Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Tamanho: px
Começar a partir da página:

Download "Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal"

Transcrição

1 EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um ds fss N ntnt, prsnç d trnsfrmdr rqur cuidd ns trnsfrmçõs d tnsã crrnt, spcilmnt s s cnxõs ds nrlmnts primári scundáris frm distints (ist é, strl-triângul triângulstrl) A sguir nlisrms um circuit trifásic quilibrd cm um trnsfrmdr triângulstrl O bjtiv dss xrcíci é prticr mnipulçã ds trnsfrmçõs d crrnt tnsã m um trnsfrmdr cm difrnts cnxõs d primári scundári EA6 Circuits FEEC UNCAMP Aul 6 ms nlisr sguint circuit trifásic: Grdr Trf Δ 0 MA (trifásic) 0/00 k j00ω Crg 0 MA (trifásic) 40 k (linh) FP 0,8 trsd Dsj-s sbr ptênci ntrgu pl grdr, d frm trms 40k (tnsã d linh) n crg Sluçã: ms inicilmnt intrprtr s dds d cd cmpnnt: Trnfrmdr: Pssui cnxã triângul - strl, A ptênci prnt trifásic (d primári u d scundári) é 0 MA, É idl, 0 k n nrlmnt primári crrspnd 00 k n nrlmnt scundári

2 EA6 Circuits FEEC UNCAMP Aul 6 Ess infrmçã ns prmit cncluir qu PR 00k 0k 0 SEC É imprtnt ntr qu 0 é rlçã ntr tnsõs ds nrlmnts, nã ds tnsõs d linh, um vz qu trnsfrmdr é Δ Crg: Ptênci prnt trifásic vl 0 MA, Tnsã nminl d linh é 40 k, Ftr d ptênci é 0,8 trsd Linh: A impdânci pr linh vl j 00Ω Cm rgr grl d sluçã d prblms d circuits trifásics quilibrds, dvms: Trnsfrmr tds s cmpnnts d circuit ns sus quivlnts strl, Anlisr pns um ds fss d circuit EA6 Circuits FEEC UNCAMP Aul 6 ms, ntã, primirmnt, rprsntr crg trnsfrmdr ns sus quivlnts strl Crg: S tnsã d linh vl 40 k, ntã tnsã d fs é dd pr: L 40 96, k F Sbms tmbém qu ptênci spcificd d 0 MA é ptênci trifásic prnt, dd pr: S φ L L θ Assim, crrnt d linh, u sj, qul qu trvss crg n su frm strl, vl ,94 A L L 4

3 EA6 Circuits FEEC UNCAMP Aul 6 Nt qu 6 96, 0 50, A, F L EA6 Circuits FEEC UNCAMP Aul 6 Cnsidrms s squms triângul strl bix: qu é xtmnt ptênci d um fs d crg Prtnt, pdms rprsntr crg cm: 50,94A b c c b b c n n b b 96,k n 40k Supnd squênci d fs bc, tms c b c b b n bn b c 0, b n 0 b Trnsfrmdr: Cm trnsfrmdr tm cnxã triângulstrl, tms qu mdificr pns cnxã d primári, pssnd d triângul pr strl Primirmnt vms rvr s rlçõs ntr crrnts (tnsõs) triângul strl 5 6

4 EA6 Circuits FEEC UNCAMP Aul 6 Cnsidrms gr trnsfrmçã d cnxã Δ pr : EA6 Circuits FEEC UNCAMP Aul 6 Tnsã: Sbms qu b n 0 lv Prtnt: ms drivr s rlçõs: 7 8

5 EA6 Circuits FEEC UNCAMP Aul 6 EA6 Circuits FEEC UNCAMP Aul 6 Crrnt: Sbms qu, Pdms gr dsnhr circuit quivlnt mnfásic, m qu tds s cmpnnts sã rprsntds pls sus quivlnts strls: 0 lv b u Prtnt: 0 0 G m qu Z L ZC C Sbms qu C 96, 0 k 50,94 6,9 A, C nd dtms tnsã n crg cm rfrênci d fs Prtnt: + Z 99,4,7 k C C L 9 0

6 EA6 Circuits FEEC UNCAMP Aul 6 Cnsquntmnt:,5 8,8 k 0 Qunt às crrnts, tms: C 50,94 6,9 A 0 88, 66,9 A Prtnt: G G,5 8,8 k 88, 66,9 A Assim, ptênci trifásic frncid pl fnt vl: * ( ) 0,465 MA S φ G G 8,07

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

Eu só quero um xodó. Música na escola: exercício 14

Eu só quero um xodó. Música na escola: exercício 14 Eu só qu u xdó Músic n scl: xcíci 14 Eu só qu u xdó Ptitus Mi, hni lt Aut: Dinguinhs stáci Rgiã: Pnbuc : 1973 Fix: 14 Anj: Edsn Jsé Alvs Músics: Edsn Jsé Alvs vilã Pvt clints, sx t Jsé Alvs Sbinh Zzinh

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios sluçõs Ecícis MTEMÁTI IV LOO 0 nhcimnts lgébics pítul 0 Funçõs Tignmétics 0 p.( p-)( p-b).( p- c), n + b+ c 8+ + p 8 8.0...9..... LOO 0 0 D + D sn cs tg 0 + 0... sn +.,8.,8. sn 0. +,.,8. +, cm. sn 0 0

Leia mais

IV.5 O transformador linear

IV.5 O transformador linear ircuits Elétrics.5 O trnsfrmdr liner Um trnsfrmdr é um dispsitiv cnstituíd pr dis u mis enrlments mgneticmente cplds. O trnsfrmdr liner d Figur.7 é utilizd cm dispsitiv de cplment entre fnte e crg. Z F

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara Institut d Físic USP Físic Mdn I Aul 9 Pfss: Mzé Bch Aul 9 O átm d hidgêni n ti d Schding 1. A sluçã d átm d H n ti d Schding. Cmpçã cm s sultds d Bh.. Os stds dgnds m ngi: stds d msm ngi divss móduls

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

Lista de exercícios Conceitos Fundamentais

Lista de exercícios Conceitos Fundamentais Curs: Engenharia Industrial Elétrica Disciplina: Análise Dinâmica Prfessr: Lissandr Lista de exercícis Cnceits Fundamentais 1) Em um circuit trifásic balancead a tensã V ab é 173 0 V. Determine tdas as

Leia mais

Sistemas Elétricos de Potência 1 Lista de Exercícios No. 1 Revisão de Circuitos em Corrente Alternada

Sistemas Elétricos de Potência 1 Lista de Exercícios No. 1 Revisão de Circuitos em Corrente Alternada Sistemas Elétrics de Ptência Lista de Exercícis N. Revisã de ircuits em rrente lternada Parte : Ptência em Sistemas Mnfásics. Duas cargas em paralel cnsmem respectivamente 20 W cm um fatr de ptência de

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação.

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação. PONTAP DE SAÍDA TCNICAS DE Pntpé bliz Est lnc cntc n iníci jg pós cd gl. Est Gnhs cntr p dis"d jg- bl qund cm dis st jgdrs cir list d cmp tu d quip: pntpé é dd REMATE ntr d círcul cntrl. Os jgdrs jg cm

Leia mais

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Lgritms. Cneit de lgritm

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Unidade 8 Geometria: circunferência

Unidade 8 Geometria: circunferência Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Normalmente TI. padarias. Além. dormitórios. Assistência. Temos. Por. Nos. região. Nas

Normalmente TI. padarias. Além. dormitórios. Assistência. Temos. Por. Nos. região. Nas Aprsntçã Instlçõs ds A l A Nrmlmnt A Além sc Filipins. ds sgur mis lugr Cbu trnnd td, tmp sgurnç ficiis prsnç cm cnt rgiã diss, pdris. tips váris Strbucks Dnld's, Mc cm 24hrs ljs tmbém váris prt pr Tms

Leia mais

TEMA 5 2º/3º ciclo. A LIndo de perguntas. saudável? Luísa, 15 anos

TEMA 5 2º/3º ciclo. A LIndo de perguntas. saudável? Luísa, 15 anos 2º/3º cicl s O Ã Ç T N E M I d pguns u m mu um p z pdms f ps O qu sudávl? blnç d i c n c id p Sá d p d n cm p, ic mbém é g á s n v ic. Dsc ís f m f civ b id v m u i d lóics. c s impânc s g õs sb ç n s

Leia mais

Alteração da seqüência de execução de instruções

Alteração da seqüência de execução de instruções Iníci Busc d próxim Excut Prd Cicl busc Cicl xcuçã Prgrm Sqüênci instruçõs m mmóri Trdutr : Cmpilr X Intrprtr / Linkditr Cnvrt prgrm-fnt m prgrm bjt (lingugm máqui) Prgrm cmpil = mis rápi Prgrm Intrprt

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00%

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00% Anxo V 1) Srá purd rlção conform bixo: = Folh d Slários incluídos ncrgos (m 12 mss) Rcit Brut (m 12 mss) 2) Ns hipótss m qu corrspond os intrvlos cntsimis d Tbl V-A, ond < signific mnor qu, > signific

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls formlids imigrção pgr su bggm

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano planjamnto Anális d Exprimntos Instituto Fdral Goiano planjamnto Anális d 1 planjamnto 2 Anális d 3 4 5 6 7 Contúdo 8 Parclas subdivididas (split plot) planjamnto Anális d É um dlinamnto xprimntal? Parclas

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3)

Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3) Miroons 3/4 Mstro m Ennhri Eltroténi Comutors Rsonsál: Prof. Afonso Brbos º Exm 4//4 urção: 3 hors Rsolr roblm m folh sr Problm Consir junção rrsnt n Fi.. Amit qu s linhs bifilrs são iis (sm rs). Tom =.

Leia mais

02 de outubro de 2013

02 de outubro de 2013 Gnralidads planjamnto Exprimntos Univrsidad Fdral do Pampa (Unipampa) 02 d outubro d 2013 Gnralidads planjamnto 1 Gnralidads planjamnto 2 3 4 5 6 Contúdo 7 Parclas subdivididas (split plot) Gnralidads

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Propagação de sinais senoidais em um cabo coaxial

Propagação de sinais senoidais em um cabo coaxial Disipina: Ondas Prpaaçã Prf.: Dr. Airtn Rams Univrsidad d Estad d Santa Catarina Cntr d Ciênias Tnóias CCT Dpartamnt d Ennharia Eétria Labratóri d Etrmantism E-3 Prpaaçã d sinais snidais m um ab axia O

Leia mais

+ fotos e ilustrações técnicas de outras usinas

+ fotos e ilustrações técnicas de outras usinas Imgns problms mbintis no sul Snt Ctrin, corrnts s tivis minrção crvão, su lvgm su uso m usin trmlétric + fotos ilustrçõs técnics outrs usins Fotos fits por Oswl Svá ntr 1992 2001, durnt visits fits juntmnt

Leia mais

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM...

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM... C CORÇÃO NOIV - 1. O SNHOR É OM INTR: /C# C7+ /C# O SNHOR É OM C7+ SU MOR UR PR SMPR L É OM... Letra e Música: avi Silva C CORÇÃO NOIV - 2. SNTO É O TU NOM M TO TRR S OUVIRÁ UM NOVO SOM UM CNÇÃO MOR PRCORRRÁ

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centr Federal de Educaçã Tecnlógica de Santa Catarina Departament Acadêmic de Eletrônica Retificadres Circuits it em CA Série, Paralel e Mist Prf. Clóvis Antôni Petry. Flrianóplis, agst de 2008. Bibligrafia

Leia mais

PARTE I - Circuitos Resistivos Lineares

PARTE I - Circuitos Resistivos Lineares Prolem 1.1 Leis de Kirchhoff PARTE I Circuitos Resistivos Lineres i 1 v 2 R 1 10A 1 R 2 Considere o circuito d figur 1.1. ) Constru o seu grfo e indique o número de rmos e de nós. ) Clcule os vlores ds

Leia mais

9.1 Indutores e Indutância

9.1 Indutores e Indutância Cpítuo 9 Indutânci 9.1 Indutores e Indutânci Neste cpítuo, estudmos os indutores e sus indutâncis, cujs proprieddes decorrem diretmente d ei de indução de Frdy. Cpcitores: Recpitução Lembre-se que, no

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

Cap3- Osciladores 3.5- Osciladores sinusoidais Tipos de osciladores

Cap3- Osciladores 3.5- Osciladores sinusoidais Tipos de osciladores ap- Osciladres Tips de sciladres Osciladres sinusidais Sã baseads em filtrs muit selectivs na frequência e amplificadres cm realimentaçã psitiva fraca Têm póls sbre eix imaginári Sã sciladres lineares

Leia mais

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores 4.4 - Acelerômetros ombindos Montgem: G θ x x x ircuito: reerênci R R v R R R R R - + 0 + v R - + R 0-7 rcterístics de ensores Deslocmento liner médio: x x + x && x + Deslocmento ngulr médio: θ && θ x

Leia mais

Noções Básicas das Placas de Interface de Voz E&M

Noções Básicas das Placas de Interface de Voz E&M Nçõs Básic d Plac d Intrfac d Vz E&M Índic Intrduçã Pré-rquisits Rquisits Cmpnnts Usads Cnvnçõs Númrs d Prdut Rcurss VIC2-2E/M Cnfiguraçã Suprt a Platafrma VIC2-2E/M Prblm Cnhcids Intrduçã A sinalizaçã

Leia mais

Definição e Criação de Molduras

Definição e Criação de Molduras TQS - Mldur Escrit pr Eng. Cmil Ferreir Seg, 20 Mi 2013 09:47 - Ness mensg rei lg dic crir nv mldur pltg n TQS. Ain nesse mesm text, lbrrei ts sbre recurs interessnte p uxiliá-ls criçã crimbs (u sels)

Leia mais

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho 1 Aul 14 Ofrt Agrgd, Inflção Dsmprgo Populção, Tx d Prticipção, Populção Activ ( t ), Tx d Emprgo, Populção Emprgd (N t ), Tx d Dsmprgo (u t ) Populção Dsmprgd ( t N t ). Tx d Dsmprgo (u t ): u t t N t

Leia mais

ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO. Prof. Dr. Roberto Valdés Puentes

ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO. Prof. Dr. Roberto Valdés Puentes ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO Prf. Dr. Rbr Vdés Pus PPGED/FACED/UFU rbrpus@fcd.ufu.br MOMENTOS DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO

Leia mais

ESCALA DE PITTSBURGH PARA AVALIAÇÃO DA QUALIDADE DO SONO

ESCALA DE PITTSBURGH PARA AVALIAÇÃO DA QUALIDADE DO SONO ESCALA DE PITTSBURGH PARA AVALIAÇÃO DA QUALIDADE DO SONO As qustõs sguints rfrm-s as sus hábits d sn durant mês passad. Suas rspstas dvm dmnstrar, d frma mais prcisa pssívl, qu acntcu na mairia ds dias

Leia mais

Análise de Circuitos em Regime Forçado Sinusoidal

Análise de Circuitos em Regime Forçado Sinusoidal Teria ds Circuits e Fundaments de Electrónica Análise de Circuits em egime Frçad Sinusidal Teresa endes de Almeida TeresaAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T..Almeida ST-DEEC- ACElectrónica

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

======================== Œ œ»» Œ C7 ˆ_ ««G 7

======================== Œ œ»» Œ C7 ˆ_ ««G 7 1) É tã bnit n tr (ntrd) cminh cm Jesus (Miss d Temp mum cm crinçs) & 2 4 m œ É tã b ni t n_ tr me s s gr d, & œ t h brn c, ve ce s. & _ Mis s vi c me çr n ns s_i gre j; _u & j im c ris ti cm e gri, v

Leia mais

1. Sistemas Trifásicos

1. Sistemas Trifásicos Sistemas Elétricos de Potência 1. Sistemas Trifásicos Professor: Dr. Raphael Augusto de Souza Benedito E-mail:raphaelbenedito@utfpr.edu.br disponível em: http://paginapessoal.utfpr.edu.br/raphaelbenedito

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Apenas 5% dos Brasileiros sabem falar Inglês

Apenas 5% dos Brasileiros sabem falar Inglês Apns 5% ds Brsilirs sb flr Inglês D crd cm um lvntmnt fit pl British Cncil pns 5% d ppulçã sb fl r Dvs lbrr stms épcs pré-vnts sprtivs s lhs d mund td cmçm s vltr cd vz mis pr Brsil pr iss nã bst dminr

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

ATIVIDADES RECUPERAÇÃO PARALELA

ATIVIDADES RECUPERAÇÃO PARALELA ATIVIDADES RECUPERAÇÃO PARALELA Nom: Nº Ano: 6ºD Data: / /0 Bimstr: Profssor: Dnis Rocha Disciplina: Matmática Orintaçõs para studo:. Rvisar os contúdos trabalhados no bimstr.. Rfazr os xrcícios do cadrno

Leia mais

3.5 Métodos Numéricos para a Solução de Problemas de Contorno

3.5 Métodos Numéricos para a Solução de Problemas de Contorno 3.5 Métd Numéric ara a Sluçã d Prblma d Cntrn Equaçõ difrnciai rdinária Eml 3.7. Difuã-raçã m uma artícula catalítica ra: Figura 3.6. Partícula catalítica férica. Balanç d maa: (tad tacinári, itérmic)

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Curso grátis Inglês pr vigm Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM Fns Chs C. 9 Mlgm nrsrs: ml h PWM J. A. Pml 9. MOEAGEM E CONERSORES: MOEO A CHAE PWM As lgs báss nrsrs CCCC ssum um h nrl ur nãnrl sss lmns lnrs nrns n m. A njun ss us hs r nm h PWM [9.]. O bj ns íul é

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinis e Sistems Série de Fourier Rento Dourdo Mi Fculdde de Ciênci e Tecnologi de Montes Clros Fundção Educcionl Montes Clros Introdução A Série e Integrl de Fourier englobm um dos desenvolvimentos mtemáticos

Leia mais

Armazenamento de Sementes de Milho em Recipientes Reutilizáveis

Armazenamento de Sementes de Milho em Recipientes Reutilizáveis Arznnt d Snt d Milh Rcipint Rutilizávi Miz Sd Strg In Rubl Cntinr SANAZÁRIO, Ann Chritin 1. kinzri@yh.c.br; COELHO, Fábi Cunh 1. fclh@unf.br; VIEIRA, Hnriqu Durt 1. hnriqu@unf.br; RUBIM, RqulL Filh 1.

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri

Leia mais

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

MATRIZES E DETERMINANTES LISTA 5

MATRIZES E DETERMINANTES LISTA 5 RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012)

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012) ANEO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigênci: 01/01/2012) (Rdção dd pl Li Complmntr nº 139, d 10 d novmbro d 2011) Alíquots Prtilh do Simpls Ncionl - Comércio Rcit Brut m 12 mss

Leia mais

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira: MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinis e Sistems Série de Fourier Rento Dourdo Mi Fculdde de Ciênci e Tecnologi de Montes Clros Fundção Educcionl Montes Clros Introdução A Série e Integrl de Fourier englobm um dos desenvolvimentos mtemáticos

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Para a realizar um projeto Elétrico Industrial, é necessário a aplicação de alguns fatores de projeto. São eles:

Para a realizar um projeto Elétrico Industrial, é necessário a aplicação de alguns fatores de projeto. São eles: Fatores de Projeto Elétrico Para a realizar um projeto Elétrico Industrial, é necessário a aplicação de alguns fatores de projeto. São eles: 1) Fator de Demanda 2) Fator de Carga 3) Fator de Perda 4) Fator

Leia mais

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP Mtril Tórico - Módulo Frçõs Algébrics Oprçõs Básics Oitvo Ano Autor: rof. Ulisss Lim rnt Rvisor: rof. Antonio Cminh M. Nto ortl d OBME Simplificção d frçõs lgébrics Um frção lgébric é um xprssão lgébric

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teori d Computção Segundo Semestre, 2014 ul 8: Grmátics Livres de Contexto DINF-UTFPR Prof. Ricrdo Dutr d Silv Veremos gor mneir de gerr s strings de um tipo específico de lingugem, conhecido como lingugem

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Ajuste Fino. Por Loud custom Shop Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS

Ajuste Fino. Por Loud custom Shop Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS Ajuste Fin Pr Lud custm Shp Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS AJUSTE FINO Uma das cisas mais bacanas n mund da guitarra é fat de nã existir cert u errad. Sempre irá existir muitas

Leia mais

Atividade prática Partida triângulo + cálculos para motores

Atividade prática Partida triângulo + cálculos para motores Objetivos da aula Atividade prática Partida triângulo + cálculos para motores Partir motores de indução trifásicos; Entender a ligação triângulo e seus conceitos básicos; e Cálculos úteis para motores.

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais