CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3."

Transcrição

1 CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x) x 4 é cotíu, positiv dcrsct xdx 0 4 xdx lim x Æ 0 x4. 4 lim È rc tg x ù Æ ÎÍ ûú 0 0 xdx x 4 covrgt Þ 0 4 covrgt. ) Sj séri. l l(l ) Sj f ( x ) xl xl(l x). Etão, xl xl(l x) dx lim l(l l x), pois Æ [ ] l(l l x ) xl xl(l x). [ ]

2 Portto, séri é divrgt. l l(l ) f) Sj séri, l [l(l )] Tmos dx lim [ l(l ) l(l ) ] Æ xl x[l(l x)] l(l ). Portto, dx xl x[l(l x)] é covrgt pr. Dí, l [l(l )] é, tmbém, covrgt pr.. Supoh qu f: [0, [ sj cotíu, dcrsct positiv qu séri f( ) 0 sj covrgt com som s. Etão, f ( x ) dx é covrgt tmos, pr todo, 0 0 s f( ) f( ) f( x) dx. 0 Logo, f( ) é um vlor proximdo pr s, com rro ifrior f( x) dx

3 0 0 ( E ) E f( E ) ( E ) E f( E ) f( x) dx E E E f E ( ) ( ) E f( E) f( x) dx E 0 Por comprção, sgum ) b). Um outro modo d rsolvr o problm é fzdo mudç d vriávl x E u, dx E u l E du, itgrl: f ( x) dx l E Eu f ( Eu ) du,, m sguid, plicr o critério d itgrl o Exrcício 0 dst sção. 5. ) f( ) covrgt f( x) dxé covrgt (critério d itgrl Exrcício ). Fçmos x E y. Tmos dx l E E y dy. Etão, f( x) dx covrgt E y f( Ey ) dy covrgt 0 E f( E) 0 covrgt. b) f( ) divrgt f( x) dxdivrgt E y f ( E y) divrgt 0 E f( E ) divrgt. 0 8

4 6. ) 0 rzão. f ( ) qu é um séri gométric d Logo, f ( ) é covrgt pr s ; é divrgt pr. 0 b) Utilizdo o critério d Cuchy-Frmt (): f ( ) é covrgt pr Þ f( ) ( E ) é covrgt 0 pr. f ( ) é divrgt pr Þ 0 7. ) Sj f( ). (l ) Etão, é divrgt pr. f( ) (l ) qu é séri hrmôic d ordm : covrgt pr divrgt pr. Etão, f( ) b) Sj f( ) l [l(l )] f( ) (Exrcício 7). é covrgt pr divrgt pr. (l ) l [l(l )] covrgt pr divrgt pr (l ) 9

5 Portto, l [l(l )] é covrgt pr divrgt pr. c) Sj f( ). l l(l ) [l l(l )] f( ) (Exrcício 7b). Portto, l l(l )[l l(l )] é covrgt pr divrgt pr l [l l ] é covrgt pr divrgt pr. d) Sj f( ). (l ) f ( ) (l ) é divrgt. Logo, (l ) é divrgt. ) Sj f( ). Aplicdo o critério d Cuchy-Frmt dus vzs, chg- l [l l ] s Exrcícios. qu é divrgt (Exrcício 7d).. b) Sjm ( ) c. A séri, usd como comprção, é 0 covrgt (séri gométric d rzão ). Como lim lim 0, ( ) mbs s séris Æ c Æ são covrgts (plo critério do limit)

6 d) Sjm ( ) c /. A séri gométric d rzão / ). Tmos / é covrgt (séri 0 lim lim. Æ c / Æ 0 Plo critério do limit, séri ( ) é covrgt. 0 f) cos. A séri 0 é divrgt. Plo critério d comprção, s é divrgt, tão cos é divrgt. 0 0 h) Sjm c. lim lim 0. l Æ c Æ l Plo critério do limit, como séri d comprção é hrmôic covrgt cocluímos qu séri é covrgt. l, j) Sjm c. lim lim 0. c Æ Plo critério do limit, mbs divrgts. são l) Tmos cos s Ê s Ë cos x x ˆ. 4

7 Como lim Ê cos lim Æ Ë ˆ s Æ s / lim s 0, séri tm chc d sr Æ / covrgt. Tomdo como séri d comprção hrmôic covrgt Ê cos ˆ c. Ë lim Æ c lim Æ Ê s Ë ˆ s s lim. Æ Plo critério do limit, cocluímos covrgêci d séri dd. m) Sjm l Ê ˆ c. Ë lim lim l l lim l c Ê Æ Æ Ë ˆ Ê ˆ Æ Ë 0. Plo critério do limit, como séri d comprção foi hrmôic covrgt, cocluímos qu séri l Ê ˆ é covrgt. Ë, sgu. A séri / é covrgt pois é um séri gométric d rzão /. 0 Fçmos c / ( 0). Tmos lim lim 0 (por L Hospitl). Plo critério do limit, séri dd é Æ c / Æ covrgt. 5. ) Sj lim,. Æ (l ) 0 Fçmos l u. Logo, u. S Æ, uæ u lim lim (utilizdo L Hospitl). Æ (l ) uæ u 4

8 b) Sjm c ( 0). Tmos (l ) lim lim. Æ c Æ (l ) Plo critério do limit, visto qu séri d comprção é hrmôic divrgt, cocluímos qu séri 5 6. ) Sjm (l ) (l ) é divrgt. c. (l ) A séri é divrgt (Exrcício 5b) (l ) lim lim 5 lim Ê 5 ˆ. Æ c Æ Æ Ë Plo critério do limit, cocluímos qu séri 4 5 é divrgt. (l ) c) Pr 4,!. Por comprção, 4 é covrgt, pois! é um séri gométric covrgt. d) A séri é covrgt (Exmplo d Sção.: critério d itgrl). (l ) 0 Obsrv qu s tomássmos como séri d comprção hrmôic covrgt, trímos lim lim. Æ c Æ (l ) 0 Portto, o critério do limit ão os dri iformção lgum sobr covrgêci ou divrgêci d séri dd. ) Plo critério d Cuchy-Frmt, o comportmto d séri (l é o msmo ) ( ) qu o d. Etão, pr 0 ou séri srá 0 covrgt; pr 0 ou 0 0 séri srá divrgt.

9 5 f) Sjm c. (l ) (l ) A séri é covrgt (Exrcício 6) (l ) 5 lim lim 0. Æ c Æ Plo critério do limit, séri (l ) 5 é covrgt. (l ) g) Sjm c. (l ) A séri é covrgt (Exrcício 6) (l ) lim lim (l ) (l ) lim (l ) c Æ Æ 5 Æ 0 (Exrcício 5). Portto, plo critério do limit, séri 7. b) Tmos s x x, pr 0 x. Dí, s,. (l ) é covrgt. Plo critério d comprção, tdo m vist qu qu Ê ˆ s Ë Á é covrgt. é covrgt, sgu 9. Sj s l (l( ) l ) l l l l 4 l... l ( ) l l ( ) 44

10 Tmos: l lim l lim l ( ). Æ Æ. ) Tmos l l. Utilizdo o Exrcício 0, l. b) Tmos l l l l... l l Portto, l... ( )( )... ( )! lim Æ ( )( )... ( ) ( )( )... ( ) l...! l. Por ), lim l ( )( )... ( ) Æ 0.! Ou sj, lim ( ) ( )... ( ) 0. Æ! c) Tmos qu ( )( )... ( ) ( )( )... ( ) ( )! ! pr todo. 45

11 A séri ( ) é ltrd. Tmos,, logo, é dcrsct. Como sqüêci é dcrsct lim 0 ( b), sgu qu séri Æ ( )( )... ( ) é covrgt. Exrcícios.4!. b) lim lim ( )! Æ Æ ( )! lim ( ) Æ ( ) Ê ˆ Ë lim Æ Ê ˆ Ë Plo critério d rzão séri! é covrgt. c) lim lim ( ) lim Ê ˆ. Æ Æ Æ Ë Plo critério d rzão, s 0 séri é covrgt. S séri é divrgt. Pr, tmos séri, qu é divrgt. d) D divrgt. [ ], rsult [ ], logo, séri é. S 0, tão 0. Aplicdo o critério d rzão:!! lim lim lim. Æ Æ ( )! Æ ( 0 ) 46

12 Portto, séri é covrgt. Logo, lim 0.! Æ! 0 x x. b) lim lim lim x. Plo critério d rzão, pr Æ Æ ( ) x Æ Ê ˆ Ë 0 x séri é covrgt, pr x, divrgt. S x, tmos séri hrmôic covrgt. Portto, 0 x. x x d) lim lim. Æ Æ x Plo critério d rzão, séri é covrgt pr 0 x divrgt pr x. Pr x trmos,, logo, pr st vlor d x séri srá, tmbém, divrgt. Logo, séri srá covrgt pr 0 x. x 5... ( ) f) lim lim Æ Æ... ( )( ) x 5 x lim 0. Logo, séri é covrgt pr todo x 0. Æ 4. Tmos l l x l pr x. Dí l l xdx l ; l l x l pr x. Dí, l l xdxl. E ssim por dit: l ( ) l x l pr x Dí, l ( ) l x dxl. Etão, l l... l ( ) l x dx l... l l l... l. x dx x dx l... ( ) l x dxl... l ( )! l x dxl! 47

13 Tmos l xdx[ xl xx] l l. D, rsult l ( )! l l! Sgu qu: ( )!!. 6. lim lim ( )! x ( ) lim x Æ Æ ( ) x! Æ ( ) Ê ˆ Ë x Etão, lim (x 0) Æ Plo critério d rzão, séri é covrgt s x, ou sj, 0 x, divrgt s x. Pr x, séri é divrgt (Exrcício 5). Logo, séri srá covrgt pr 0 x. Sdo 0,, 0t t, pr todo, rsult t, pr todo. Assim, t, t t, 4 t t d modo grl t, pr todo. Como 0 t, séri gométric t é 0 covrgt, dí, plo critério d comprção, srá tmbém covrgt. 8. ) Tmos Ï, s é pr Ì b, s é ímpr Ó Logo, ão xist lim. Æ b) A séri é tl qu 0 pr todo, pois 0 b. Por, ou b. Plo Exrcício 7, séri dd é covrgt. 48

14 c) Ï b 4b b bs Ô ftors ftors Ì Ô b 4b b bs Ó ftors ftors Sgu qu Ï Ô Ì Ô Ó b, s b ( 4) s b Olhdo pr xprssão d rsult, pr, b. Dí, pr, 0 b. A covrgêci d séri sgu por comprção com séri gométric covrgt b. 0 d) À msm coclusão chg-s olhdo pr xprssão d Æ : lim b. Como b, plo critério d riz, séri é covrgt. ) Est xmplo os mostr qu lim pod xistir sm qu xist o limit Æ lim. Æ Exrcícios.5. ( ) ( )! lim lim Ê ˆ. Æ Æ Ë! Ê ˆ. Ë Logo, o critério d rzão d rvl. Utilizdo o critério d Rb, Ê ˆ Ê lim Á lim Ê ˆ ˆ ( ) Æ Ë Á Æ Ë Ë 0 lim Æ Ê Ê ˆ ˆ Á Ë Ë Ê 0 ˆ Ë 0 49

15 Usdo rgr d L Hospitl (dus vzs) tmos qu o limit cim é / (vj Exrcício (s) d Sção. o Cpítulo ). Plo critério d Rb, séri é divrgt ( )( ) ( ) 5... ( ) O critério d rzão d rvl. È lim Í lim lim. Æ Î ù È ù ú Í û Æ Î ú û Æ Plo critério d Rb, séri é divrgt.. ( )( )...( )( )! ( ) ( ) ( )( )... ( ) ( )! ( ) Plo critério d Rb, È ( ) lim Í ù lim ( ). Æ Î ú Ê û Æ Ë Á ˆ Como 0, tmos ( ) séri dd é covrgt. 4. Plo Exrcício, é covrgt. Portto, lim 0 (codição cssári Æ pr covrgêci). ( )( )... ( ) Dí, lim 0. Æ! 5. Voltdo o Exrcício c (Exrcícios.), obsrvmos qu ( )( )... ( ) ( )( )...( ) ( ).! 44444! A séri ( ) é ltrd. Como sqüêci é dcrsct (Exrcício b (Exrcícios.)) lim 0, Æ sgu qu séri ( )( )... ( ) é um séri ltrd! covrgt. 50

16 ( )( )... ( )( )! 6. ( )! ( )( )... ( ) Como lim, o critério d rzão ão dcid. Æ Utilizmos tão o critério d Rb. Ê lim Á lim ( ) lim ( ). Æ Ë ˆ Ê ˆ Á Æ Ë Æ S, ou sj, 0 séri é covrgt. S, ou sj, 0 séri é divrgt. 7. Sj um sqüêci d trmos stritmt positivos tl qu Ê ˆ lim Á L, L0. Æ Ë Ê ˆ Á L L Ë D sgu lim. Æ Vmos plicr o critério d Rb à séri 0 ( x m ) ( x)( x x... x ), rsult m. Lmbrdo qu È m m Ê ˆ ù È ùè Ê ˆ Ê ˆ ù lim Í Á ú lim... Æ Ë Í Æ úí Á Á ú Î Í û ú Î û Ë Ë 444 Î Í û ú L m È Ê ˆ ù Portto, xist um turl m ( L 0) tl qu lim Í Á ú. L Æ Ë Î Í û ú Plo critério d Rb, séri m é covrgt. Cosqütmt, lim 0 (codição cssári pr covrgêci). Sgu qu lim 0. Æ m m 0 Æ 5

17 8. Sj, 0, um sqüêci d trmos stritmt positivos tl qu Ê ˆ lim Á L, L0. Æ Ë Sgu d hipóts qu xist 0 tl qu pr todo 0,. Etão, pr 0,. Logo, lim ão pod sr zro. Æ Ê 9. ) lim Á lim ( ) Æ Ë ˆ Ê ˆ Á Æ Ë Utilizdo o Exrcício 7, Exrcícios.5. S ( ) 0, ou sj,, tão lim 0. Æ Utilizdo o Exrcício 8, Exrcícios.5, s 0, portto,, tão lim π 0. Æ 0. Qurmos studr séri ltrd ( ), od 5... ( ), ddo. Vmos prcisr clculr o limit d bm como studr tl sqüêci com rlção crscimto ou dcrscimto. Pr isso, vmos pdir jud o critério d Rb. Tmos x ( ). ( )( ) Sgu qu È ù ( x) Í Î ú û x Aplicdo L Hospitl, obtmos x È ù ( x) lim Í lim Æ Î ú û xæ0 x lim xæ0 6 ( x) ( x)( )( x). 4 ( x), od x. È ù Pr, lim 0, log lim 0 Í Æ ú o π (Exrcício 8 d Sção.5), Î û Æ portto, séri é divrgt. 5

18 È ù Pr, lim 0 Í Æ Î ú, portto, lim 0 (Exrcício 7, Sção.5). û Æ Plo fto d st limit sr stritmt positivo, xistirá um 0, tl qu, pr 0,. Etão, pr 0, sqüêci srá dcrsct. Logo, pr, séri ltrd dd srá covrgt. Pr, lim (Exrcício d Sção.), logo, séri é divrgt. Æ. Olhdo pr solução do Exrcício 0 tmos: pr, séri srá covrgt; pr, srá divrgt; pr, prcismos do critério d D Morg, qu srá trtdo próxim sção..6 È f Ê ˆ ù m È Ê ˆ ù Ê ˆ Í Ë m ú. l Í Á ú l Á ml mí, Ë m ú od Î û Ë Í ú ÎÍ ûú m f ( ). Fzdo gm ( ) f Ê ˆ, Ë m rsult È Ê ˆ ù gm ( ) m lim l Í Á ú lim ml m lim 0 Æ Î Ë û mæ mæ m L pois lim ml m 0. Plo critério d D Morg, séri srá divrgt. mæ0. (Critério d Guss) Ê c b c b ˆ ( ) ( )... ( c b ) Á. Ë c c... c Como È Ê ˆ ù lim ÍÁ ú cb, dsd qu c ÆÎ Ë b 0, û 5

19 lim l Æ sgu È Ê ˆ ù c b lim l Ï s Í Á ú 0 Ì Æ Ë c b. Î û Ó s 0 Por outro ldo, s c b 0, plo fto d lim l 0, trmos, tmbém, Æ È Ê ˆ ù lim l Í Á ú 0. ( Vrifiqu. ) Æ Î Ë û Plo critério d D Morg, séri srá covrgt s c b divrgt s c b. 54

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D.

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D. Prarar o Exam 05/06 Matmática A Págia 69. O domíio d uma sucssão é o cojuto dos úmros aturais. A úica rrstação gráfica qu obdc a sta codição é a da oção D. Nota qu DA, D B 0 DC. Rsosta: D. Numa rogrssão

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

A C O N T R A R E F O R M A E A R E F O R M A C A T Ó L I C A N O S P R I N C Í P I O S D A I D A D E M O D E R N A 2

A C O N T R A R E F O R M A E A R E F O R M A C A T Ó L I C A N O S P R I N C Í P I O S D A I D A D E M O D E R N A 2 1 Í N D I C E A C O N T R A R E F O R M A E A R E F O R M A C A T Ó L I C A N O S P R I N C Í P I O S D A I D A D E M O D E R N A 2 A P R E S E N T A Ç Ã O : A L G U M AS N O T A S E P A L A V R A S 2

Leia mais

" % ! 2 ( ' /, ( 1 0 /* ( (. + + ( ( ' + % -, + ( )* ( ' # & $! # "!!

 % ! 2 ( ' /, ( 1 0 /* ( (. + + ( ( ' + % -, + ( )* ( ' # & $! # !! " % 4 5 6 7 8 9 /, 1 0 /. %, ) # & $ # " \ G D ] G _ Z D G D o p q r s [ Z Z J l G D a k j h a _ a D G ` G ^ [ ] \ [ [ X G G G J G G \ G D ] G _ Z D G D o p q r t [ Z Z J l G D a k j h a _ a D G ` G ^

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano Mtril Tórico - Módulo Torm d Pitágors plicçõs plicçõs do Torm d Pitágors Nono no utor: Prof. Ulisss Lim Prnt Rvisor: Prof. ntonio min M. Nto d mio d 019 1 lgums plicçõs simpls Nsst ul, prsntrmos mis lgums

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros.

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros. Cpítulo I Noçõs Eltrs d Mtátic. Oprçõs co frcçõs, Equçõs Iquçõs Tipos d úros {,,,,,6, } cojuto dos úros turis. 0 { 0} {,,,, 0,,,, } cojuto dos úros itiros., 0 0 p : p, q q cojuto dos úros rciois ou frccioários,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo MAT46 - Cálculo I - Teorems Fundmentis do Cálculo Alexndre Mirnd Alves Anderson Tigo d Silv Edson José Teixeir Os Teorems Fundmentis do Cálculo Os próximos teorems fzem conexão entre os conceitos de ntiderivd

Leia mais

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação Faculdad d Ciêcias Exatas da Egharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 07 Matmática - 4/06/07 Atção: Justifiqu os raciocíios utilizados

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

M a n h ã... p r e s e n t e! L u g a r... p r e s e n t e! Q u e m... p r e s e n t e! N e n h u m... p r e s e n t e! C u í c a... p r e s e n t e!

M a n h ã... p r e s e n t e! L u g a r... p r e s e n t e! Q u e m... p r e s e n t e! N e n h u m... p r e s e n t e! C u í c a... p r e s e n t e! C a r o l i n a M a n h ã......................................................................... p r e s e n t e! L u g a r.......................................................................... p

Leia mais

A C T A N. º I V /

A C T A N. º I V / 1 A C T A N. º I V / 2 0 0 9 - - - - - - A o s d e z a s s e t e d i a s d o m ê s d e F e v e r e i r o d o a n o d e d o i s m i l e n o v e, n e s t a V i l a d e M o n c h i q u e, n o e d i f í c

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

U N I V E R S I D A D E C A N D I D O M E N D E S P Ó S G R A D U A Ç Ã O L A T O S E N S U I N S T I T U T O A V E Z D O M E S T R E

U N I V E R S I D A D E C A N D I D O M E N D E S P Ó S G R A D U A Ç Ã O L A T O S E N S U I N S T I T U T O A V E Z D O M E S T R E U N I V E R S I D A D E C A N D I D O M E N D E S P Ó S G R A D U A Ç Ã O L A T O S E N S U I N S T I T U T O A V E Z D O M E S T R E E S T U D O D O S P R O B L E M A S D A E C O N O M I A B R A S I L

Leia mais

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos CAPÍTULO Eercícios.. a) Ï f( ), onde f( ) Ó f é inegrável em [, ], pois é limiada e desconínua apenas em. Temos f( ) f( ) f( ) Em [, ], f() difere de apenas em. Daí, f ( ) [ ] Em [, ], f(). Logo, f( )

Leia mais

Á Ç ó á ç

Á Ç ó á ç Á Ç ó á ç É í é çã ô ã â ã á ç õ é á õ é ê ã ê çã õ ê ú õ ê ó ó ó ó ã é à çã ê é ê í é ã ó ã á ç í á é ã ó é á ó ó á ó á ã ó ã ã çã ó ê ó ê á ô ô ã ã çã ô çã ô í ê ó á ó ê çõ ê é á ê á á ç ó í çã ó ã é

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

Aspectos da Fitossanidade em citros

Aspectos da Fitossanidade em citros Aspectos da Fitossanidade em citros ! " " # $ % & ' $ ( ' $ $ ) ' $ +, & $ ' ( -.,, '! / / 0 ' & 0 1 ' & 2 ) & 3 4 5 6! 3 7 " %! 1! & 0 0 8 9 : - ; < = > = " > < ; = # > " 6 3 > 5 8 9 : - ; < = > = " >

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

A T A N º 2 /

A T A N º 2 / A T A N º 2 / 2 0 1 5 A o s o i t o d i a s d o m ê s d e m a i o d o a n o d e d o i s m i l e q u i n z e, p e l a s v i n t e h o r a s e q u a r e n t a m i n u t o s r e u n i u e m s e s s ã o e

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO Cpítlo Técnics d Inrção - TÉCNICAS DE INTEGRAÇÃO. INTEGRAÇÃO POR PARTES Um técnic d inrção mito útil é inrção por prts, q dpnd d fórml pr difrncil d m prodto. Sjm f g fnçõs difrnciávis d. Então, pl rgr

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra.

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra. I- STIMAÇÃO D PARÂMTROS 9 INTRODUÇÃO: Sj,,, um mostr ltór com fução (dsdd d proldd cohcd, sj d θ um vtor dos prâmtros dst vrávl ltór Assm θ {θ, θ,, θ k } os k prâmtros qu chmmos d spço d prâmtros dotdo

Leia mais

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP Mtril Tórico - Módulo Frçõs Algébrics Oprçõs Básics Oitvo Ano Autor: rof. Ulisss Lim rnt Rvisor: rof. Antonio Cminh M. Nto ortl d OBME Simplificção d frçõs lgébrics Um frção lgébric é um xprssão lgébric

Leia mais

Aula 16 p. 1. 1:for Cada v V do 2: Make_Set(v) 3:for cada aresta (u, v) E do. 1:if Find_Set(u)=Find_Set(v)then. 5: Union(u, v)

Aula 16 p. 1. 1:for Cada v V do 2: Make_Set(v) 3:for cada aresta (u, v) E do. 1:if Find_Set(u)=Find_Set(v)then. 5: Union(u, v) Estrutur d Ddos pr Cojutos Aul 16 Estrutur d ddos pr Cojutos Disjutos Prof. Mro Aurélio Stfs mro m dt.ufms.r www.dt.ufms.r/ mro Complxidd srá mdid m fução: úmro d oprçõs Mk_St m úmro totl d oprçõs Mk_St,

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds

Leia mais

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5!

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5! Novo Espaço Matmática A º ao Proposta d Rsolução [jairo - 08] Algarismos ímpars:,,, 7, 9 Algarismos pars:, 4, 6, 8 CADERNO (É prmitido o uso d calculadora gráfica) Nº d possibilidads para o algarismo das

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar.

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar. Eam m 7 d Jairo d 007 Cálculo ATENÇÃO: FOLHAS DE EXAE NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eam fial ª Época 7 Jairo d 007 Duração: horas 0 miutos Rsolva os grupos do am m folhas sparadas O uso

Leia mais

C R I S T A N D A D E M E D I E V A L I g r e j a e P o d e r : r e p r e s e n t a ç õ e s e d i s c u r s o s ( s é c u l o s I V - X I )

C R I S T A N D A D E M E D I E V A L I g r e j a e P o d e r : r e p r e s e n t a ç õ e s e d i s c u r s o s ( s é c u l o s I V - X I ) 1 C R I S T A N D A D E M E D I E V A L I g r e j a e P o d e r : r e p r e s e n t a ç õ e s e d i s c u r s o s ( s é c u l o s I V - X I ) F r a n c i s c o J o s é S i l v a G o m e s An t e s m e

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

P a l a v r a s - c h a v e s : l i n g u í s t i c a, l i n g u a g e m, s o c i a b i l i d a d e.

P a l a v r a s - c h a v e s : l i n g u í s t i c a, l i n g u a g e m, s o c i a b i l i d a d e. A V A R I E D A D E L I N G U Í S T I C A D E N T R O D A S O C I E D A D E C A M P O - G R A N D E N S E N O Â M B I T O D O M E R C A D Ã O M U N I C I P A L E F E I R A C E N T R A L D E C A M P O G

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

6 Cálculo Integral (Soluções)

6 Cálculo Integral (Soluções) 6 Cálculo Inegrl (Soluções). () Sej d {,..., n } um decomposição de [, ]. Podemos ssumir que d (cso conrário, om-se d d {}, e em-se S d ( f ) S d ( f ), s d ( f ) s d ( f )). Sej k, pr lgum k {,..., n

Leia mais

Ô Õ Ö Ø Ù Ú Û Ü Ú Ü Û Ø Ý Þ ß à á Þ â Þ Õ Ö Þ Ø Ù Ý Ù ã FICHA DE IDENTIFICAÇÃO DO PROJECTO DA INSTALAÇÃO ELÉCTRICA! " Œ \ # $ % & Ã Ä Å Â Ä Z Z Š Z Æ Ç \ È ' ( ) % # * % # +, + & ) - %. + " % #, #! / "

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

< 9 0 < f(2) 1 < 18 1 < f(2) < 19

< 9 0 < f(2) 1 < 18 1 < f(2) < 19 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idtifiqu todas as folhas Folhas ão idtificadas NÃO SERÃO COTADAS Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Exam Fial d ª Época m 5 d Maio 9 Duração: horas miutos

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho 1 Aul 14 Ofrt Agrgd, Inflção Dsmprgo Populção, Tx d Prticipção, Populção Activ ( t ), Tx d Emprgo, Populção Emprgd (N t ), Tx d Dsmprgo (u t ) Populção Dsmprgd ( t N t ). Tx d Dsmprgo (u t ): u t t N t

Leia mais

Transporte Vestiário Higiene Pessoal Poupança

Transporte Vestiário Higiene Pessoal Poupança Álgbr Mricil PRTE LGUMS CONSDERÇÕES TEORCS MTRZES Noção d mriz Mrizs formm um impor cocio m mmáic, d spcil uso o sudo d rsformçõs lirs mriiz é um bl d lmos disposos m lih colus Mriz m é um bl d m úmros

Leia mais

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então Dfiição clássica probabili Dfiição Sja S fiito S o úmro lmtos S por xmplo S {a b c S 3 Supoha P({) P({ 0 )para quaisr 0 2 S Etão P({) /S Dmostração Como S é do tipo S { 2 o S sgu S { [ { 2 [ [ { portato

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Exme Ncol de Mtemátc A 07 ( ạ fse) GRUPO I (Versão ). Pretede-se determr qutos úmeros turs de qutro lgrsmos, múltplos de, se podem formr com os lgrsmos de 9. Nests codções, só exste

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

N Ao fim de 3 horas e 30 minutos existem, aproximadamente, 898 indivíduos.

N Ao fim de 3 horas e 30 minutos existem, aproximadamente, 898 indivíduos. TEMA INTRODUÇÃO AO CÁLCULO DIFERENCIAL II Fuçõs pociis lorítmics N O úmro iicil d idivíduos é N,, Ao im d ors miutos istm, proimdmt, idivíduos Pr qulqur istt t tm-s Nt N t t t b t t c q d c d b c d b c

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

EBI DA BOA ÁGUA EB1 N.º 2 DA QUINTA DO CONDE EB1/JI DO PINHAL DO GENERAL JI DO PINHAL DO GENERAL

EBI DA BOA ÁGUA EB1 N.º 2 DA QUINTA DO CONDE EB1/JI DO PINHAL DO GENERAL JI DO PINHAL DO GENERAL L I S T A D E C A N D I D A T U R A S A O C O N C U R S O D E A S S I S T E N T E O P E R A C I O N A L P U B L I C A D O N O D I Á R I O D A R E P Ú B L I C A N º 1 5 8 D E 1 4 / 8 / 2 0 1 5 A V I S O

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais