Introdução ao Estudo de Sistemas Lineares

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução ao Estudo de Sistemas Lineares"

Transcrição

1 Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes reais das icógitas e b é o termo real idepedete. 1.2 Solução de uma equação liear é toda êupla ordeada ( 1, 2, 3,..., ) que tora verdadeira a seteça a1 1 a2 2 a a b. 1.3 Sistema liear é todo cojuto de duas ou mais equações lieares. A represetação de um sistema liear de p equações é expressa da seguite forma: a11 x1 a12 x2 a13 x3... a x b1 a21x1 a22x2 a23x3... a2 x b2 a x a x a x... a x b p1 1 p 2 2 p3 3 p p 1.4 Solução de um sistema liear é toda êupla ordeada ( 1, 2, 3,..., ) que tora todas as equações lieares desse sistema seteças verdadeiras, ou seja, que seja solução de cada uma das equações lieares do sistema. 1.5 Classificação dos sistemas lieares quato ao úmero de soluções: O sistema será possível se admitir pelo meos uma solução O sistema será impossível se ão admitir ehuma solução O sistema possível será determiado se possuir uma úica solução O sistema possível será idetermiado se possuir ifiitas soluções. 1

2 2. Matrizes associadas a um sistema liear. 2.1 Matriz icompleta, represetada por MI, é a matriz que tem, ordeadamete, como elemetos os coeficietes reais das icógitas. Ex.: o sistema liear MI x y 5z 3 x 2y z 2, a matriz icompleta é: x y 3z Matriz completa, represetada por MC, é a matriz que apreseta, ordeadamete, os elemetos de MI e uma colua formada pelos elemetos dos segudos membros de cada uma das equações lieares. Ex.: a partir do sistema do exemplo aterior, pode-se cocluir que a matriz completa a ele associada é: MI etermiate do sistema () é o determiate de MI, se, obviamete, tal matriz for quadrada. 3. Sistema Normal 3.1 efiição: sistema ormal é todo sistema de equações e de icógitas que apreseta determiate do sistema ão ulo ( 0 ). 3.2 Teorema de Cramer: todo sistema ormal é possível e determiado. Há, pelo meos, dois métodos práticos de demostrar o Teorema de Cramer. Um deles é feito através de igualdade matricial que revela a uicidade que permite classificar o sistema como possível e determiado; o outro se dá através do Teorema de Rouché-Capelli, aida ão explicado. Supodo que o leitor teha cohecimeto prévio de equações matriciais e que saiba que 2

3 todo sistema liear pode ser expresso através de uma equação matricial, podemos demostrar o teorema supracitado do seguite modo: a11 a12... a1 x1 a21 a22... a2 Se MI x2, det MI 0, X (matriz das a 1 a2... a x b1 b2 icógitas) e B (matriz dos termos idepedetes), etão: b a11 x1 a12 x2 a13 x3... a1 x b1 a x a x a x... a x b a x a x a x... a x b a11 a12... a1 x1 b1 a21 a22... a 2 x2 b2 a 1 a 2... a x b MI X B MI MI X MI B X MI B A codição de det MI 0, que caracteriza o sistema ormal, garate 1 MI que (a iversa da matriz icompleta) existe e é úica, o que também 1 permite garatir a existêcia e a uicidade de X MI B. Como existe uma úica êupla ( x1, x2, x3,..., x ) como solução, o sistema é, portato, possível e determiado. 3.3 Regra de Cramer: é um método de determiar a solução de um sistema ormal. É importatíssimo ão cofudir tal regra com o Teorema de Cramer, já tratado. O teorema é tão-só uma afirmação, equato que a regra é um método de resolução de sistemas ormais que se baseia o que diz o teorema. A partir dessa regra, descobrimos cada elemeto da êupla do seguite modo: x 1 1 ; x 2 2 ; x 3 3 ;...; x j j ;...; x, em que 0 é o determiate do sistema e j é o determiate da matriz que é obtida da matriz icompleta, substituido-se a j-ésima colua 3

4 1 j 2 j 3 j j TutorBrasil.com.br ( a, a, a,..., a ) pela colua da matriz dos termos idepedetes ( b, b, b,..., b ), ordeadamete Característica de uma matriz 4.1 Itrodução: os sistemas lieares, como já estudamos, podem ser classificados de acordo com o úmero de soluções que apresetam. É importate, portato, ates de tetar resolver um sistema, saber se ele admite solução. Julgar um sistema liear aigifica classificá-lo de acordo com o úmero de soluções. Quado, em um sistema liear, há um parâmetro real, podem-se discutir os possíveis valores desse parâmetro de modo que o sistema possa ser classificado como possível (determiado ou idetermiado) ou impossível. Um dos métodos existetes, para julgar e discutir um sistema liear, é o Teorema de Rouché-Capelli. Para que possamos etedê-lo, é ecessário cohecermos o coceito de característica de matriz, que, a partir de agora, terá grade importâcia o osso estudo. 4.2 efiição: característica de uma matriz A é o valor da máxima ordem dos determiates ão todos ulos de submatrizes de A, que equivalem a matrizes quadradas extraídas de A, orlado-se lihas e coluas. O Teorema de Kroecker defie característica de matriz da seguite maeira: A característica de uma matriz é o úmero atural p ( p 1) se, e somete se, existir um determiate ( ) ão ulo de uma submatriz de ordem p e p forem ulos todos os determiates de submatrizes de ordem p 1, que podem ser obtidos orlado-se das lihas restates. p com uma das coluas restates e com uma Ex.: Seja A , para se determiar a característica p dessa matriz através do Teorema de Kroecker, têm-se de começar a determiar os valores dos determiates das meores submatrizes. Por exemplo: 1.º) p 1 4

5 Temos, etão, de verificar se há submatrizes de maior ordem que apresetam determiate diferete de zero. Orlado-se a submatriz aterior, ou seja, copiado filas (lihas e coluas) em toro dela, temos: 2.º) p Repetimos o procedimeto para submatrizes de maior ordem º) , e p Obs.: se pelo meos uma submatriz de ordem 3 apresetasse determiate diferete de zero, a característica p seria iscussão de sistemas lieares através do Teorema de Rouché- Capelli. 5.1 Itrodução: a discussão de sistemas lieares sempre gerou certa polêmica etre os estudates, pricipalmete quato aos métodos usados para discutilo. A maioria dos livros-texto brasileiros, ifelizmete, aida propaga a falsa idéia de que a Regra de Cramer é o melhor método de discussão de sistemas lieares. Como já explicamos, tal regra é apeas uma ferrameta de resolução de sistemas ormais, ão tedo a míima razão de ser aplicada a discussão de sistemas lieares quaisquer. Algumas pessoas, etretato, pergutam-me por que essa regra fucioa em muitos casos de discussão. Ora, os casos em que o uso dessa regra forece a resposta correta são justamete aqueles em que tal pseudo-artifício coicide com o Teorema de Rouché-Capelli (que será explicado adiate). Esse uso equivocado da Regra de Cramer também apreseta algumas limitações, visto que só pode ser usada em sistemas que apresetam matriz icompleta quadrada. Um exemplo clássico que comprova a falibilidade do uso de tal regra para discutir sistemas é dado abaixo: 5

6 iscutido-se o sistema teríamos: TutorBrasil.com.br x y z 1 x y z 2, através da Regra de Cramer, x y z x y z Para cada valor das icógitas, teríamos a idetermiação x y z, 0 que iforma que o sistema é possível e idetermiado e, portato, apreseta ifiitas soluções. Essa coclusão é, etretato, absurda, visto que, obviamete, ão há três úmeros reais x, y e z cuja soma seja 1, 2 e 3 ao mesmo tempo. Está claro que o sistema liear apresetado é impossível, fato que seria cofirmado se o discutíssemos através do Teorema de Rouché- Capelli. 5.2 efiição: o Teorema de Rouché-Capelli exige do estudate o cohecimeto de característica de matriz e do Teorema de Kroecker, assutos já explicados. Cosideremos o sistema liear S abaixo: a11 x1 a12 x2 a13 x3... a x b1 a21x1 a22 x2 a23x3... a2 x b2 a x a x a x... a x b m1 1 m2 2 m3 3 m m O sistema apreseta m equações e icógitas. Seja p a característica da matriz icompleta ( MI ), e q, a característica da matriz completa ( MC ), o Teorema de Rouché-Capelli afirma as seguites equivalêcias: p q S é impossível. p q S é possível e idetermiado. p q S é possível e determiado. Ex 1.: comprovaremos, através do teorema apresetado, que o sistema 6

7 x y z 1 x y z 2 x y z 3 é impossível. TutorBrasil.com.br É bem claro perceber que a característica da matriz icompleta ( p ) é igual a 1; a característica da matriz completa ( q ) é, etretato, igual a 2, visto que essa matriz apreseta pelo meos uma submatriz de ordem 2 cujo determiate é diferete de zero. Por exemplo, há esse determiate Como p q, o sistema é impossível. Ex 2.: (FATEC) Os úmeros reais a e b toram o sistema 2x 2y z 2 2x ay 4z 12 idetermiado em. Etão: 3x 3y 2z b a) a b 4 b) a b 4 c) a b 18 d) a b 18 e) a b 0 Resolução: para que o sistema seja possível e idetermiado, segudo Rouché-Capelli, tem-se que p q 3, sabedo que há três icógitas. É ecessário que todas as submatrizes de ordem 3 apresetem, obviamete, determiate ulo. Etão: a e a b Portato, a 2 e b 2. Logo, a b Outros métodos de resolução de sistemas lieares. 6.1 Itrodução: a rigor, só podemos resolver sistemas possíveis e determiados. Obviamete, ates de resolvermos um dado sistema liear, é ecessário 7

8 sabermos se ele apreseta uma úica solução (SLP). Para tato, podemos fazer a verificação através do Teorema de Rouché-Capelli. Se o sistema for ormal, poderemos resolvê-lo, como já foi dito, através da Regra de Cramer. A resolução por esse método, às vezes, pode ser bastate casativa, pricipalmete os casos em que a matriz icompleta possui ordem maior que três, visto que teríamos de calcular, o míimo, cico determiates de 4.ª ordem e outros determiates meores. Em tais casos, é mais cofortável e rápido utilizarmos o método do escaloameto, que traz cosigo algumas propriedades matriciais que são aplicadas à resolução de sistemas e já devem ser cohecidas pelo leitor. É também possível resolvermos sistemas lieares idetermiados, tedo em mete que teremos de expressar a solução do sistema em fução de um ou mais parâmetros reais, que equivalem a algumas das icógitas, escolhidas arbitrariamete. 6.2 Resolução de sistema liear possível e determiado ( p q ) Se o sistema for ormal: Pode-se utilizar, ormalmete, a Regra de Cramer ou outro método qualquer Se o sistema ão for ormal: Se o sistema apresetar úmero de icógitas ( ) meor que o úmero de equações ( m ), devemos abadoar m equações apropriadas de modo a obtermos um ovo sistema, que será ormal. A partir de etão, podemos aplicar a Regra de Cramer ou outro método mais coveiete. 6.3 Resolução de sistema liear possível e idetermiado ( p q ). Para obtermos as ifiitas soluções de um sistema idetermiado, devemos cosiderar algumas icógitas como parâmetros reais e forecer a solução geral do sistema em fução destes. O úmero de icógitas que passarão aos segudos membros das equações lieares é determiado pelo grau de idetermiação, que equivale a p, a difereça etre o úmero de icógitas e a característica da matriz icompleta. 6.4 Escaloameto Sistemas equivaletes são aqueles que possuem o mesmo cojuto- 8

9 solução. Pode-se obter, a partir de um dado sistema liear, um equivalete mais simples, se: a) permutarmos duas equações. b) multiplicarmos qualquer uma das equações lieares por um úmero real ão ulo. c) multiplicarmos uma das equações lieares por um úmero real ão ulo e adicioarmo-lo à outra equação (extesão do Teorema de Jacobi, visto que, expressado o sistema liear através de uma equação matricial, podemos realizar combiações lieares das filas paralelas sem alterarmos o determiate do sistema e, obviamete, a êupla ordeada tida como solução) Sistema escaloado é todo sistema da forma: a11 x1 a12 x2 a13 x3... a1 x b1 a22 x2 a23 x3... a2 x b2 a33 x3... a3 x b3 a x b a) A resolução de um sistema escaloado se dá, facilmete, por substituição, através da última equação liear. b) Todo sistema escaloado pode ser facilmete discutido por meio da sua última equação liear ( a x b ). c) Podemos obter um sistema escaloado a partir das trasformações descritas o item 6.4.1, de modo a obtermos sucessivos sistemas equivaletes mais simples. 7. Sistema homogêeo 7.1 Uma equação liear será homogêea se, e somete se, apresetar o termo idepedete igual a zero ( b 0 ). 7.2 Um sistema liear será homogêeo se, e somete se, apresetar todos os termos idepedetes ulos ( b 1 b 2 b 3... b 0 ), ou seja, se todas as equações lieares que o costituem forem homogêeas. 9

10 7.3 Todo sistema liear homogêeo de icógitas admite como solução a êupla (0,0,0,...,0), que recebe o ome de solução trivial ou imprópria. Quado existem, as demais soluções são chamadas de ão-triviais ou próprias. 7.4 Todo sistema liear homogêeo é possível, visto que a característica da matriz icompleta ( p ) é sempre igual à da matriz completa ( q ). 7.5 Se p, o sistema liear homogêeo admite apeas a solução trivial. 7.6 Se p, o sis tema liear homogêeo é idetermiado, admitido outras soluções, além da trivial. 8. Exercícios Propostos E.P.01) (PUC) Cosidere o seguite sistema de equações de icógitas x e y 6x 2y 4 3x 5y 6. Esse sistema tem uma úica solução para certo úmero real k, que é kx 2y 5 um: a) quadrado perfeito. b) úmero primo. c) úmero racioal ão-iteiro. d) úmero egativo. e) múltiplo de 5. E.P.02) (UFC) Ecotre o úmero real m de modo que as retas x y 8, 2x 3y 6 e 5x my 3 passem por um mesmo poto. E.P.03) (UECE) Em uma grade garagem estão estacioados bicicletas (duas rodas) e automóveis (quatro rodas), totalizado 118 rodas. Se a quatidade de bicicletas é meor do que a quatidade de automóveis e se ambas as quatidades são úmeros primos, etão o úmero de bicicletas a garagem é: a) 7 b) 13 10

11 c) 17 d) 23 TutorBrasil.com.br x1 2x2 2 E.P.04) (Uicamp) Seja dado sistema liear: 2x1 x2 2. x1 x2 2 a) Mostre graficamete que esse sistema ão tem solução. Justifique. b) Para determiar uma solução aproximada de um sistema liear Ax b impossível, utiliza-se o método dos quadrados míimos, que cosiste em resolver o sistema T A Ax T A b. Usado esse método, ecotre uma solução aproximada para o sistema dado acima. Lembre-se de que as lihas de iguais às coluas de M. T M (a trasposta de uma matriz M ) são E.P.05) (FGV-2008) cosidere o sistema liear: 3x 2y 4 4x y 13 x y k de icógitas x e y e parâmetro k. Para que o sistema seja possível e idetermiado, devemos ter: a) k 7 b) k 7 c) k é um úmero real qualquer. d) k 3 e) O sistema uca será possível e idetermiado. E.P.06) (PUC-2008) Uma pessoa tem apeas x moedas de 5 cetavos, y moedas de 10 cetavos e z moedas de 25 cetavos. A equação matricial seguite permite determiar as possíveis quatidades dessas moedas. x y z Com base esses dados, é correto afirmar que: a) há exatamete 7 possibilidades de solução para essa equação. b) ão podem existir dois tipos de moedas distitas em quatidades iguais. 11

12 c) os três tipos de moedas totalizam a quatia de R$ 78,00. d) se o úmero de moedas de 10 cetavos fosse 4, o problema admitiria uma úica solução. e) o úmero de moedas de 25 cetavos deve ser meor do que 5. Gabarito: E.P.01) Letra a E.P.04) E.P.02) 27 m 2 E.P.05) Gráfico; Letra e E.P.03) Letra b E.P.06) Letra a 4 4 ; 3 3 Gráfico: 12

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

Álgebra Linear I. Sonia Elena Palomino Castro Bean Daniel Noberto Kozakevich

Álgebra Linear I. Sonia Elena Palomino Castro Bean Daniel Noberto Kozakevich Álgebra Liear I Soia Elea Palomio Castro Bea Daiel Noberto Kozakevich ª Edição Floriaópolis, 0 Govero Federal Presidete da República: Dilma Vaa Rousseff Miistro de Educação: Ferado Haddad Coordeador Nacioal

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE D TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013 CONCURSO PÚBLICO 01 FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL UFMS MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 16 QUESTÕES POR TÓPICOS Coordeação e Orgaização: Mariae dos Reis 1ª Edição

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

Frações Contínuas, Representações de Números e Aproximações Diofantinas

Frações Contínuas, Representações de Números e Aproximações Diofantinas Frações Cotíuas, Represetações de Números e Aproximações Diofatias Carlos Gustavo T. de A. Moreira I M P A o Colóuio da Região Sudeste Abril de 0 Sumário Frações Cotíuas. Itrodução.....................................

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distância; Breves Noções Topológicas em R n

Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distância; Breves Noções Topológicas em R n Faculdade de Ecoomia da Uiversidade Nova de Lisboa Apotametos Cálculo II Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distâcia; Breves Noções Topológicas em R 1. Símbolos e operadores lógicos:

Leia mais

MATEMÁTICA FINANCEIRA E ENGENHARIA ECONÔMICA: a teoria e a prática

MATEMÁTICA FINANCEIRA E ENGENHARIA ECONÔMICA: a teoria e a prática UNIVERSIDADE FEDERAL DE SANTA CATARINA Roberta Torres MATEMÁTICA FINANCEIRA E ENGENHARIA ECONÔMICA: a teoria e a prática Trabalho de Coclusão de Curso submetido ao Curso de Matemática Habilitação Liceciatura

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo"

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo 4 e 5 de outubro de 03 Campo Grade-MS Uiversidade Federal do Mato Grosso do Sul RESUMO EXPANDIDO COMPARAÇÃO ENTRE REDES NEURAIS ARTIFICIAIS E REGRESSÃO LINEAR MÚLTIPLA PARA PREVISÃO DE PREÇOS DE HORTALIÇAS

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA INTRODUÇÃO MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 1 1 Itrodução à Egeharia Ecoômica A egeharia, iserida detro do cotexto de escassez de recursos, pode aplicar

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Análise estratégica dos leilões de novos empreendimentos de geração de energia

Análise estratégica dos leilões de novos empreendimentos de geração de energia Aálise estratégica dos leilões de ovos empreedimetos de geração de eergia elétrica Gustavo S. Masili masili@fem.uicamp.r Ferado C. Muhoz fcolli@fem.uicamp.r Resumo Leilões de empreedimetos o setor elétrico

Leia mais

7. ANÁLISE COMBINATÓRIA Professor Fernando Vargas. n 1 Cuidado

7. ANÁLISE COMBINATÓRIA Professor Fernando Vargas. n 1 Cuidado 7. ANÁLISE COMBINATÓRIA Professor Ferado Vargas É a área da Matemática que trata dos problemas de cotagem. Estuda problemas que evolvem o cálculo do úmero de agrupametos que podem ser feitos com os elemetos

Leia mais

M = 4320 CERTO. O montante será

M = 4320 CERTO. O montante será PROVA BANCO DO BRASIL / 008 CESPE Para a veda de otebooks, uma loja de iformática oferece vários plaos de fiaciameto e, em todos eles, a taxa básica de juros é de % compostos ao mês. Nessa situação, julgue

Leia mais

PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS

PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS O coteúdo programático das provas objetivas, apresetado o Aexo I do edital de abertura do referido cocurso público, iclui etre os tópicos de

Leia mais

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO Rita Moura Fortes proeg.upm@mackezie.com.br Uiversidade Presbiteriaa Mackezie, Escola de Egeharia, Departameto de Propedêutica de Egeharia Rua da Cosolação,

Leia mais

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w Ifluêcia do ruído aéreo gerado pela percussão de pavimetos a determiação de,w iogo M. R. Mateus CONTRAruído Acústica e Cotrolo de Ruído, Al. If.. Pedro, Nº 74-1º C, 3030 396 Coimbra Tel.: 239 403 666;

Leia mais

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples: PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos

Leia mais

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A Questão Em uma pesquisa, foram cosultados 00 cosumidores sobre sua satisfação em relação a uma certa marca de sabão em pó. Cada cosumidor deu uma ota de 0 a 0 para o produto, e a média fial das otas foi

Leia mais

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006 Aluo(a): Professor: Chiquiho Revisão 0-20 Exercícios Lista 0 2/02/20 Questão 0 UFRJ - 2006 Dois estados produzem trigo e soja. Os gráficos abaixo represetam a produção relativa de grãos de cada um desses

Leia mais

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples. FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar

Leia mais

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra.

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra. REFRAÇÃO - LENTES - REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudaça do meio de propagação. - Ídice de refração absoluto: é uma relação etre a velocidade da luz em um determiado meio

Leia mais

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALAÇO DE ODAS LOGAS EM PIRACICABA, SP Kare Maria da Costa MATTOS (1) ; Marcius Gracco Marcoi GOÇALVES (1) e Valter BARBIERI () (1) Aluos de Pós-graduação em

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

UM NOVO OLHAR PARA O TEOREMA DE EULER

UM NOVO OLHAR PARA O TEOREMA DE EULER X Ecotro Nacioal de Educação Matemática UM NOVO OLHA PAA O TEOEMA DE EULE Iácio Atôio Athayde Oliveira Secretária de Educação do Distrito Federal professoriacio@gmail.com Aa Maria edolfi Gadulfo Uiversidade

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

defi departamento de física www.defi.isep.ipp.pt

defi departamento de física www.defi.isep.ipp.pt defi departameto de física Laboratórios de Física www.defi.isep.ipp.pt stituto Superior de Egeharia do Porto- Departameto de Física Rua Dr. Atóio Berardio de Almeida, 431 4200-072 Porto. T 228 340 500.

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade Caledário de ispecções em Mauteção Prevetiva Codicioada com base a Fiabilidade Rui Assis Faculdade de Egeharia da Uiversidade Católica Portuguesa Rio de Mouro, Portugal rassis@rassis.com http://www.rassis.com

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

FLUXO DE CARGA CONTINUADO CONSIDERANDO O CONTROLE DE INTERCÂMBIO ENTRE ÁREAS

FLUXO DE CARGA CONTINUADO CONSIDERANDO O CONTROLE DE INTERCÂMBIO ENTRE ÁREAS Aais do XIX Cogresso Brasileiro de Automática, CBA 2012. FLUXO DE CARA CONTINUADO CONSIDERANDO O CONTROLE DE INTERCÂMBIO ENTRE ÁREAS HEBERT AILA CARHUALLANQUI, DILSON AMANCIO ALES LASEP, DEE, UNESP Av.

Leia mais

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico Uiversidade Aberta do Nordeste e Esio a Distâcia são marcas registradas da Fudação Demócrito Rocha. É proibida a duplicação ou reprodução deste fascículo. Cópia ão autorizada é Crime. Matemática e suas

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais