2 Estrutura a Termo de Taxa de Juros

Tamanho: px
Começar a partir da página:

Download "2 Estrutura a Termo de Taxa de Juros"

Transcrição

1 Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre taxas de juros de títulos de reda-fxa de mesma qualdade credtíca, mas com dferetes prazos de vecmeto. A Yeld Curve geralmete é costruída a partr de títulos que pagam juros somete o vecmeto, ou seja, os zero coupo bods. Títulos que pagam juros termedáros (coupo) ão são aproprados porque estara embutda a hpótese de revestmeto dos cupos a mesma taxa, o que dfclmete é verdade. O levatameto da curva de retabldade é extremamete mportate para o mercado facero, pos serve como base para a precfcação de strumetos de reda-fxa, além ser utlzada como bechmark a determação de taxas em todos os outros setores do mercado de dívda Formação da Estrutura a Termo de Taxa de Juros Exstem dferetes teoras que procuram explcar a formação da estrutura a termo de taxa de juros. Segudo Hull (2002) três são as prcpas: Teora das Expectatvas, Teora da Segumetação de Mercado e Teora da Preferêca pela Lqudez. A Teora das Expectatvas é a mas smples e afrma que taxas de juros de logo prazo refletem expectatvas futuras o curto prazo. A terpretação dessa teora sugere que para o vestdor sera dferete, por exemplo: adqurr um título com prazo de um ao e carrega-lo até o seu vecmeto; adqurr um título semelhate com prazo de ses meses e dado seu vecmeto efetuar a compra de outro título com prazo de ses meses ou comprar um título com vecmeto em dos aos e efetuar sua veda após um ao.

2 Estrutura a Termo de Taxa de Juros 21 É mprovável que a Teora das Expectatvas cosga explcar completamete a estrutura a termo da taxa de juros. Detre os motvos destaca-se a suposção que os vestdores são dferetes ao rsco serdo em papés com prazos mas logos. A Teora da Segmetação de Mercado dz que ão exste relação etre as taxas de curto, médo e logo prazo. Na verdade exstram grupos de vestdores que teram certas preferêcas por títulos com determado prazo de vecmeto. Na medda que a demada por títulos de um prazo aumeta em relação a outros, a taxa de remueração oferecda ao vestdor cara quado comparada com as taxas de títulos de meor demada. A Teora da Preferêca pela Lqudez afrma que os vestdores ão são dferetes ao rsco. Como títulos mas logos represetam maor rsco (pos seus preços são mas suscetíves a mudaças a taxa de juros), sera ecessára clusão de um prêmo para atrar o vestdor Expressão das Taxas de Juros O mercado braslero possu úmeras dfereças o que tage a expressão de taxas de juros, quado comparada com o mercado mudal. Segudo Sa (2001), exstem duas dfereças fudametas etre o mercado braslero de juros e os mercados teracoas. Uma dfereça está a forma de captalzação adotada o Brasl. Os prcpas mercados teracoas utlzam a captalzação lear (juros smples) equato o mercado braslero utlza captalzação expoecal (juros compostos) em operações em Reas e captalzação lear em operações em moeda teracoal. O uso dos juros compostos o mercado braslero se deve prcpalmete ao seu hstórco de flação, ode essa forma de captalzação podera capturar melhor seus efetos sobre a moeda braslera.

3 Estrutura a Termo de Taxa de Juros 22 A outra dfereça ocorre com o úmero de das usados para cálculo da taxa de juros em um tervalo de tempo. O Brasl utlza como coveção de ao o prazo de 252 das útes para produtos de tesourara como títulos públcos e CDI e 360 das corrdos para produtos comercas em reas como empréstmos e facametos. O modelo teracoal toma como base prazos em das corrdos Vértces, Iterpolação e Extrapolação Para que se possa gerar uma estrutura a termo de taxa de juros, é precso que sejam defdos os vértces, método de terpolação dos vértces e extrapolação da curva Vértces Ates de car a abordagem sobre terpolação e extrapolação da curva, é mportate se ter claro o coceto de vértce. Os vértces são pares ordeados taxa de juros-prazo extraídos de strumetos de reda-fxa com qualdade credtíca homogêea e que refltam reas codções de oferta e demada do mercado, sedo essecas o levatameto da estrutura a termo de taxa de juros. Recomeda-se cautela o levatameto de vértces para o mercado braslero, que por ser um mercado ada loge da efcêca, possu strumetos com baxa lqudez, o que acarretara vértces de baxa cofabldade que devem ser cudadosamete poderados Iterpolação etre Vértces A terpolação é uma projeção etre dos vértces cosecutvos com o objetvo de se obter taxas para prazos termedáros. A segur serão eumerados três dos prcpas métodos adotados.

4 Estrutura a Termo de Taxa de Juros Iterpolação Lear É sem dúvda o mas smples dos métodos e cosste a terlgação de cada vértce cosecutvo por uma reta. Pode ser faclmete obtdo através da equação da reta. Cosdere as premssas abaxo: prazo do vértce; t prazo o qual se deseja obter a taxa de juros; a coefcete agular da reta; b coefcete lear da reta. Partdo da equação da reta com formato algebrsmo, obtém-se: y = ax + b e após algum = taxa taxa ( prazot prazo ) taxa 1 taxa t + prazo prazo 1 (1) Iterpolação Log-Lear Esse método utlza a mesma fução de terpolação lear, com a dfereça da aplcação de logartmos eperaos aos vértces (taxas de juros). A terpolação Log-lear é a forma de terpolação de maor setdo ecoômco o Brasl, já que aqu se utlza o regme composto de captalzação aplcado a juros. Partdo da eq.(1), tem-se: l ( taxa ) t ( taxa ) l( taxa ) l = prazo prazo 1 1 ( prazo prazo ) + l( taxa ) t taxa t = e ( taxa ) l( taxa ) ( ) ( ) l prazo prazo 1 1 prazo prazo t + l taxa (2)

5 Estrutura a Termo de Taxa de Juros Iterpolação Sple O sple é um cojuto de polômos de baxo grau, udos em ós (vértces) formado uma fução cotíua em um tervalo. Para que o problema de ecotrar polômos que uam os vértces teha solução e possua certo grau de suavdade, costuma-se mpor lmtes sobre os ós. Esse método fo desevolvdo calmete para resolver a terpolação de fuções suaves, já que reduz as stabldades característcas dos polômos de alta ordem. O sple cúbco é o mas comum detro da lteratura facera. Isto ocorre porque este é o sple de mas baxo grau que possblta a cração de uma curva terpolada sem a preseça de descotudades e que seja cotuamete dferecável. Para que as curvas a termo sejam cotíuas, o sple quadrátco é o sple de meor ordem recomedado, pos permte que a curva teha ao meos uma dervada cotíua. Além dsso, para que a curva a termo seja cotuamete dferecável, o sple de meor grau a ser utlzado deverá ser o cúbco. A segur será realzada uma aálse detalhada do sple cúbco. Supoha que f seja um sple cúbco. Para cada tervalo [ ] x, x +1, ode e x + 1 x são os prazos de vértces cosecutvos, f deve ser gual a um polômo cúbco P, com o formato abaxo: P (x) = a 0, + a 1, x + a 2, x 2 + a 3, x 3 (3) [ x ], x +1 Resumdo, f(x) é gual a P (x) para cada valor de x pertecete ao tervalo, com varado de 1 até 1, cobrdo assm todos os vértces. P 1 (x) para x [ x 1, x 2 ] M f(x) = P (x) para [ x x ] M x (4), +1 P -1 (x) para x [, ] x x 1

6 Estrutura a Termo de Taxa de Juros 25 Algumas codções devem ser satsfetas para garatr que f seja cotíua e com prmeras e segudas dervadas cotíuas o tervalo [ x, ] deve ter valor gual às taxas de juros dos vértces os potos 1 x. Além dsso, f x 1, x1, K, x, ou seja, f(x ) = g(x ). Para que f preecha todas essas codções, as equações abaxo devem ser satsfetas: P x ) = g( x ), para = 1,, 1 ( P x ) g( x ), para = 1,, 1 ( + 1 = + 1 P '( x ) = s, para = 1,, 1 (5) P '( x + 1) = s + 1, para = 1,, 1 P "( x ) = P "( x ), para = 2,, 1 1 Ode s 1,, s são parâmetros a serem delmtados pelo modelo. Para que cada polômo P seja determado, deve-se fxar os valores dos parâmetros s 1,, s. O problema é mostrar como tas parâmetros podem ser detfcados. As restrções acma permtem motar um sstema com 2 equações leares cujas cógtas são s 1,, s, ou seja, teremos 2 equações 1 para cógtas. Se de alguma forma for suposto que os parâmetros s 1 e s podem ser detfcados, o sstema acma terá 2 equações e 2 cógtas, podedo ser resolvdo para os demas parâmetros de maera úca e fechada. A metodologa sple é bastate usada em mercado para a terpolação de curvas, o etato apreseta algumas stabldades, prcpalmete se a dstrbução dos vértces for heterogêea. Outras metodologas dervadas do sple foram propostas com o tuto de mmzar tas lmtações e atualmete tas métodos são muto empregados. 1 Motero e Salles (2001) mostram três metodologas dferetes para a escolha de s 1 e s : o sple cúbco completo, o sple cúbco atural e o sple cúbco ot-a-kot.

7 Estrutura a Termo de Taxa de Juros Extrapolação Os métodos de extrapolação de curva são usados para que se possa extrar taxas de juros de prazos mas logos. O mercado atual possu lqudez para apeas dos ou três aos, o que força a utlzação da extrapolação da curva de juros para prazos superores a estes. Uma das metodologas sugerdas evolve a escolha de uma jaela de tempo o segmeto logo da curva e a repetção da taxa mplícta desse segmeto para o período projetado (método flat forward). Outro método smples cosste a extrapolação log-lear para os dos últmos vértces da curva. A fgura abaxo represeta um resumo do que fo explcado o capítulo 2 até o mometo, mostrado a costrução da estrutura a termo de taxa de juros com destaque para a utlzação dos vértces, terpolação e extrapolação da curva. 18,50 Taxa (%) 17,50 16,50 15,50 Prazo (Das) Vértces Iterpolação Extrapolação Fgura 1 Costrução da estrutura a termo de taxa de juros destacado os vértces, terpolação e extrapolação da curva Mercado Futuro de taxa de juros o Brasl O mercado futuro de taxa de juros o Brasl é algo recete, tomado grade mpulso a partr do fal da década de 90, com adveto de ovos strumetos faceros que propcaram um gaho extraordáro de lqudez o mercado. O prcpal agete resposável pelo eorme crescmeto o volume de cotratos

8 Estrutura a Termo de Taxa de Juros 27 futuros de juros egocados a BM&F fo o desevolvmeto do mercado futuro de taxas de Depóstos Iterfaceros, comumete chamado de DI. O DI futuro ão fo o prmero strumeto a ser egocado o mercado futuro de taxa de juros. A prmera tetatva de laçameto de atvos desse gêero ocorreu em mao de 1986 com a emssão do cotrato futuro de Taxa de Juros Referecal OTN e também com o cotrato futuro de Certfcados de Depóstos Bacáros (CDB). Tas laçametos propcaram aos tegrates do mercado em geral, como sttuções faceras, fudos de prevdêca e demas vestdores, proteção cotra o va e vem das taxas de juros do período pós-cruzado. No ao segute fo extto o mercado futuro de taxas de juros referecados em CDB préfxado e os demas aos outros tpos de strumetos faceros com característcas semelhates foram laçados. Nos dos tópcos a segur serão abordados algus dos prcpas atvos faceros pertecetes ao mercado futuro de juros do Brasl e que serão relevates a costrução da estrutura a termo de juros braslera. Detre eles destacam-se o cotrato futuro de Depóstos Iterfaceros e os Swaps de taxas de juros DI Futuro É sem dúvda o strumeto facero que serve como termômetro das expectatvas do mercado sobre o comportameto dos juros futuros o curto prazo. Isso é possível, em prmero lugar, pelo seu elevado grau de lqudez, que garate a formação de preços em ambete compettvo e com total trasparêca. Além dsso, trata-se de um cotrato futuro referecado em uma taxa amplamete dvulgada e cohecda pelo mercado. O cotrato futuro de DI é um título hpotétco de valor omal R$ ,00 o da de seu vecmeto. Os cotratos são egocados por um preço utáro (PU) que correspode ao valor presete de um título que, rededo a taxa de juros com prazo de das útes até o vecmeto, sera resgatado, o

9 Estrutura a Termo de Taxa de Juros 28 vecmeto, pelo seu valor omal. Esse PU é expresso com duas casas decmas. Além dsso, os cotratos vecem o prmero da útl do mês. Na realdade, o objetvo do DI futuro ão é a realzação do egóco baseado o PU. Os vestdores estão teressados a egocação da taxa de juros embutda o cotrato. Um resumo desta operação é smplfcado pela eq.(6): PU du = (6) du ( 1+ ) 252 du ode: du sgfca o úmero de das útes até o vecmeto do cotrato; du é a taxa aual efetva para du das útes; PU du é o preço utáro do cotrato a data atual. Supoha que o mercado salza para uma taxa de juros de 18% a.a. quado se está a 10 das do vecmeto do cotrato. O preço utáro do cotrato será: PU du = ( 1+ 0,18) 10 = ,35 Ou seja, o valor do preço utáro de egocação do DI futuro, esse caso, será de ,35 reas Swaps de taxa de juros Ates de abordar os Swaps de taxa de juros, com destaque para o Swap pré- DI, será feta uma breve explcação sobre este atvo facero. Swap é um acordo facero de troca de fluxos de caxa futuros. Nesse acordo defe-se quado esses fluxos serão pagos e a forma como serão calculados. Normalmete o cálculo destes fluxos de caxa evolve valores futuros de uma ou mas varáves de mercado. Estededo esta explcação, os Swaps cosstem em cotratos a termo, blateras, lqudados por dfereça, cujos partcpates são sttuções faceras

10 Estrutura a Termo de Taxa de Juros 29 e ão faceras. Um detalhe que o dfereca dos cotratos futuros é que o Swap o ajuste é feto o vecmeto da operação. O Swap de taxa pré versus CDI permte a troca etre uma taxa pré-fxada em reas por uma taxa pós-fxada (flutuate) em CDI ou vce-versa. O Swap pré- DI pode ser decomposto em duas potas: uma corrgda pela taxa pré-fxada e a outra corrgda pela taxa pós-fxada (CDI). O fluxo da pota CDI começa a partr da taxa do da da operação e acumula até o CDI do da útl medatamete ates do seu vecmeto. A pota pré-fxada do Swap começa a partr do da da operação, clusve; e terma o vecmeto da mesma, exclusve, utlzado base em das corrdos. Um exemplo prátco será dado a segur para melhor lustrar esse strumeto facero. Supoha que uma empresa possu aplcações faceras dexadas ao CDI (possu atvo dexado a CDI), porém cotrau uma dívda préfxada em reas (carrega um passvo em taxa fxa em reas) para pagar em 1 ao. Os valores da dívda e aplcação, hoje, são de R$ cada e a dívda aumeta a uma taxa de 18% a.a.. Para se proteger de possíves perdas proporcoadas pela queda a taxa do CDI (como seu passvo é fxo, quedas o CDI provocaram um resultado o atvo meor que o esperado), a empresa decdu realzar um Swap pré-di, assumdo a pota atva do Swap em DI. Para se proteger 100% das osclações do CDI, o Swap deve ter as segutes característcas: ter prazo de 1 ao, possur a pota pré com valor de 18% a.a. e correspoder a um motate de R$ O resultado para a empresa, depos de 1 ao, com o a taxa assocada ao CDI cado para 17% a.a., pode ser observado a tabela 1.

11 Estrutura a Termo de Taxa de Juros 30 Atvo da Empresa x (1+ 0,17) = Passvo da Empresa x (1+ 0,18) = Resultado Orgal Empresa = Swap pota Pré (atva) x (1+ 0,18) = Swap pota DI (passva) x (1+ 0,17) = Resultado do Swap = Resultado Global = 0 Tabela 1 - Resultado o balaço da empresa após a realzação do Swap Pré-DI. Efm, o Swap cosegue amortecer qualquer flutuação de taxa detro do balaço da empresa, mostrado que é o strumeto certo para equlbrar tal balaço. No caso acma, se as taxas de juro caíssem para 17% o acumulado do ao, o resultado sem a utlzação do Swap sera um prejuízo de R$ ,00. No etato, se for feto o Swap, essa perda sera coberta pelo gaho a operação o valor de R$ ,00. Exstem outros tpos de Swaps de taxa de juros flutuate e taxa de juros préfxada comumete usados o mercado, como os Swaps de taxa pré-fxada x LIBOR 2. Detre os Swaps de taxas de juros flutuates mas egocados, podem ser ctados os que evolvem CDI over 3 x Taxa Referecal 4 (por prazos superores a um mês) e Prme Rate 5 x LIBOR. 2 Taxa de oferta do mercado terbacára de Lodres. 3 Taxa de juro dáro que é a méda dos empréstmos cobrados etre os própros bacos o Brasl. 4 Taxa calculada pelo Baco Cetral do Brasl com base as taxas de juros pratcadas pelo mercado bacáro braslero; como as que são pagas o CDB, por exemplo. 5 Taxa de juros orte-amercaa.

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

Elaborado: 2002 Ultima atualização: 23/12/2004

Elaborado: 2002 Ultima atualização: 23/12/2004 Elaborado: 2002 Ultma atualzação: 23/12/2004 Cadero de Fórmulas Apresetação Sstema Nacoal de Atvos E ste Cadero de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA CENTRO: GESTÃO ORGANIZACIONAL CÁLCULOS DE FINANÇAS MATEMÁTICA FINANCEIRA Semestre: A/2008 PROFESSOR: IRANI LASSEN CURSO: ALUNO: SUMÁRIO CÁLCULOS DE FINANÇAS INTRODUÇÃO...3. OBJETIVO:...3.2 FLUXO DE CAIXA...4.3

Leia mais

Perguntas freqüentes Credenciadores

Perguntas freqüentes Credenciadores Pergutas freqüetes Credecadores Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte pelo facameto da compra pelo emssor?

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

Capítulo 1 Matemática Financeira

Capítulo 1 Matemática Financeira apítulo Matemátca Facera. Apresetação do capítulo A matemátca facera trata da comparação de valores moetáros ao logo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas de vestmeto e

Leia mais

1.1 Apresentação. do capítulo

1.1 Apresentação. do capítulo apítulo Matemátca Facera. Apresetação do capítulo A Matemátca Facera trata da comparação de valores moetáros que estão dspersos ao logoo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

O mercado de renda fixa e a estrutura da taxa de juro

O mercado de renda fixa e a estrutura da taxa de juro O mercado de reda fxa e a estrtra da taxa de jro No Brasl, a egocação o mercado de reda fxa egloba títlos públcos e títlos prvados. O strmeto para a expressão da remeração e/o o valor de mercado de cada

Leia mais

Caderno de Fórmulas. Swap

Caderno de Fórmulas. Swap Swap Elaboração: Abrl/25 Últma Atualzação: 5/4/216 Apresetação O adero de Fórmulas tem por objetvo oretar os usuáros do Módulo de, a compreesão da metodologa de cálculo e dos crtéros de precsão usados

Leia mais

EMPRESA E MERCADO DE CAPITAIS FLUXOS FINANCEIROS FONTES DE FINANCIAMENTO DAS EMPRESAS. Mercado de Capitais. Empresa. Debêntures.

EMPRESA E MERCADO DE CAPITAIS FLUXOS FINANCEIROS FONTES DE FINANCIAMENTO DAS EMPRESAS. Mercado de Capitais. Empresa. Debêntures. TEF II Prof. Crstao Fort MERCADO ACIONÁRIO Empresa Operações Corretes Aqusção de atvos reas Fote: S.C. Myers/1976 EMPRESA E MERCADO DE CAPITAIS FLUXOS FINANCEIROS Caxa Ivestdo a empresa Caxa gerado pelas

Leia mais

Elementos de Análise Financeira Descontos Profa. Patricia Maria Bortolon

Elementos de Análise Financeira Descontos Profa. Patricia Maria Bortolon Elemetos de Aálise Fiaceira Descotos Aplicações de Juros Simples Descotos Valor Nomial = valor de resgate = valor de um título o seu vecimeto Ao liquidar um título ates do vecimeto há uma recompesa pelo

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Maríla Brasl Xaver REITORA Prof. Rubes Vlhea Foseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odvaldo Texera Lopes ARTE FINAL DA CAPA Odvaldo Texera Lopes REALIZAÇÃO

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

3 Precificação de resseguro

3 Precificação de resseguro Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até

Leia mais

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária.

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária. 1 UTOR: Emeta Luz Herque M da Slva 1 Defções de razão e proporção, propredades; Graduado em Matemátca e habltado em ísca pelo UNIEB 2 Gradezas dretamete proporcoas e versamete proporcoas, Regra de três;

Leia mais

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS Prof José Leoardo Noroha M Eg Departameto de Egehara de Prodção Escola Federal de Egehara de Itabá EFEI RESUMO: Neste trabalho

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil Educação e Pesqusa ISS: 1517-972 revedu@usp.br Uversdade de São Paulo Brasl Helee, Otavao Evolução da escolardade esperada o Brasl ao logo do século XX Educação e Pesqusa, vol. 38, úm. 1, marzo, 212, pp.

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Professor Mauricio Lutz ESTATÍSTICA BÁSICA

Professor Mauricio Lutz ESTATÍSTICA BÁSICA Proessor Maurco Lutz ESTATÍSTICA BÁSICA. Coceto Exstem mutas deções propostas por autores, objetvado estabelecer com clareza o que é estatístca, como por exemplo: Þ A Estatístca é um cojuto de métodos

Leia mais

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN Tayd Dayvso Custódo Pexoto ; Sérgo Luz Agular Leve ; Adre Herma Frere Bezerra 3 ; José

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini INTRODUÇÃO TT405 - ECONOMIA DE ENGENHARIA Materal Ddátco - 2008 Prof Lúca R A Motah INTRODUÇÃO 2 INDICE INTRODUÇÃO 7 2 O CONCEITO E ORIGEM DA ENGENHARIA ECONÔMICA 8 3 MATEMÁTICA FINANCEIRA 9 3 CONCEITOS

Leia mais

MANUAL DE PRECIFICAÇÃO DE ATIVOS MERCANTIL DO BRASIL DISTRIBUIDORA TVM

MANUAL DE PRECIFICAÇÃO DE ATIVOS MERCANTIL DO BRASIL DISTRIBUIDORA TVM MANUAL DE PRECIFICAÇÃO DE ATIVOS MERCANTIL DO BRASIL DISTRIBUIDORA TVM Atualzação.: 29/08/2014 SUMÁRIO 1 PRINCÍPIOS GERAIS PARA MARCAÇÃO A MERCADO 3 INTRODUÇÃO 3 PRINCÍPIOS GERAIS 3 ESTRUTURA ORGANIZACIONAL

Leia mais

Palavras-Chave: Teoria das Restrições, Decisões a Longo Prazo, Simulação de Monte Carlo.

Palavras-Chave: Teoria das Restrições, Decisões a Longo Prazo, Simulação de Monte Carlo. Teora das Restrções e Decsões de Logo Prazo: Camho para a Covergêca Autores PABLO ROGERS Uversdade Federal de Uberlâda ERNANDO ANTONIO REIS Uversdade Federal de Uberlâda Resumo Advogam os crítcos da Teora

Leia mais

Notas em Matemática Aplicada 9

Notas em Matemática Aplicada 9 Notas em atemátca Aplcada 9 Edtado por Elaa XL de Adrade Uversdade Estadual aulsta - UNES São José do Ro reto, S, Brasl Rubes Sampao otfíca Uversdade Católca do Ro de Jaero Ro de Jaero, RJ, Brasl Geraldo

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi ISSN 1984-7203 Projeção Populacoal 2013-2020 para a Cdade do Ro de Jaero: uma aplcação do método AB Nº 20130102 Jaero - 2013 Iva Braga Ls 1, Marcelo Pessoa da Slva, Atoo Carlos Carero da Slva, Sérgo Gumarães

Leia mais

Técnicas de Estimação no Âmbito da Pós-estratificação

Técnicas de Estimação no Âmbito da Pós-estratificação Téccas de Estmação o Âmbto da Pós-estratfcação por Aa Crsta Maro da Costa Dssertação apresetada como requsto parcal para a obteção do grau de Mestre em Estatístca e Gestão de Iformação pelo Isttuto Superor

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

Matemática Financeira

Matemática Financeira 1)Um vestdor aplcou R$6,, gerado uma remueração de R$3, ao fal de um período de um ao (36 das). Calcular a taxa de juros paga a operação. = J/ = 3/6 =, ou % ou 63 = 6 (1+ 1) 63 = 6 + 6 63 6 = 6 3 = 6 =

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA SONIA ISOLDI MARTY GAMA

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM Fabríca D. Satos, Lucla G. Rbero, Leoardo G. de R. Guedes, Weber Marts Uversdade Católca de Goás, Departameto de Computação Uversdade

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA KÁTIA MARIANA SILIVELI EPALANGA - Egehera Químca Dssertação

Leia mais

( ) Editora Ferreira - Toque de Mestre. Olá Amigos!

( ) Editora Ferreira - Toque de Mestre. Olá Amigos! Olá Amgos! Hoje coloco à dsposção de vocês aqu a seção Toque de Mestre da Edtora Ferrera (www.edtoraferrera.com.br) as questões de Matemátca Facera cobradas o últmo cocurso da axa Ecoômca Federal (EF),

Leia mais

Notas de aula da disciplina Probabilidade e Estatística

Notas de aula da disciplina Probabilidade e Estatística otas de aula da dscpla Probabldade e Estatístca Proessor M Sc Adré Luz DAMAT - UTFPR Esta apostla apreseta os tópcos prcpas abordados em sala de aula, cotedo deções, teoremas, eemplos Sua letura ão é obrgatóra,

Leia mais

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A.

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A. MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS M. Z. Nascmeto, A. F. Frère e L. A. Neves INTRODUÇÃO O cotraste as radografas vara ao logo do campo de

Leia mais

Orientadora: Profª Drª Maria Adélia Oliveira M. da Cruz Co-Orientadores: Prof Dr. Paulo de Paula Mendes Prof Dr. Manoel da Cunha Costa

Orientadora: Profª Drª Maria Adélia Oliveira M. da Cruz Co-Orientadores: Prof Dr. Paulo de Paula Mendes Prof Dr. Manoel da Cunha Costa UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO - UFRPE PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO - PRPPG PROGRAMA DE PÓS-GRADUAÇÃO EM BIOMETRIA (NÍVEL: MESTRADO) Dssertação apresetada ao Programa de Pós-Graduação

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA versão mpressa ISSN 00-7438 / versão ole ISSN 678-542 AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA Luís Alberto Duca Ragel UFF-COPPE/PEP/UFRJ

Leia mais

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA UIVERSIDADE ESTADUAL DO CEARÁ RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA DE MATRIZ DE TRASFERÊCIA FORTALEZA CEARÁ 4 RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA

Leia mais

Apêndice. Uso de Tabelas Financeiras

Apêndice. Uso de Tabelas Financeiras Apêdce C Uso de Tabelas Faceras 1. INTRODUÇÃO...2 2. SIMBOLOGIA ADOTADA E DIAGRAMA PADRÃO...2 3. RELAÇÃO ENTRE PV E FV...2 3.1. DADO PV ACHAR FV: FATOR (FV/PV)...3 3.1.1. EXEMPLOS NUMÉRICOS...5 3.2. DADO

Leia mais

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA O objetvo deste capítulo é apresetar formas da equação da coservação da massa em fução de propredades tesvas faclmete mesuráves, como a temperatura, a pressão,

Leia mais

Analise do Programa Bolsa Familia e o problema de assimetria de informação (Moral Hazard)

Analise do Programa Bolsa Familia e o problema de assimetria de informação (Moral Hazard) Aalse do Programa Bolsa Famla e o problema de assmetra de formação (Moral Hazard) Adão Rodrgues 1 Júla Araújo 2 Resumo: O objetvo deste trabalho é aalsar os problemas exstetes o programa de trasferêca

Leia mais

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo INGEPRO Iovação, Gestão e Produção Jaero de 010, vol. 0, o. 01 www.gepro.com.br Cálculo de méda a posteror através de métodos de tegração umérca e smulação mote carlo: estudo comparatvo Helto Adre Lopes

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

Curso de An lise de Fluxo de Caixa

Curso de An lise de Fluxo de Caixa Curso de A lse de Fluxo de Caxa SUMÁRIO PROGRESSÕES... 0. FÓRMULAS BÁSICAS... 0.. Progressões artmétcas... 0..2 Progressões geométrcas... 02.2 EXERCÍCIOS SUGERIDOS... 02 2 CONCEITOS DE MATEMÁTICA FINANCEIRA...

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais