leia mais

MATEMÁTICA FINANCEIRA UNIDADE IX DESCONTOS

MATEMÁTICA FINANCEIRA UNIDADE IX DESCONTOS UNIDADE IX DESCONTOS Itrodução: Em cotabilidade, chama-se descoto a operação bacária de etrega do valor de um título ao seu detetor, ates do prazo do vecimeto, e mediate o pagameto de determiada quatia

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Métodos Quantitativos Aplicados a Gestão

Métodos Quantitativos Aplicados a Gestão Métodos Quantitativos Aplicados a Gestão Introdução a Matemática Financeira Responsável pelo Conteúdo: Prof. Carlos Henrique de Jesus Costa Prof. Douglas Mandaji Unidade Introdução a Matemática Financeira

Leia mais

Capítulo 1 Matemática Financeira

Capítulo 1 Matemática Financeira apítulo Matemátca Facera. Apresetação do capítulo A matemátca facera trata da comparação de valores moetáros ao logo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas de vestmeto e

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/FAFIPA - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Outubro/203 UNESPAR/FAFIPA - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA ATRAVÉS

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

Caderno de Fórmulas. Swap

Caderno de Fórmulas. Swap Swap Elaboração: Abrl/25 Últma Atualzação: 5/4/216 Apresetação O adero de Fórmulas tem por objetvo oretar os usuáros do Módulo de, a compreesão da metodologa de cálculo e dos crtéros de precsão usados

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

NÚMEROS COMPLEXOS. z = a + bi,

NÚMEROS COMPLEXOS. z = a + bi, NÚMEROS COMPLEXOS. DEFINIÇÃO No cojuto dos úmeros reas R, temos que a = a. a é sempre um úmero ão egatvo para todo a. Ou seja, ão é possível extrar a ra quadrada de um úmero egatvo em R. Dessa mpossbldade

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

TABELA PRICE NÃO EXISTE *

TABELA PRICE NÃO EXISTE * TABELA PRICE NÃO EXISTE * Ro, Novembro / 203 * Matéra elaborada por Pedro Schubert. Admstrador, Sóco Fudador da BMA Iformátca & Assessorameto Empresaral Ltda. TABELA PRICE NÃO EXISTE ÍNDICE Pága - SISTEMA

Leia mais

Cap.20 Avaliação Econ. Financ. de Projetos de Inv. Sumário. Jim Lane. $20 mi. Gordon Letwin $20 mi Paul Allen $25 bi

Cap.20 Avaliação Econ. Financ. de Projetos de Inv. Sumário. Jim Lane. $20 mi. Gordon Letwin $20 mi Paul Allen $25 bi Pol-UFRJ/25.1 Cap.2 Avalação Eco. Fac. de Projetos de Iv. Ecooma Carlos Nemer 3ª Ed. Capítulo 2 Avalação Ecoômco Facera de Projetos de Ivestmeto Steve Wood $15 m Bob O' Rear $1 mllo Bob Wallace $5 m Bob

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Principais conceitos de Matemática Financeira

Principais conceitos de Matemática Financeira Principais conceitos de Matemática Financeira A aula 1 destina-se a discutir de forma sucinta os conceitos básicos da matemática financeira. O estudo desta seção é de fundamental importância como preparação

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

IAG. Definições: O valor do dinheiro no tempo Representação: (100) 100. Visualização: Fluxo de Caixa B&A B&A

IAG. Definições: O valor do dinheiro no tempo Representação: (100) 100. Visualização: Fluxo de Caixa B&A B&A IAG Matemática Fiaceira Fluxo de Caixa O valor do diheiro o tempo Represetação: Saídas Etradas (100) 100 Prof. Luiz Bradão 2012 1 2 Visualização: Fluxo de Caixa 0 1 2 3 4 5 Defiições: Fluxo de Caixa VP

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Séries de Pagamentos

Séries de Pagamentos Séries de Pagamentos GST0054 MATEMÁTICA FINANCEIRA Prof. Antonio Sérgio antonio.sergio@estacio.br GST0045 Matemática Financeira 1 São as prestações que você já conhece: Carnê da loja; Leasing do carro,

Leia mais

Matemática Financeira

Matemática Financeira UNIVERSIDADE DE SÃO PAULO Faculdade de Ecoomia, Admiistração e Cotabilidade de Ribeirão Preto - FEA-RP Matemática Fiaceira Profa. Dra.Luciaa C.Siqueira Ambrozii Juros Compostos 1 Juros compostos Cosidera

Leia mais

Curso de An lise de Fluxo de Caixa

Curso de An lise de Fluxo de Caixa Curso de A lse de Fluxo de Caxa SUMÁRIO PROGRESSÕES... 0. FÓRMULAS BÁSICAS... 0.. Progressões artmétcas... 0..2 Progressões geométrcas... 02.2 EXERCÍCIOS SUGERIDOS... 02 2 CONCEITOS DE MATEMÁTICA FINANCEIRA...

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Campus Virtual Cruzeiro do Sul Í N D I C E. Demanda de Mercado Atividades Práticas com Demanda de Mercado... 05

Campus Virtual Cruzeiro do Sul Í N D I C E. Demanda de Mercado Atividades Práticas com Demanda de Mercado... 05 Curso: ós-graduação / MBA Campus Virtual Cruzeiro do Sul - 2009 rofessor Responsável: Carlos Henrique de Jesus Costa rofessores Conteudistas: Carlos Henrique e Douglas Mandaji UNIVERSIDADE CRUZEIRO DO

Leia mais

Fazer teste: AS_I MATEMATICA FINANCEIRA 5º PERIODO UNIFRAN

Fazer teste: AS_I MATEMATICA FINANCEIRA 5º PERIODO UNIFRAN Fazer teste: AS_I MATEMATICA FINANCEIRA 5º PERIODO UNIFRAN Pergunta 1 João recebeu um aumento de 10% e com isso seu salário chegou a R$320,00. O salário de João antes do aumento era igual a? A. R$ 188,00

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

reprovado (vale contínua. das aulas. Saraiva ; br). uma entrada de 25% ( ) a) 81,97 ( ) b) 79,37 ( ) c) 76,92 ( ) d) 74,63 ( ) e) 72,46

reprovado (vale contínua. das aulas. Saraiva ; br). uma entrada de 25% ( ) a) 81,97 ( ) b) 79,37 ( ) c) 76,92 ( ) d) 74,63 ( ) e) 72,46 1 www/campossalles.edu.br Cursos de: Admstração, Cêcas Cotábes, Dreto, Pedagoga, Sstemas de Iformação, e Tecológcos - telefoe (11) 3649-70-00 Cálculo Atuaral 014 Professor Dorval Boora Júor Lsta de teora

Leia mais

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA Coceito de taxa de juros Taxa de juro é a relação etre o valor dos juros pagos (ou recebidos) o fial de um determiado período de tempo e o valor do capital

Leia mais

FEA RP - USP. Matemática Financeira 3 - Séries e Avaliação de Investimentos

FEA RP - USP. Matemática Financeira 3 - Séries e Avaliação de Investimentos FEA RP - USP Matemática Financeira 3 - Séries e Avaliação de Investimentos Prof. Dr. Daphnis Theodoro da Silva Jr. Daphnis Theodoro da Silva Jr 1 Séries uniformes - Juros Compostos Series uniformes são

Leia mais

MatemáticaFinanceira

MatemáticaFinanceira Capítulo MatemáticaFinanceira Anuidadesouséries Adriano Leal Bruni albruni@minhasaulas.com.br Para saber mais... Todo o conteúdo dos slides pode ser visto nos meus livros de Matemática Financeira, publicados

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

MATRIZ - Matemática Financeira Aplicada - 11/05 a 03/06/2015

MATRIZ - Matemática Financeira Aplicada - 11/05 a 03/06/2015 MATRIZ - Matemática Financeira Aplicada - 11/05 a 03/06/2015 EVERTON LUIZ MACHADO - RU: 1188222 Nota: 100 PROTOCOLO: 20150523118822227063B Disciplina(s): Matemática Financeira Data de início: 23/05/2015

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Setembro/203 UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

PROFESSOR PAULO CÉSAR

PROFESSOR PAULO CÉSAR PROFESSOR PAULO CÉSAR Podem ser de dois tipos básicos: registradores de séries uniformes e registradores de fluxos de caixa ( séries não uniformes ). A seguir são apresentadas as principais funções financeiras

Leia mais

UMA PROPOSTA PARA O ESTUDO DE MATEMÁTICA FINANCEIRA NO ENSINO MÉDIO A PARTIR DA CONSTRUÇÃO DE PLANILHAS ELETRÔNICAS

UMA PROPOSTA PARA O ESTUDO DE MATEMÁTICA FINANCEIRA NO ENSINO MÉDIO A PARTIR DA CONSTRUÇÃO DE PLANILHAS ELETRÔNICAS UMA PROPOSTA PARA O ESTUDO DE MATEMÁTICA FINANCEIRA NO ENSINO MÉDIO A PARTIR DA CONSTRUÇÃO DE PLANILHAS ELETRÔNICAS Marcelo Salvador Cóser Flho Uversdade Federal do Ro Grade do Sul Isttuto de Matemátca

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Operações Financeiras (Ativas e Passivas) Operações Financeiras Ativas. Operações Financeiras Ativas. Operações Financeiras Ativas

Operações Financeiras (Ativas e Passivas) Operações Financeiras Ativas. Operações Financeiras Ativas. Operações Financeiras Ativas Operações Fiaceiras (Ativas e Passivas) Operações Fiaceiras Ativas 1 2 Defiição As aplicações fiaceiras represetam excessos de dispoibilidades da empresa, em relação às ecessidades imediatas de desembolso,

Leia mais

Matemática Financeira

Matemática Financeira Uversdade do Sul de Sata Catara Matemátca Facera Dscpla a modaldade a dstâca Palhoça UsulVrtual 2010 Crédtos Uversdade do Sul de Sata Catara Campus UsulVrtual Educação Superor a Dstâca Aveda dos Lagos,

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a.

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a. JUROS SIMPLES 1. Calcule os juros simples referetes a um capital de mil reais, aplicado em 4 aos, a uma taxa de 17% a.a. 2. Calcule o capital ecessário para que, em 17 meses, a uma taxa de juros simples

Leia mais

ENGENHARIA ECONÔMICA. Capítulo 6 Séries Uniformes. Prof. Msc. Roberto Otuzi de Oliveira. Três objetivos do capítulo

ENGENHARIA ECONÔMICA. Capítulo 6 Séries Uniformes. Prof. Msc. Roberto Otuzi de Oliveira. Três objetivos do capítulo ENGENHARIA ECONÔMICA Prof. Msc. Roberto Otuzi de Oliveira Capítulo 6 Séries Uniformes Três objetivos do capítulo Entender o DFC em séries Saber diferenciar séries postecipadas e antecipadas Compreender

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Série de n pagamentos, periódicos e postecipados (sem entrada)

Série de n pagamentos, periódicos e postecipados (sem entrada) Séries de recueração de caitais É a série que mostra o retoro do caital através de agametos iguais e eriódicos. Este retoro ode ser de um emréstimo ou da aquisição de um bem. Exemlo: Comra arcelada com

Leia mais

RENDAS CERTAS OU ANUIDADES

RENDAS CERTAS OU ANUIDADES RENDAS CERTAS OU ANUIDADES Matemática Fiaceira/Mário Nas aplicações fiaceiras o capital pode ser pago ou recebido de uma só vez ou através de uma sucessão de pagametos ou de recebimetos. Quado o objetivo

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

A MODELAGEM MATEMÁTICA NA PREVISÃO DE RECURSOS PARA A VIDA UNIVERSITÁRIA DE UMA CRIANÇA.

A MODELAGEM MATEMÁTICA NA PREVISÃO DE RECURSOS PARA A VIDA UNIVERSITÁRIA DE UMA CRIANÇA. A MODELAGEM MATEMÁTICA NA PREVIÃO DE RECURO PARA A VIDA UNIVERITÁRIA DE UMA CRIANÇA. Karla Jaquele ouza Tatsch Lozcler Mara Moro dos atos Valde Bsog 3 Resumo Nesse trabalho utlza-se a Modelagem Matemátca

Leia mais

MATEMÁTICA FINANCEIRA Í N D I C E

MATEMÁTICA FINANCEIRA Í N D I C E MATEMÁTICA FINANCEIRA Í N D I C E Introdução... 01 JUROS (J)... 02 Regimes de Capitalização... 02 JUROS SIMPLES... 02 Capital (C) ou Valor Presente (VP)... 02 Taxa (i)... 02 Cálculo do Juro Simples...

Leia mais

1. As parcelas são pagas ao final de cada período. Neste caso denomina-se pagamento postecipado.

1. As parcelas são pagas ao final de cada período. Neste caso denomina-se pagamento postecipado. PARTE 5 SÉRIE UNIFORME DE PAGAMENTOS CONTEÚDO PROGRAMÁTICO 1. Introdução 2. Prestações e Valor presente 3. Prestações e Valor futuro 4. Renda perpétua 5. Exercícios Resolvidos 1. Introdução Quando se contrai

Leia mais

Matemática Financeira. Resumo Teórico

Matemática Financeira. Resumo Teórico Matemática Financeira Resumo Teórico Aprendizados 1. Variáveis 2. Calculadora financeira HP 12c 3. Diagramas de fluxo 4. Convenções de tempo 5. Juros simples 6. Juros compostos 7. Juros contínuos 8. Taxas

Leia mais

Matemática Financeira. Evanivaldo Castro Silva Júnior

Matemática Financeira. Evanivaldo Castro Silva Júnior Evaivaldo Castro Silva Júior 1 3. Regime de Juros Compostos 2 * Coceitos fudametais em capitalização composta * Regime de Juros ode os juros são calculados a partir do capital iicial de cada período *

Leia mais

Amortização ou parcela de amortização É a parte embutida na prestação que devolve o valor principal do empréstimo ou financiamento

Amortização ou parcela de amortização É a parte embutida na prestação que devolve o valor principal do empréstimo ou financiamento 1. SISTEMAS DE AMORTIZAÇÃO DE EMPRÉSTIMOS E FINANCIAMENTOS Estudaremos este capítulo os vários sistemas de amortização de empréstimos e fiaciametos, sua metodologia e cálculos para determiação do saldo

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO DEPARTAMENTO DE ENGENHARIAS E TECNOLOGIA Plano de Ensino

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO DEPARTAMENTO DE ENGENHARIAS E TECNOLOGIA Plano de Ensino Plao de Eso Uversdade Federal do Espírto Sato Campus: São Mateus Curso: Egehara de Produção Departameto Resposável: Departameto de Egeharas e Tecologa Data de Aprovação (Art. º 91): Docete resposável:

Leia mais

Caderno de Fórmulas. Títulos Públicos - Cetip 21

Caderno de Fórmulas. Títulos Públicos - Cetip 21 Cadero de Fórmulas Títulos Públcos - Cetp 21 Últma Atualzação: 21/06/2017 Cadero de Fórmulas Apresetação Títulos Públcos E ste Cadero de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de

Leia mais

Capitulo 3 Resolução de Exercícios

Capitulo 3 Resolução de Exercícios S C J J C i FORMULÁRIO Regime de Juros Compostos S C i C S i S i C S LN C LN i 3.7 Exercícios Propostos ) Qual o motate de uma aplicação de R$ 00.000,00 aplicados por um prazo de meses, a uma taxa de 5%

Leia mais

COM A HP 12 C. 9º encontro

COM A HP 12 C. 9º encontro MATEMÁTICA FINANCEIRA COM A HP 12 C 9º encontro 1 admfreeeork@yahoo.com.br 16 981057062 (Tim, WhatsApp) Blog admfreework.wordpress.com Facebook admfreework 2 3 Leasing = Arrendamento Mercantil Operação

Leia mais