Prof. Eugênio Carlos Stieler

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prof. Eugênio Carlos Stieler"

Transcrição

1 Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete de um ou mas recebmetos (etradas de caa). Como ormalmete temos um fluo de caa cal (o mometo zero ) que represeta o valor do vestmeto, ou do empréstmo ou do facameto, e dversos fluos futuros de caa represetado os valores das recetas, ou das prestações, a equação que os dá a taa tera de retoro (TIR) pode ser escrta como segue: 0 = j= e de ode se deduz que: j (+ j = (+ + ( (+ j 0 (+ ) = j j= 0 O eemplo a segur dea claro esse coceto.. Determar a taa tera de retoro correspodete a um empréstmo de $.000,00 a ser lqudado em três pagametos mesas de $ 00,00, $ 00,00 e $ 400,00. 0 fluo de caa correspodete a essa operação, tomado-se como referêca o doador de recursos, é represetado como segue: A solução desse problema mplca resolver a segute equação matemátca: em que é deomado taa tera de retoro. A solução dessa equação somete pode ser obtda pelo processo teratvo, ou seja, por tetatva e erro. Assm, vamos admtr calmete uma taa qualquer que julgarmos próma da taa procurada. Dgamos 6%. Com base essa taa, vamos calcular o valor presete dos três pagametos. P = 00,00 00,00 400, (,06) (,06) (,06) 00,00 00,00 400, = + + = ) ( +.06,86 Como o valor presete desses pagametos é superor a $.000,00, deduz-se logo que a TIR é maor que 6%. Vejamos para %: 00,00 00,00 400,00 P= + + (,) (,) (,) = 968,6 Portato, a TIR é uma taa stuada etre 6% e %. A partr daqu, como teros duas taas de referêca, o mas dcado é utlzarmos o processo de terpolação lear, como segue: Taa Itera de Retoro

2 Estudar sem racocar é trabalho 009/ (.06,86 968,6): (6% %) (.000,00 968,6): ( %),44( %) % = =,6 9,0 em que é a taa tera de retoro procurada. A partr da, podemos escrever: = %,6% = 9,% Vamos verfcar o valor presete para essa taa: P = 00,00 00,00 400, = (,09) (,09) (,09) 968,6 A taa procurada é um pouco meor que essa. A solução é proceder à ova terpolação, tomado como base à taa ateror. Vejamos: (998,4 968,6) : (9,% %) (.000,00 998,4) : ( 9,%),8 (,6%) 9,% = = 0,09 9,86 = 9,% 0,09% = 9,6% E para essa taa teros o segute valor presete: P = 00,00 00,00 400, = (,096) (,096) (,096).000,09 Rgorosamete, a taa ada ão é essa. E pouco superor. Uma ova terpolação etre 9,6% e 9,% os dará 9,6%. E, calculado-se o valor presete dos três pagametos, a essa taa, obteremos o valor de $ 999,99, ou seja, com uma dfereça de apeas $ 0,0. Portato, podemos acetar essa taa como a taa tera de retoro do osso problema. Vamos agora apresetar uma sére de eemplos com as respectvas soluções. Embora as respostas para cada um deles teham sdo obtdas através de calculadoras adequadas, vamos dcar ao letor como a solução pode ser matematcamete coseguda.. Uma dívda o valor de $.000,00 deverá ser qutada o prazo de ove meses, em prestações mesas, de acordo com o segute plao: a prmera de $ 400,00, a seguda $ 790,00, três guas de $ 60,00 cada uma a serem pagas do quarto ao seto mês, e a últma de $ 880,00 a ser lqudada o fal do oo mês, coro mostra o esquema a segur. Determar a taa mesal de juros cobrada essa operação. Taa Itera de Retoro

3 Estudar sem racocar é trabalho 009/ 400,00 790,00.000,00 = ,00 ( ) ,00 Por tetatva e erro, utlzado-se terpolação lear como fzemos o prmero eemplo, ou com o aulo de calculadoras adequadas, obtém-se =,94% (ou,9404% com cco casas decmas). Realmete, se calcularmos o valor presete das ses prestações mecoadas, á taa de,9404% ao mês, vamos obter o valor $.000,00, o que comprova que essa taa é a taa tera de retoro da operação.. Um equpameto o valor de 70 mlhões é tegralmete facado, para pagameto em sete parcelas mesas; as três prmeras de 0 mlhões, as duas segutes de mlhões, a 6ª de 0 mlhões e a 7ª de 0 mlhões. Determar a taa tera de retoro dessa operação. 70 = Com a utlzação de uma calculadora adequada, ou por tetatva e erro, utlzado-se terpolação lear como fzemos o prmero eemplo, obtém-se = 0,40% ao mês (ou 0,9749% com cco casas decmas). 4. Um cosumdor adqure um eletrodoméstco pelo sstema de credáro para pagameto em ses prestações mesas de $ 7,70. Sabedo-se que o valor facado fo de $.40,00 e que a prmera prestação será paga o fal do º mês (4 meses de carêca), determar a taa de juros cobrada pela loja. Esquematcamete teros o segute fluo de caa:.40,00 = 7,70 6 ( ) Por tetatva e erro, ou com o aulo de calculadora adequada, obtém-se 8,0%, que é a taa mesal de juros cobrada pela loja e que correspode á taa tera de retoro do fluo de caa represetatvo dessa operação. Taa Itera de Retoro

4 Estudar sem racocar é trabalho 009/. Um baco credta $ 80.0,00 a cota de um clete, referete ao descoto de três duplcatas de valores: $.600,00, $ 6.400,00 e $ 9.70,00, com prazos de 4, 7 e 8 das respectvamete. Determar a taa mesal de juros cobrada essa operação, calculada de acordo com o regme de captalzação composta. Esquematcamete temos o segute fluo de caa:.600, , , ,00= ) 8 em que, este caso, é uma taa dára. Por tetatva e erro, ou com o aulo de calculadoras adequadas, obtém-se = TIR = 0,848%. Para se determar à taa mesal, fazer como segue: m = (,00848) 0 - = 7,08640% 6. Uma debêture de valor omal correspodete a $.000,00 emtda o da 0-0-8, paga juros trmestralmete á razão de,874% (equvalete a % ao ao) mas correção moetára. Sabedo-se que essa debêture fo emtda com dos aos de prazo, que os juros são pagos o da 0 dos meses de juho, setembro, dezembro e março de cada ao e que a mesma fo egocada o da por $ 9,0 calcular a taa efetva aual dessa trasação. Esquematcamete, temos o segute fluo de caa: 8,74 8,74 8,74.08,74 Soluçao: 9,0= ( ) ( ) ( ) ( ) Por tetatva e erro, utlzado-se terpolação lear, ou através de calculadoras, obtém-se = TIR = 0,000%, que é uma taa dára. Para se obter a aual, fazer: I a = (,000) 60 =,06% 7. Os téccos de uma empresa dustral estão aalsado duas opções apresetadas para a compra de uma máqua: uma, de valor equvalete a US$ com vda útl prevsta de cco aos, e outra, como dobro de capacdade da prmera, vda útl de dez aos e custo Taa Itera de Retoro 4

5 Estudar sem racocar é trabalho 009/ correspodete a US$ 7.000, ambas com valor de reveda zero o fm do período de vda útl. A meor tem capacdade para ateder á produção prevsta para os prómos cco aos; como a partr do 6º ao a produção deverá crescer substacalmete, a compra da meor hoje mplcará a ecessdade de compra de duas do mesmo porte o fal do º ao com custo utáro dêtco ao atual. Comprado a meor, as recetas líqudas auas geradas (já descotados todos os custos, dretos e dretos de fabrcação, com eceção da deprecação) para os prómos dez aos são estmadas em US$ ao ao para os cco prmeros aos, US$ para os dos segutes e US$ para os três últmos. Adqurdo a maor, as recetas líqudas auas estão estmadas em US$ para os prómos dos aos, US$ para os três segutes e US$ para os cco últmos. Determar qual a melhor opção. Os dagramas represetatvos dos fluos de caa das duas hpóteses são os segutes: a) Máqua meor (em US$.000) b) Máqua maor (em US$.000) A opção a ser escolhda será aquela que apresetar a maor taa tera de retoro. a) TIR para a máqua de meor porte = Pelo processo de tetatva e erro (ou através de calculadoras adequadas) obtém-se = TIR = 4,4% ao ao b) TIR para a máqua de maor porte 7.000= Resolvedo essa equação pelos processos mecoados, obtém-se = TIR = 6,49% ao ao. Portato, como a TIR correspodete á opção a é maor do que a TIR referete á opção b, é mas acoselhável a aqusção das máquas de meor porte. Taa Itera de Retoro

6 Estudar sem racocar é trabalho 009/ 8. Uma casa usada fo adqurda o da 4--8 por $ ,00. Um mês após, o propretáro pagou $ 8.000,00 pela reforma feta, alugado-a o mesmo da por $ ,00 mesas. O cotrato frmado em 4--8 tha dos aos de prazo, com reajustes auas. Em 4--8 o aluguel fo reajustado para $ ,00. No vecmeto do cotrato, em 4--8, o qulo resolveu sar da casa. O propretáro, etão, empreedeu ova reforma o valor de $ ,00, que fo tegralmete pago dos meses depos e colocou a casa á veda por $ 6.000,000,00. Três meses após ela fo vedda por esse valor, em três parcelas: $ ,00 a assatura da escrtura (da ), $ ,00 o da e $ ,00 o da Sabedo-se que a epectatva do propretáro era a de gahar, esse empreedmeto, pelo meos o redmeto médo da Cadereta de Poupaça, o período de ovembro/8 a mao/84 (cerca de 8% ao mês), calcular: a) a taa efetva de redmeto obtda pelo vededor esse empreedmeto (TIR); b) o valor pelo qual devera ter sdo vedda a vsta, em , para que obtvesse uma taa de redmeto de 8% ao mês. O fluo de caa correspodete a essa operação é represetado esquematcamete como segue (em $.000): a) Taa efetva de redmeto obtda pelo vededor (TIR) Utlzado-se os crtéros utlzados os eercícos aterores, vamos ecotrar = TIR = 7,0%. b) Valor pelo qual a casa devera ter sdo vedda a vsta para que pudesse obter 8% ao mês Para a solução desta questão é ecessáro descosderar os fluos de $.000, $.000 e $ ml correspodetes á veda da casa, e calcular o motate dos demas fluos a data de Vamos cosderar os valores dos alugués com o sal egatvo, o setdo de que estes represetem amortzações do vestmeto cal. S = 4.8,08 0 ( ) + 8(,08) 9-40 (,08) 0, = ( 08, ) 80 ( 08, ) 7 = 0 08, (,08) + 90(,08) 40.60, 8 Portato, para gahar 8% ao mês esse vestmeto, o propretáro tera de ter veddo a casa por $ ,00 a vsta em Taa Itera de Retoro 6

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Matemática Financeira

Matemática Financeira 1)Um vestdor aplcou R$6,, gerado uma remueração de R$3, ao fal de um período de um ao (36 das). Calcular a taxa de juros paga a operação. = J/ = 3/6 =, ou % ou 63 = 6 (1+ 1) 63 = 6 + 6 63 6 = 6 3 = 6 =

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

Cap.20 Avaliação Econ. Financ. de Projetos de Inv. Sumário. Jim Lane. $20 mi. Gordon Letwin $20 mi Paul Allen $25 bi

Cap.20 Avaliação Econ. Financ. de Projetos de Inv. Sumário. Jim Lane. $20 mi. Gordon Letwin $20 mi Paul Allen $25 bi Pol-UFRJ/25.1 Cap.2 Avalação Eco. Fac. de Projetos de Iv. Ecooma Carlos Nemer 3ª Ed. Capítulo 2 Avalação Ecoômco Facera de Projetos de Ivestmeto Steve Wood $15 m Bob O' Rear $1 mllo Bob Wallace $5 m Bob

Leia mais

Matemática Financeira e Suas Aplicações Alexandre Assaf Neto 8ª Edição Capítulo 1 Conceitos Gerais e Juros Simples

Matemática Financeira e Suas Aplicações Alexandre Assaf Neto 8ª Edição Capítulo 1 Conceitos Gerais e Juros Simples Matemátca Facera e Suas Aplcações Aleadre Assaf Neto 8ª Edção Resolução dos Eercícos Propostos Capítulo Cocetos Geras e Juros Smples ),44 a), ou,% a.m.,68 b), 7 ou,7% a.m. 4,4 c), 9 ou,9% a.m. 6,4 d),

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária.

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária. 1 UTOR: Emeta Luz Herque M da Slva 1 Defções de razão e proporção, propredades; Graduado em Matemátca e habltado em ísca pelo UNIEB 2 Gradezas dretamete proporcoas e versamete proporcoas, Regra de três;

Leia mais

4 Capitalização e Amortização Compostas

4 Capitalização e Amortização Compostas 4.1 Itrodução Quado queremos fazer um vestmeto, podemos depostar todos os meses uma certa quata em uma cadereta de poupaça; quado queremos comprar um bem qualquer, podemos fazê-lo em prestações, a serem

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA CENTRO: GESTÃO ORGANIZACIONAL CÁLCULOS DE FINANÇAS MATEMÁTICA FINANCEIRA Semestre: A/2008 PROFESSOR: IRANI LASSEN CURSO: ALUNO: SUMÁRIO CÁLCULOS DE FINANÇAS INTRODUÇÃO...3. OBJETIVO:...3.2 FLUXO DE CAIXA...4.3

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Curso de An lise de Fluxo de Caixa

Curso de An lise de Fluxo de Caixa Curso de A lse de Fluxo de Caxa SUMÁRIO PROGRESSÕES... 0. FÓRMULAS BÁSICAS... 0.. Progressões artmétcas... 0..2 Progressões geométrcas... 02.2 EXERCÍCIOS SUGERIDOS... 02 2 CONCEITOS DE MATEMÁTICA FINANCEIRA...

Leia mais

1.1 Apresentação. do capítulo

1.1 Apresentação. do capítulo apítulo Matemátca Facera. Apresetação do capítulo A Matemátca Facera trata da comparação de valores moetáros que estão dspersos ao logoo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas

Leia mais

Caderno de Fórmulas. Swap

Caderno de Fórmulas. Swap Swap Elaboração: Abrl/25 Últma Atualzação: 5/4/216 Apresetação O adero de Fórmulas tem por objetvo oretar os usuáros do Módulo de, a compreesão da metodologa de cálculo e dos crtéros de precsão usados

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA Coceito de taxa de juros Taxa de juro é a relação etre o valor dos juros pagos (ou recebidos) o fial de um determiado período de tempo e o valor do capital

Leia mais

Perguntas freqüentes Credenciadores

Perguntas freqüentes Credenciadores Pergutas freqüetes Credecadores Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte pelo facameto da compra pelo emssor?

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

Capítulo 1 Matemática Financeira

Capítulo 1 Matemática Financeira apítulo Matemátca Facera. Apresetação do capítulo A matemátca facera trata da comparação de valores moetáros ao logo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas de vestmeto e

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Prova Resolvida e Comentada Prof. Joselias (011 ) AFRF 2005 Matemática Financeira e Estatística

Prova Resolvida e Comentada Prof. Joselias (011 ) AFRF 2005 Matemática Financeira e Estatística Prova Resolvida e Cometada Prof. Joselias joselias@uol.com.br (0 )9654-53 FRF 005 Matemática Fiaceira e Estatística Soluções das Provas do FRF-005 de Matemática Fiaceira e de Estatística Prof. Joselias

Leia mais

Elaborado: 2002 Ultima atualização: 23/12/2004

Elaborado: 2002 Ultima atualização: 23/12/2004 Elaborado: 2002 Ultma atualzação: 23/12/2004 Cadero de Fórmulas Apresetação Sstema Nacoal de Atvos E ste Cadero de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de

Leia mais

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini INTRODUÇÃO TT405 - ECONOMIA DE ENGENHARIA Materal Ddátco - 2008 Prof Lúca R A Motah INTRODUÇÃO 2 INDICE INTRODUÇÃO 7 2 O CONCEITO E ORIGEM DA ENGENHARIA ECONÔMICA 8 3 MATEMÁTICA FINANCEIRA 9 3 CONCEITOS

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/FAFIPA - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Outubro/203 UNESPAR/FAFIPA - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA ATRAVÉS

Leia mais

CIRCULAR Nº 3.389 D E C I D I U :

CIRCULAR Nº 3.389 D E C I D I U : CIRCULAR Nº 3.389 Estabelece os procedmetos para o cálculo da parcela do Patrmôo de Referêca Exgdo (PRE) referete ao rsco das exposções em ouro, em moeda estragera e em atvos e passvos sujetos à varação

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Capitulo 7 Resolução de Exercícios

Capitulo 7 Resolução de Exercícios FORMULÁRIO Audades Costates Postecpadas HP C [g][end] Cp LN 1 1 1 1 C p R Cp R R a, R C p, 1 1 1 a LN 1 Sp LN 1 1 1 S p R S p R R s, R S p, 1 1 s LN 1 Audades Costates Atecpadas HP C [g][beg] 1 (1 ) 1

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

IAG. Definições: O valor do dinheiro no tempo Representação: (100) 100. Visualização: Fluxo de Caixa B&A B&A

IAG. Definições: O valor do dinheiro no tempo Representação: (100) 100. Visualização: Fluxo de Caixa B&A B&A IAG Matemática Fiaceira Fluxo de Caixa O valor do diheiro o tempo Represetação: Saídas Etradas (100) 100 Prof. Luiz Bradão 2012 1 2 Visualização: Fluxo de Caixa 0 1 2 3 4 5 Defiições: Fluxo de Caixa VP

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

O mercado de renda fixa e a estrutura da taxa de juro

O mercado de renda fixa e a estrutura da taxa de juro O mercado de reda fxa e a estrtra da taxa de jro No Brasl, a egocação o mercado de reda fxa egloba títlos públcos e títlos prvados. O strmeto para a expressão da remeração e/o o valor de mercado de cada

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

MATEMÁTICA FINANCEIRA COM MICROSOFT EXCEL

MATEMÁTICA FINANCEIRA COM MICROSOFT EXCEL MATEMÁTICA FINANCEIRA COM MICROSOFT EXCEL 2 OBJETIVO Trasmitir ao participate as formas de evolução do diheiro com o tempo as aplicações e empréstimos e istrumetos para aálise de alterativas de ivestimetos,

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

CRI Certificados de Recebíveis Imobiliários. Guia para Elaboração dos Fluxos de Pagamentos Data: 16/11/2015

CRI Certificados de Recebíveis Imobiliários. Guia para Elaboração dos Fluxos de Pagamentos Data: 16/11/2015 1 CRI Certificados de Recebíveis Imobiliários Guia para Elaboração dos Fluxos de Pagametos Data: 16/11/2015 Sumário/Ídice CRI - CERTIFICADOS DE RECEBÍVEIS IMOBILIÁRIOS... 1 SUMÁRIO/ÍNDICE... 2 1. OBJETIVO...

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Professor: Luis Guilherme Magalhães professor@luisguiherme.adm.br www.luisguilherme.adm.br (62) 9607-203 DESCONTO É uma compesação recebida pelo tomador do empréstimo, pelo pagameto adiatado da dívida

Leia mais

Caderno de Fórmulas. Debêntures Cetip21

Caderno de Fórmulas. Debêntures Cetip21 Última Atualização: 01/04/2016 E ste Cadero tem por objetivo iformar aos usuários a metodologia e os critérios de precisão dos cálculos implemetados Para Debêtures o Cetip21. São aqui apresetadas fórmulas

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

PREÇO UNITÁRIO DE DEBÊNTURES METODOLOGIA DE CÁLCULO

PREÇO UNITÁRIO DE DEBÊNTURES METODOLOGIA DE CÁLCULO PREÇO UNITÁRIO DE DEBÊNTURES METODOLOGIA DE CÁLCULO Itrodução Cosoldado o projeto de Precfcação de Debêtures, que dvulga formações de taxas referecas para o mercado secudáro desde mao de 2004, e date do

Leia mais

CESTA DE MOEDAS DO BNDES

CESTA DE MOEDAS DO BNDES CESTA DE MOEDAS DO BNDES Ídce 1.Regulametação...pág..Decomposção da Cesta de Moedas do BNDES...pág. 3. Metodologa de Cálculo dos Cotratos do BNDES atrelados à Cesta de Moedas do BNDES.....pág.4 4.Sítese...pág.7

Leia mais

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS

PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS O coteúdo programático das provas objetivas, apresetado o Aexo I do edital de abertura do referido cocurso público, iclui etre os tópicos de

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a.

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a. JUROS SIMPLES 1. Calcule os juros simples referetes a um capital de mil reais, aplicado em 4 aos, a uma taxa de 17% a.a. 2. Calcule o capital ecessário para que, em 17 meses, a uma taxa de juros simples

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

Ensaios Econômicos. Amortização de Dívidas e Prestações Constantes: Uma Análise Crítica. Outubro de 2013. Escola de. Pós-Graduação.

Ensaios Econômicos. Amortização de Dívidas e Prestações Constantes: Uma Análise Crítica. Outubro de 2013. Escola de. Pós-Graduação. Esaos Ecoômcos Escola de ós-graduação em Ecooma da Fudação Getulo Vargas N 746 ISSN 004-890 Amortzação de Dívdas e restações Costates: Uma Aálse Crítca Clovs de Faro Outubro de 203 URL: http://hdl.hadle.et/0438/232

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

tica Professor Renato Tião

tica Professor Renato Tião Números complexos Algumas equações do segudo grau como x + 1 = 0 ão possuem solução o uverso real e o estudo destas soluções ão pareca ecessáro até o século XVI quado o matemátco aphael Bombell publcou

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal Exercícos Itrodutóros Exercíco Para

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Sistemas de Amortização

Sistemas de Amortização Matemática Financeira Sistemas de Amortização Prof. Me. Marcelo Stefaniak Aveline Séries de Pagamentos Este conteúdo pode ser visto como uma estensão de Juros Compostos. Enquanto em Juros Compostos um

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

Sistemas de Amortização

Sistemas de Amortização Matemática Financeira Sistemas de Amortização Prof. Me. Marcelo Stefaniak Aveline Matemática Financeira Séries de Pagamentos Prof. Me. Marcelo Stefaniak Aveline Séries de Pagamentos Este conteúdo pode

Leia mais

Amortização ou parcela de amortização É a parte embutida na prestação que devolve o valor principal do empréstimo ou financiamento

Amortização ou parcela de amortização É a parte embutida na prestação que devolve o valor principal do empréstimo ou financiamento 1. SISTEMAS DE AMORTIZAÇÃO DE EMPRÉSTIMOS E FINANCIAMENTOS Estudaremos este capítulo os vários sistemas de amortização de empréstimos e fiaciametos, sua metodologia e cálculos para determiação do saldo

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais