Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas

Tamanho: px
Começar a partir da página:

Download "Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas"

Transcrição

1 Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco J. Ss

2 Prlnr: Poncs U forç dz - s consrv v s s u l qu du F d Por plo, grvdd é consrv v dgz F g F - U gz dz Por plo, l d Hoo pr s ols u forç consrv v d F F - U d função U dsgn - s por poncl função dá bé org

3 Eplo d u ol suspnsão l l U gl l l No qulíbro F : - du dl ll g l Pr sudr l o ovno l g l - ou ω co ω

4 Eplo d u ol suspnsão Pr nconrr solução d l l ω sbos qu d sr u função sn ou cos : ou ω.cosω b.snω ; v vrfcr! s consns b são nconrd s pls condçõs ncs : ω b

5 Eplo d u ol suspnsão l l No : o qu plc podros pôr o qu pr scrvr cosω cos snω sn ou é plud ω δ b cos b cos ω é frquênc é fs ncl qusqur sn δ ponhos ω T T ngulr b n δ ω

6 Eplo d u ol suspnsão l l cos sn R I Eponnc l copl : 5 7 sn...! 5! 7! 4 6 cos...! 4! 6! !! 4! 5! 6! Qulqur coplo z b pod sr scro n z cos for sn o qu plc

7 Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco orcdo J. Ss

8 Oscldor orcdo F ro co l l ou co

9 Oscldor orcdo Pr rsolvr l l vos prn r u solução : qução crcrís c Dus soluçõs : solução grl é ω ω

10 Oscldor orcdo Pr rsolvr l l vos prn r u solução : qução crcrís c Dus soluçõs : solução grl é ω ω

11 Oscldor orcdo cos os pondo : ro pquno Cso l l

12 Oscldor orcdo l l

13 Oscldor orcdo não é osclóro O ovno co : ro grnd Cso l l

14 Oscldor orcdo l l

15 Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco forçdo J. Ss

16 Oscldor forçdo F F F F F do po solução r u prn Vos co l l

17 Oscldor forçdo 4 F F F F l l

18 Oscldor forçdo l l 4 4 R d d F

19 Oscldor forçdo n 4 sn I 4 cos R F F F F l l

20 Oscldor forçdo n 4 sn I 4 cos R F F F F l l

21 Oscldor forçdo l l rcn Pr

22 Oscldor forçdo l l

23 Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco forçdo J. Ss

24 Irlúdo áco Drvds prcs z f, y y cons l y g y y g y y Plno =cons z=f,y z=fcons,y=gy y dy

25 Oscldors copldos -

26 Oscldors copldos ; Dfn - s Ss dscopldo! Coordnds nors

27 Oscldors copldos s soluçõs,, dsgn s por odos nors d vbrção. s frquênc s dsgn - s por frquêncs d rssonânc ou frquêncs nurs ou nd frquêncs crcríscs dos odos nors d vbrção.

28 O cso grl é coplcdo sss gus s gus Oscldors copldos l. r prn

29 Oscldors copldos l. s são drnd os pls condçõs ncs ' s os ' Os é sobrposção dos odos nors. grl solução nconrnd o os subsun do n rz Dond - c c c M K M K K K M cos cos ; :

30 Oscldors copldos s soluçõs,, dsgn s por odos nors d vbrção. s frquênc s dsgn - s por frquêncs d rssonânc ou frquêncs nurs ou nd frquêncs crcríscs dos odos nors d vbrção.

31 O cso grl é coplcdo sss gus s gus Oscldors copldos l. r prn

32 Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : qução ds onds J. Ss

33 Múlplos oscldors copldos ds quçõs s porn s d Físc! Es é u Equção ds onds no l conínu ol u r d for Fzos d nho ols,,,,,,, v N N d d n n n n n T v T

34 Solução d qução ds onds,=f-v,=f,=f-v =v

35 Solução d qução ds onds Sj f solução d qução pr =. Ess função f é o prfl d ond. S ond s propgr s udnç d for co vlocdd v pr =v não,=f-v=,.,=f-v é solução s grl d qução ds onds

36 Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Probl: U bl d ss é dsprd co vlocdd v conr u bloco d dr d ss M lgd u prd por u ol d consn. bl ncsr-s no bloco colsão é nsnân. Drn: frquênc do ovno rsuln plud fs v=m +V V = v +M ω= M + = : = cosϕ= ϕ= π ω sn ϕ=v = V ω

37 Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Probl: U bloco sá prso por dus ols d consns '. Drn o ovno d osclção do bloco pr condção ncl = vlocdd ncl nul. ẍ = + ' + ' ω= = cosω +ϕ cos ϕ= ω sn ϕ= = ϕ= ou ϕ=π

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE MOVIMENTOS SOB A AÇÃO DE UMA ORÇA RESULTANTE DE INTENSIDADE CONSTANTE Trjóris Tmos os sguins csos: 1º) S forç rsuln ivr dirção d vlocidd só vrirá o módulo ds rjóri srá rilín. v R Ou R v º) S forç rsuln

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros.

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros. Cpítulo I Noçõs Eltrs d Mtátic. Oprçõs co frcçõs, Equçõs Iquçõs Tipos d úros {,,,,,6, } cojuto dos úros turis. 0 { 0} {,,,, 0,,,, } cojuto dos úros itiros., 0 0 p : p, q q cojuto dos úros rciois ou frccioários,

Leia mais

Série de Fourier tempo contínuo

Série de Fourier tempo contínuo Fculdd d Engnhri Séri d Fourir mpo conínuo.5.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 7/8 Séri d Fourir m mpo conínuo ul d hoj Fculdd d Engnhri Rspos d SLIs conínuo ponnciis Eponnciis imgináris hrmonicmn rlcionds

Leia mais

ELECTRÓNICA DE POTÊNCIA RECTIFICADOR DE MEIA ONDA: i O. D on. D off. v O. Valores médios. Valores eficazes da tensão e da corrente de saída: da: V O

ELECTRÓNICA DE POTÊNCIA RECTIFICADOR DE MEIA ONDA: i O. D on. D off. v O. Valores médios. Valores eficazes da tensão e da corrente de saída: da: V O CTÓNCA D PTÊNCA CTFCAD D MA NDA: D on < < sen ( ω t sen( D off < < CTFCADS NÃ CNTADS Carga essta alores médos da tensão e da corrente de saída da: AK sen( d [ cos] alores efcazes da tensão e da corrente

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc Prob. : Ua lâada d sódo co oênca P W rrada nrga ( 589 n) unorn odas as drçõs. Quanos óons or sgundo (R) são dos la lâada? b) A qu dsânca da lâada ua la oaln absorn absor óons à razão (ou luo: F) d, óon/(c

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma.

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma. FEP Pêndulo de Torção nstituto de Físic d Universidde de São Pulo Pêndulo de Torção Objetivo: Estudr deendênci do eento de inérci de u coro co relção à su for. ntrodução teóric O torque é definido coo:

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte:

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte: Oscilaçõs forçadas Dpois d tr visto coo são as oscilaçõs aortcidas, agora você pod facilnt ntndr as oscilaçõs forçadas. Aqui vou ignorar a dissipação apnas introduzir ua força oscilant ao sista assa-ola.

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

- Pilares Curtos Os efeitos de 2ª ordem podem ser desprezados.

- Pilares Curtos Os efeitos de 2ª ordem podem ser desprezados. Classificação dos Pilars quanto à Esbltz λ λ - Pilars Curtos Os fitos d ª ord pod sr dsprzados. λ < λ 90, ond λ 35 - Pilars dianant Esbltos Os fitos d ª ord são avaliados por procssos siplificados basados

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente RESPOSTA DO SISTEMA Rsps m Rgm Trsór Rsps m Rgm Prm Exmpls d ssms d prmr rdm Tqu d águ crld pr um bó Tx d vrçã lur é prprcl (H-h) dh k( H h) k h H ( ) Ssm RC, cpcr m sér cm rssr dv C RC ( V V C ) V C RC

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

Método Numérico 52. Figura 3.1: Malha de discretização deslocadas.

Método Numérico 52. Figura 3.1: Malha de discretização deslocadas. 3 Méd Nuérc f d qunfcr prcss d dpsçã d prfn dus subrns, u ódu f dsnd n cód nuérc TRNLUX ucknbruck, 994 pr fu rnsn bfásc, qu ccu dpsçã d prfn, c bs n rnsfrênc d ss cnc. O cód us éd ds us fns pr rsr s quçõs

Leia mais

GRAVITAÇÃO UNIVERSAL

GRAVITAÇÃO UNIVERSAL GVIÇÃO UNIVESL z- u ci féric u fr chubo rio, l qu u uprfíci ngnci uprfíci xrn fr chubo p plo cnro priii fr chubo r D coro co Li Grição Unirl, qul rá forç co qu fr chubo rirá u pqun fr locliz à iânci, o

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer

Problemas de Electromagnetismo e Óptica LEAN + MEAer Pobls d logniso Ópi AN MA 7 Ópi P 7 (Pobl 3 do píulo do livo nodução à Físi d Dis d Dus l) O spo d opinos d ond p luz visívl vi n d 4x -9 (viol) 75x -9 (vlho) n qu vlos vi fquêni d luz visívl? n 75x 4

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012 Po Substtut Mcâc B PME 3/7/ po po: utos (ão é pto o uso spostos ltôcos) º Qustão (3,5 potos) O sco o R, ss cto, g too hst O u s o o plo fgu o à ção o po o poto O. Et hst o cl O, st u ol tocol costt u otco

Leia mais

Matrizes - Teoria ...

Matrizes - Teoria ... Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

Exercícios Resolvidos. Assunto: Integral Dupla. Comentários Iniciais:

Exercícios Resolvidos. Assunto: Integral Dupla. Comentários Iniciais: Escol d Engnhri ndustril tlúrgic d olt dond Profssor: Slt Sou d Olivir Buffoni Ercícios solvidos ssunto: ntgrl Dupl Comntários niciis: É com imnso prr qu trgo lguns rcícios rsolvidos sobr intgris dupls

Leia mais

VII ENCONTRO ENSINO EM ENGENHARIA

VII ENCONTRO ENSINO EM ENGENHARIA VII ENCONTRO ENSINO EM ENGENHARIA PROGRAMA COOPERATIVO EXPERIMENTOS PARA ESTIMAÇÃO DOS PARÂMETROS DE MOTORES DE CORRENTE CONTÍNUA João Crlos Bslo - bslo@shnu.cop.ufrj.br Mrcos Vcn Morr - rcosorr@zpl.co

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Ánálise de Fourier tempo discreto

Ánálise de Fourier tempo discreto Fculdd d Eghri Áális d Fourir tpo discrto 4.5.5.5.5.5.5 -.5 -.5 - - -8-6 -4-4 6 8 - - -5 5 5 5 SS MIEIC 8/9 Progr d SS Fculdd d Eghri Siis Sists uls Sists Lirs Ivrits uls Aális d Fourir (tpo cotíuo) uls

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

Modelagem e Análise de Sistemas Contínuos e Discretos 8

Modelagem e Análise de Sistemas Contínuos e Discretos 8 Modgm nás d Ssms Conínuos Dscros 8 Modgm nás d Ssms Conínuos Dscros Modgm sgnc o procsso d orgnzção do conhcmno sobr um ddo ssm rnrd Zgr. Um smução é um prmno rzdo m um modo Grmno orn & John W. Espcro

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Capítulo 2 Movimento Retilíneo

Capítulo 2 Movimento Retilíneo Cpíulo Moimeno Reilíneo. Deslocmeno, empo e elocidde médi Eemplo: Descreer o moimeno de um crro que nd em linh re Anes de mis nd, emos que: - Modelr o crro como um prícul - Definir um referencil: eio oriendo

Leia mais

Física A Superintensivo

Física A Superintensivo GABAITO Físic A Superintensio Exercícios 1) B ) E 3) D Coentário São chds de fundentis s uniddes que origin s deis. Teos coo fundentis n ecânic s grndezs copriento, tepo e ss, cujs uniddes no SI são etro,

Leia mais

Análise de Sistemas Discretos por Transformada-z

Análise de Sistemas Discretos por Transformada-z ES Siis Sists Aális d Sists Discrtos por Trsford- Prof. Aliio Fsto Ribiro Arúo Dpto. of Sists d Coptção Ctro d Iforátic - UFPE Cpítlo Siis Sists Eg. d Coptção Itrodção A Trsford- Cotúdo A Trsford Ivrs

Leia mais

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004 Prov de F-8 urms do Diurno Segundo semestre de 004 8/0/004 ) No instnte em que luz de um semáforo fic verde, um utomóvel si do repouso com celerção constnte. Neste mesmo instnte ele é ultrpssdo por um

Leia mais

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes Módulo de Mtrzes e Sstems Lneres Operções com Mtrzes Mtrzes e Sstems Lneres Operções com Mtrzes 1 Exercícos Introdutóros Exercíco 1. Encontre o vlor de () 2 A. 1/2 A. 3 A. Exercíco 2. Determne ) A + B.

Leia mais

A DERIVADA DE UM INTEGRAL

A DERIVADA DE UM INTEGRAL A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

s t r r t r tr és r t t t

s t r r t r tr és r t t t s rã ê s r s t r r t r tr és r t t t ss rt çã r t çã r str r r t r ár r t Pr ss r 1 r rs s Pr s t r t úr Pr t r st rr Pr t r ã s Pr t r ár r t Novembro, 2015 s t r r t r tr és r t t t 2r t s rã ê s rs

Leia mais

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida O D ÓMUL O. D MOU MU & MU Moo ul Lço Oblíuo p = lo ul * opo l - MU y y y y y s y y y = lo é = ção spço = spço ul = o H s = Ilo po = üê * opo hozol - MU = spço (l) = píoo x os = spço Il = lo = lo l = lção

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI, 998) (N) (HAYKIN; VEEN,, p 79) O pulso rapezoidal x( ) da figura a seguir é aplicado

Leia mais

Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1

Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1 Tst Intmédio d Mtmátic A Vsão Tst Intmédio Mtmátic A Vsão Dução do Tst: 9 minutos.5..º Ano d Escolidd Dcto-Li n.º 7/ d d mço????????????? RESOLUÇÃO GRUPO I. Rspost (B) A função f é contínu logo é contínu

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

FFI 112: Física Matemática I. Material Didático # Funções de Bessel. Gabriela Arthuzo

FFI 112: Física Matemática I. Material Didático # Funções de Bessel. Gabriela Arthuzo FFI : Físic Mtemátic I Mteril Didático # 9... 7-6-4 Funções de Bessel Gbriel Arthuzo. Epressão gerl A função: g, t = e t t é chmd função gertriz ds funções de Bessel. Vmos epndi-l em um série de Lurent

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho LCTROTCNI TÓRIC Tspêis ds uls tóis Mi Iês os d Cvlo 4/5 LCTROTCNI TÓRIC Ods ltomgétis Lis d tsmissão Guis d od ilídios o Guis mtálios Pls plls Rtguls Ciuls o Guis dilétios Pls Fis Óptis GUIS D OND CILÍNDRICOS

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

FÍSICA MODERNA I AULA 22 -

FÍSICA MODERNA I AULA 22 - Unvrsa São Paulo Insuo Físca FÍSIC MODRN I UL - Profa. Márca la Rzzuo Pllron sala 4 rzzuo@f.us.br o. Ssr 04 Monor: Gabrl M. Souza Sanos Págna o curso: ://sclnas.soa.us.br/cours/vw.?=905 30/05/04 Função

Leia mais

ELECTRÓNICA DE POTÊNCIA RECTIFICADOR DE MEIA ONDA: i O. D on. D off. v O. Valores médios. Valores eficazes da tensão e da corrente de saída: da: V O

ELECTRÓNICA DE POTÊNCIA RECTIFICADOR DE MEIA ONDA: i O. D on. D off. v O. Valores médios. Valores eficazes da tensão e da corrente de saída: da: V O CTÓNCA D PTÊNCA CTFCAD D MA NDA: D on < < sen ( ω t ) sen( ) D off < < CTFCADS NÃ CNTADS Carga essta alores médos da tensão e da corrente de saída da: AK sen( ) d [ cos] alores efcazes da tensão e da corrente

Leia mais

Capítulo 9. Chopper(conversor CC-CC)

Capítulo 9. Chopper(conversor CC-CC) píulo 9 onrsor nrodução hoppr(conrsor rg Alimnção: nsão ix rg: nsão riál Equiln d um rnsormdor A A nsão d síd do conrsor pod sr mior ou mnor qu nsão d nrd Normlmn uilizdos m limnção d disposiios lromcânicos

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PM 300 MÂNI I Segund Po 5 de mo de 05 ução d Po: 0 mnuos (não é pemdo uso de clculdos) ª Quesão (0 ponos) No ssem mosdo n fgu o dsco de ceno fxo em o R e eo de oção consne. dsco ol sem escoeg em elção

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

6 Cálculo Integral (Soluções)

6 Cálculo Integral (Soluções) 6 Cálculo Inegrl (Soluções). () Sej d {,..., n } um decomposição de [, ]. Podemos ssumir que d (cso conrário, om-se d d {}, e em-se S d ( f ) S d ( f ), s d ( f ) s d ( f )). Sej k, pr lgum k {,..., n

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtento de ngenhri létric Conversão de nergi Aul 4.3 Máquins de Corrente Contínu Prof. Clodoiro Unsihuy il Bibliogrfi FTZGALD, A.., KNGSLY Jr. C. UMANS, S. D. Máquins létrics: co ntrodução à letrônic

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation). 4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 13 Revisão Modelo de elementos distribuídos Modelar a linha em pequenos elementos de

Leia mais

Corrente alternada no estator: enrolamento polifásico; Rotor bobinado: corrente contínua; Máquina de relutância;

Corrente alternada no estator: enrolamento polifásico; Rotor bobinado: corrente contínua; Máquina de relutância; Máqun de corrente lternd; Velocdde proporconl à frequênc ds correntes de rmdur (em regme permnente); Rotor gr em sncronsmo com o cmpo grnte de esttor: Rotor bobndo: corrente contínu; Máqun de relutânc;

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P4 DE ELETROMAGNETISMO 29.06.11 quarta-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [D] Sendo nulo o oento e relção o poio, teos: Mg 5 2Mg 10 x 2,5 10 x x 7,5 c SOLUÇÃO CB2. [D] Arthur é u corpo rígido e equilírio: Pr que ele estej e equilírio de

Leia mais

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7.

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7. CAPTULO 7 Execícios 7 Sejam F () (, sen, ) e G () (,, ) a) F () G () (, sen, ) (,, ) sen d) i j F () G () sen ( sen ) i ( 6) j ( sen ) F () G () ( sen, 6, sen ) Sejam () ij e x () i j i j () x () ( ) i

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012 EN607 Trnsformds em Sinis e Sistems Lineres List de Exercícios Suplementres 3 qudrimestre 0. (0N) (LATHI, 007, p. 593) Pr o sinl mostrdo n figur seguir, obtenh os coeficientes d série de Fourier e esboce

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Especificações de Desempenho de Sistemas de Controle Discreto Introdução

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

Figura 1. m. Responda às seguintes questões:

Figura 1. m. Responda às seguintes questões: UIVERSIDADE DE LISBOA ISIUO SUPERIOR ÉCICO Vbrções e Ruído º Exme /5-5 de Jero de 5 (sem cosul) Problem (6 vl.) Fgur Cosdere o mecsmo de gru de lberdde reresedo fgur, que se ecor su osção cl de equlíbro

Leia mais

EMPREENDIMENTO: Bosque Heliópolis. Novo Heliópolis - Garanhuns-PE 24 meses após a assinatura do contrato CAIXA. CORREÇÃO: BLOCO: INCC

EMPREENDIMENTO: Bosque Heliópolis. Novo Heliópolis - Garanhuns-PE 24 meses após a assinatura do contrato CAIXA. CORREÇÃO: BLOCO: INCC BLOCO: 1 104 L 51 m² 121.000,00 2.000,00 3.000,00 347,22 103.500,00 BLOCO: 2 004 L 51 m² 121.000,00 2.000,00 3.000,00 347,22 103.500,00 102 L 51 m² 121.000,00 2.000,00 3.000,00 347,22 103.500,00 BLOCO:

Leia mais

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto.

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto. Suáio Unidde I MECÂNIC 1- Mecânic d ptícul Moviento de copos sujeitos ligções. - Foçs plicds e foçs de ligção. - Moviento du siste de copos ligdos nu plno hoizontl, plno veticl e plno inclindo, despezndo

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA cânc E ª o /5/5 Dução d o: nutos (Não é ptdo o uso d ccudos, cus, tbts /ou outos qupntos ss) QUESTÃO (,5 pontos). b hooên B, d copnto ss stá tcud. tndo d posção tc, co ocdd nu, s choc cont qun do du, confo

Leia mais

Adriano Pedreira Cattai. Universidade Federal da Bahia UFBA Semestre

Adriano Pedreira Cattai.   Universidade Federal da Bahia UFBA Semestre Cálculo II A, MAT Adrino Pedreir Ci hp://www.lunospgm.uf.r/drinoci/ Universidde Federl d Bhi UFBA Semesre 6. Inrodução No Teorem Fundmenl do Cálculo TFC, os ies de inegrção, e em, são números reis e f

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

arctg x y F q E q v B d F d q E q v B se y r sen sen

arctg x y F q E q v B d F d q E q v B se y r sen sen List Gomti Anlític Cálculo Vtoil Pof. D. Cláudio S. Stoi Poduto misto, Plnos ts, Mtis, Dtminnts Sistms Lins, Coodnds cilíndics sféics, Cônics Poduto misto, Plnos ts. Ach qução do plno contndo o ponto P

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Cálculo IV EP7 Tutor

Cálculo IV EP7 Tutor Fundação ntro d iências Educação Suprior a Distância do Estado do Rio d Janiro ntro d Educação Suprior a Distância do Estado do Rio d Janiro álculo IV EP7 Tutor Ercício 1: Us a intgral d linha para ncontrar

Leia mais

Formulário Equações de Maxwell:

Formulário Equações de Maxwell: 3 Prov Eletromgnetismo I Diurno Formulário Equções de Mxwell: D ρ, E B B 0, H J + D Condições de contorno: D σ l, E 0 B 0, H K l ˆn Equção d continuidde: ρ + J 0 Meios lineres e meios condutores: D ɛ E,

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais