CAPÍTULO 9 - Regressão linear e correlação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 9 - Regressão linear e correlação"

Transcrição

1 INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação Amostral Serve para estudar o comportameto cojuto de duas varáves quattatvas dsttas. Ou, em outras palavras, mede o grau de assocação etre duas varáves aleatóras e. OBS.: ão há, esse caso, preocupação em apresetar alguma forma fucoal etre as varáves, se houver. Exemplos: (apresetados em aula) Para o estudo do comportameto cojuto de duas varáves poderam ser usados: a) O Dagrama de dspersão Represetação gráfca do cojuto de dados. Nada mas é do que a represetação dos pares de valores um sstema cartesao. Veja exemplo a segur. Em sítese três stuações marcates poderam acotecer: Se, quado uma das varáves cresce, a outra, em méda, também cresce, dzemos que etre as duas varáves exste correlação postva, tato mas forte quato mas perto de uma reta magára os potos estverem; Se, quado uma das varáves cresce, a outra, em méda, também decresce, dzemos que etre as duas varáves exste correlação egatva, tato mas forte quato mas perto de uma reta magára os potos estverem; Se os potos estverem dspersos, sem defção de dreção, dzemos que a correlação é muto baxa, ou mesmo ula. As varáves esse caso são dtas ão correlacoadas. b) O coefcete de correlação É um valor umérco, uma medda, para o grau de assocação etre duas varáves. Se for observada uma assocação etre as varáves quattatvas (a partr de um dagrama de dspersão, por exemplo), é muto útl quatfcar essa assocabldade.

2 INF 6 Prof. Luz Alexadre Peterell Exstem mutos tpos de assocação possíves, e aqu remos apresetar o tpo de relação mas smples, que é o lear. Iremos julgar o quato a uvem de potos do dagrama de dspersão se aproxma de uma reta. Sejam duas amostras relatvas às varáves e, dadas a segur:!! O coefcete de correlação etre os valores de e é dado por: ( ) ( ) ( ) r -,.., SPD SPD V V COV r em que: SPD e Para o exemplo: Amostra A Amostra B ( )( ) 6 5 AB B A A B SPD ( ) A A A ( ) B B B

3 INF 6 Prof. Luz Alexadre Peterell r AB SPAB, 575. ( 8)( 4) A B Regressão lear A aálse de regressão cosste a realzação de uma aálse estatístca com o objetvo de verfcar a exstêca de uma relação fucoal etre uma varável depedete com uma ou mas varáves depedetes. Em outras palavras cosste a obteção de uma equação que teta explcar a varação da varável depedete pela varação do(s) ível(s) da(s) varável(s) depedete(s). Para tetar estabelecer uma equação que represeta o feômeo em estudo podese fazer um gráfco, chamado de dagrama de dspersão, para verfcar como se comportam os valores da varável depedete () em fução da varação da varável depedete (). O comportameto de em relação a pode se apresetar de dversas maeras: lear, quadrátco, cúbco, expoecal, logarítmco, etc.... Para se estabelecer o modelo para explcar o feômeo, deve-se verfcar qual tpo de curva e equação de um modelo matemátco que mas se aproxme dos potos represetados o dagrama de dspersão. Cotudo, pode-se verfcar que os potos do dagrama de dspersão, ão vão se ajustar perfetamete à curva do modelo matemátco proposto. Haverá a maor parte dos potos, uma dstâca etre os potos do dagrama e a curva do modelo matemátco. Isto acotece, devdo ao fato do feômeo que está em estudo, ão ser um feômeo matemátco e sm um feômeo que está sujeto a fluêcas que acotecem ao acaso. Assm, o objetvo da regressão é obter um modelo matemátco que melhor se ajuste aos valores observados de em fução da varação dos íves da varável. No etato o modelo escolhdo deve ser coerete com o que acotece a prátca. Para sto, deve-se levar em cota as segutes cosderações o mometo de se escolher o modelo: -o modelo selecoado deve ser codzete tato o grau como o aspecto da curva, para represetar em termos prátcos, o feômeo em estudo; -o modelo deve coter apeas as varáves que são relevates para explcar o feômeo; Como fo dto aterormete, os potos do dagrama de dspersão fcam um pouco dstates da curva do modelo matemátco escolhdo. Um dos métodos que se pode utlzar para obter a relação fucoal, se basea a obteção de uma equação estmada de tal forma que as dstâcas etre os potos do dagrama e os potos da curva do modelo matemátco, o todo, sejam as meores possíves. Este método é deomado de Método dos Mímos Quadrados (MMQ). Em resumo por este método a soma de quadrados das dstâcas etre os potos do dagrama e os respectvos potos a curva da equação estmada é mmzada, obtedo-se, desta forma, uma relação fucoal etre e, para o modelo escolhdo, com um mímo de erro possível. 3

4 INF 6 Prof. Luz Alexadre Peterell MODELO LINEAR DE º GRAU (Regressão Lear Smples) O modelo estatístco para esta stuação sera: em que: e valor observado para a varável depedete o -ésmo ível da varável depedete. costate de regressão. Represeta o tercepto da reta com o exo dos. coefcete de regressão. Represeta a varação de em fução da varação de uma udade da varável. -ésmo ível da varável depedete (,,!, ) e é o erro que está assocado à dstâca etre o valor observado e o correspodete poto a curva, do modelo proposto, para o mesmo ível de. Para se obter a equação estmada, vamos utlzar o MMQ, vsado a mmzação dos erros. Assm, tem-se que: e elevado ambos os membros da equação ao quadrado, aplcado o somatóro, e [ ] [ ] e () Por meo da obteção de estmadores de e, que mmzem o valor obtdo a expressão ateror (), é possível alcaçar a mmzação da soma de quadrados dos erros. Para se ecotrar o mímo para uma equação, deve-se dervá-la em relação à varável de teresse e gualá-la a zero. Dervado etão a expressão () em relação a e, e gualado-as a zero, poderemos obter duas equações que, jutas, vão compor o chamado sstemas de equações ormas. A solução desse sstema forecerá: x y x y SPD ( x ) x xy x e Uma vez obtdas estas estmatvas, podemos escrever a equação estmada: Exemplos: 4

5 INF 6 Prof. Luz Alexadre Peterell ) Para verfcar se exste relação lear de prmero grau etre umdade relatva (UR) do ar de secagem de semetes e a germação das mesmas, um pesqusador realzou um expermeto com 4 valores dferetes para a %UR do ar, obtedo-se os segutes dados (dados hpotétcos) % UR % germação a) Verfcar se exste efeto da UR do ar de secagem a % de germação. Usar α 5%. b) Qual sera a % de germação esperada quado UR 45 %? c) Como podera ser apresetada, um relatóro técco, a equação de regressão ajustada para esse exemplo? R.: a) 9,7;,8. F 3,55; t,88. b) 95,5 % ) Fo realzado uma aálse de regressão para vestgar a exstêca de ralação lear smples etre a temperatura superfcal de uma estrada () medda em graus F e a deformação da pavmetação () medda segudo uma técca especal. Baseado as segutes formações pede-se: ; y,75; y 8,86; x 478; 83,67 x 435,8; e x y a) Calcule as estmatvas dos parâmetros da regressão. Apresete a equação ajustada um gráfco; b) Use a equação para estmar qual deformação havera a pavmetação quado a temperatura superfcal fosse de 85 graus F. c) Qual sera a mudaça esperada a deformação da pavmetação para uma mudaça de o F a temperatura superfcal? d) Supoha que a temperatura seja medda em graus C ao vés de graus F. Qual sera a ova equação ajustada resultate? Lembre-se: C 5(F 3)/9. e) Qual sera a mudaça esperada a deformação da pavmetação para uma mudaça de o C a temperatura superfcal? Exercíco Proposto Os dados a segur provêm de um expermeto para testar o desempeho de uma máqua dustral. O expermeto utlzou uma mstura de óleo desel e gás, dervados de materas destlados orgâcos. O valor da capacdade da máqua em cavalo vapor (HP) fo coletado a dversas velocdades meddas em rotações por muto (rpm )., 64,3 5, 46,85 8, 5,9 5, 45,79, 6,47 7, 5,7 6, 48,84 7, 5,7 8, 54,94 9, 58, 4, 4,74 9, 56,65 6, 48,84, 63,,,63, 6,6 4, 43,73, 64,3,5 3,5 3, 65,3, 37,48, 6,63 3, 39,68 4, 63,89 velocdade capacdade 5

6 INF 6 Prof. Luz Alexadre Peterell Admtdo-se que as varáves e estão relacoadas de acordo com o modelo e, pede-se: (a) Obter a equação ajustada e traçar seu gráfco. Mostre também o dagrama de dspersão; (b) Calcule o coefcete de determação e terprete; (c) Verfque que ê ; (d) Verfque que Ŷ ; (e) Iterprete a estmatva obtda para ; (f) Determe a estmatva de para 5,5. COEFICIENTE DE DETERMINAÇÃO O coefcete de determação, também cohecdo como R, ou smplesmete r para o caso de regressão lear smples, forece uma formação auxlar ao resultado da aálse de varâca da regressão (apresetado a segur), como uma maera de se verfcar se o modelo proposto é adequado ou ão para descrever o feômeo. O R é obtdo por: SQ Re g R SQTotal O valor de R vara o tervalo de a. Valores próxmos de dcam que o modelo proposto é adequado para descrever o feômeo. O R dca a proporção (ou porcetagem) da varação de que é explcada pela regressão, ou quato da varação a varável depedete está sedo explcada pela varável depedete. TESTE DE HIPÓTESE NA REGRESSÃO LINEAR SIMPLES Após ajustar uma equação de regressão devemos verfcar sua adequabldade, por meo de testes de hpóteses para os parâmetros do modelo e/ou a costrução de tervalos de cofaça. Para tal teto precsamos da pressuposção adcoal de que os erros teham dstrbução ormal. Como temos dos parâmetros o modelo e, poderíamos realzar os segutes testes: a) H : * * versus H a : b) H : * versus H a : * Em cada caso a estatístca do teste e as coclusões seram: 6

7 INF 6 Prof. Luz Alexadre Peterell a) t calc *, ode V ( ) V( ) σ x regra de decsão: Se t calc t (α/, -) rejeta H b) t calc *, ode V ( ) σ V( ) x regra de decsão: Se t calc t (α/, -) rejeta H SQ Re s y SPDxy OBS.: σ estmatva da varâca dos erros Um caso especal muto mportate sera: H : versus H a :. Essas hpóteses estão relacoadas com a sgfcâca da regressão. Não rejetar H é equvalete a coclur que ão há relação lear etre e. Por outro lado, se H : for rejetado dcara que é mportate para explcar a varabldade em. Veja lustrações apresetadas em aula. De maera alteratva poderíamos testar a sgfcâca da regressão pelo método da Aálse de Varâca (ANOVA). O método da ANOVA cosste em fazer uma partção da varabldade total da varável resposta em outros compoetes de acordo com o modelo e o teste a ser feto. Assm a segute detdade pode ser verfcada: ( ) ( ) ( ), ou, em outra palavras, SQTotal SQRegressão SQResíduo. Ode SQTotal varação total em SQRegressão varação em explcada pela regressão ajustada SPD de modo que SQResíduo SQRes varação ão explcada pela regressão - SPD Baseado essa detdade o segute quadro pode ser motado: FV GL SQ QM F Regressão SQReg QMReg SQReg Resíduo, ou Idepedete da Regressão SQRes Total SQTotal QMRes QM Re g QM Re s SQ Re s - A estatístca F obtda o quadro acma serve para testar a sgfcâca da regressão, ou seja, testar H : versus H a :. regra de decsão: Se F calc F (α,, -) rejeta H 7

8 INF 6 Prof. Luz Alexadre Peterell OBS.: Para H : temos que (t calc ) F calc A equação estmada obtda, apeas estabelece uma relação fucoal, etre a varável depedete e a varável depedete, para represetar o feômeo em estudo. Portato a smples obteção da equação estmada ão respode ao pesqusador se a varação da varável depedete flueca sgfcatvamete a varação da varável depedete. Para se respoder a esta perguta, é ecessáro realzar um teste estatístco para as estmatvas dos coefcetes da equação de regressão estmada. Um teste que pode ser realzado para verfcar tal fato é o teste F da aálse de varâca. Portato, é ecessáro realzar uma aálse de varâca dos dados observados, em fução do modelo proposto. O quadro para a aálse de varâca para a regressão é do segute tpo: FV GL SQ QM F Regressão P SQReg Idepedete da Regressão p SQId Total SQTotal em que: - p o de coefcetes de regressão (ão clu o ) - o de observações. SQ Re g p SQId p QM Re gr QMId As fórmulas para a obteção das somas de quadrados total e da soma de quadrados do depedete da regressão são as mesmas, tato para o modelo lear de o grau quato para o de o grau, as quas são dadas a segur: SQTotal SQIdepedete da Regressão SQTotal - SQRegressão Já a soma de quadrados para a regressão vara de acordo com o modelo em teste. Assm tem-se que, para o modelo lear de o grau, a soma de quadrados da regressão é obtda por: SQ Re gressão Para o modelo lear de o grau, a soma de quadrados da regressão é dada por: - 8

9 INF 6 Prof. Luz Alexadre Peterell SQRe gressão " " " As hpóteses estatístcas para o teste F, são as segutes: H :... p, o que sgfca dzer que as p varáves depedetes ão exercem fluêca a varável depedete, segudo o modelo proposto. H a :, para pelo meos um, o que sgfca dzer que pelo meos uma das p varáves depedetes exerce fluêca a varável depedete, segudo o modelo proposto. O valor de F da aálse de varâca, deve ser comparado, com o valor de F F, o qual se obtém a tabela da dstrbução F de acordo com o ível de tabelado ( ) tab sgfcâca do teste, e o úmero de graus de lberdade para a regressão e depedete da regressão, ou seja: F tab ( p; p) F α. A regra decsóra para o teste F é: - Se F F tab Rejeta-se H ao ível de sgfcâca que fo realzado o teste. Pode-se ferr que o modelo proposto é adequado para descrever o feômeo. - Se F < F tab Não rejeta-se H ao ível de sgfcâca que fo realzado o teste. Pode-se ferr que o modelo proposto ão é adequado para descrever o feômeo. Exercícos Propostos: ) (questão de prova do II/) Para estudar a relação etre (úmero total de horas ecessáras à motagem da parte de uma estrutura) e (úmero total de operações de furar e rebtar), regstraram-se os dados da tabela abaxo. estudo A B C D E F G H I ,,7 3,3 6,,9 5,9 7, 9,4 4,8 Para facltar seus cálculos cosdere as segutes formações: x 374; y 46,; x 7868; y 79,4; x 45,6 também, SPD xy 35,4444; x 659,5556 Pede-se: a) Obter a equação de regressão ajustada para o modelo x ε R.:,7,46 b) Iterpretar as estmatvas obtdas dos parâmetros da regressão. c) Calcular o coefcete de determação para o modelo ajustado. Faça a terpretação aproprada para esse resultado. R.: 79,9% d) A aálse de varâca (ANOVA) da regressão pode ser resumda o segute quadro y 9

10 INF 6 Prof. Luz Alexadre Peterell F.V. g.l. SQ QM F Regressão 34,59 34,59 Resíduo 7 8,68,4 Total 8 43,7 Uma maera de verfcar a sgfcâca da regressão ajustada é por meo da ANOVA apresetada acma. Apresete a hpótese a ser testada pela ANOVA e realze o teste aproprado (use α 5%) para testar essa hpótese. e) Se fosse cocluído que podemos cosderar, como devera ser reescrto o modelo ajustado? Justfque. Regressão lear múltpla A regressão múltpla evolve três ou mas varáves, ou seja, uma úca varável depedete () e duas ou mas varáves depedetes ou explaatóras ou covaráves ou regressoras (,,,...). A teora é uma extesão da aálse de regressão lear smples. De modo smlar a aálse tem por objetvo estabelecer uma equação que possa ser usada para predzer valores de para valores dados das dversas varáves depedetes. A faldade das varáves depedetes adcoas é melhorar a capacdade de predção em cofroto com a regressão lear smples. A técca de cálculo é bastate complcada e pode ser facltada com o auxílo de álgebra de matrzes. O modelo x x # x k k ε é chamado de modelo de regressão lear múltpla com k varáves regressoras. Os parâmetros ( a k) são chamados de coefcetes de regressão parcas. Veremos dos exemplos evolvedo regressão lear múltpla. MODELO LINEAR DE º GRAU O modelo estatístco para esta stuação sera: e em que: valor observado para a varável depedete o -ésmo ível da varável depedete. costate de regressão. coefcete de regressão. coefcete de regressão. -ésmo ível da varável depedete (,,!, ) -ésmo ível da varável depedete, elevado ao quadrado

11 INF 6 Prof. Luz Alexadre Peterell e é o erro que está assocado à dstâca etre o valor observado e o correspodete poto a curva para o mesmo ível de. Utlzado o MMQ, o modelo de º grau, chegar-se-á ao segute sstema de equações ormas, para se obter as estmatvas de, e : Uma vez obtdas estas estmatvas, podemos escrever a equação estmada:

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS Prof José Leoardo Noroha M Eg Departameto de Egehara de Prodção Escola Federal de Egehara de Itabá EFEI RESUMO: Neste trabalho

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA SONIA ISOLDI MARTY GAMA

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN Tayd Dayvso Custódo Pexoto ; Sérgo Luz Agular Leve ; Adre Herma Frere Bezerra 3 ; José

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Maríla Brasl Xaver REITORA Prof. Rubes Vlhea Foseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odvaldo Texera Lopes ARTE FINAL DA CAPA Odvaldo Texera Lopes REALIZAÇÃO

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA CENTRO: GESTÃO ORGANIZACIONAL CÁLCULOS DE FINANÇAS MATEMÁTICA FINANCEIRA Semestre: A/2008 PROFESSOR: IRANI LASSEN CURSO: ALUNO: SUMÁRIO CÁLCULOS DE FINANÇAS INTRODUÇÃO...3. OBJETIVO:...3.2 FLUXO DE CAIXA...4.3

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA UIVERSIDADE ESTADUAL DO CEARÁ RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA DE MATRIZ DE TRASFERÊCIA FORTALEZA CEARÁ 4 RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

Notas de aula da disciplina Probabilidade e Estatística

Notas de aula da disciplina Probabilidade e Estatística otas de aula da dscpla Probabldade e Estatístca Proessor M Sc Adré Luz DAMAT - UTFPR Esta apostla apreseta os tópcos prcpas abordados em sala de aula, cotedo deções, teoremas, eemplos Sua letura ão é obrgatóra,

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Relatório Final da disciplina de Probabilidades e Estatística. Economia Gestão Informática e Gestão

Relatório Final da disciplina de Probabilidades e Estatística. Economia Gestão Informática e Gestão Relatóro Fal da dscpla de Probabldades e Estatístca Ecooma Gestão Iformátca e Gestão Docetes: Paulo Ifate (resposável) Iês Sousa Das Ao Lectvo 007/008 Ídce Relatóro Crítco de Leccoação Programa detalhado

Leia mais

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil Educação e Pesqusa ISS: 1517-972 revedu@usp.br Uversdade de São Paulo Brasl Helee, Otavao Evolução da escolardade esperada o Brasl ao logo do século XX Educação e Pesqusa, vol. 38, úm. 1, marzo, 212, pp.

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Professor Mauricio Lutz ESTATÍSTICA BÁSICA

Professor Mauricio Lutz ESTATÍSTICA BÁSICA Proessor Maurco Lutz ESTATÍSTICA BÁSICA. Coceto Exstem mutas deções propostas por autores, objetvado estabelecer com clareza o que é estatístca, como por exemplo: Þ A Estatístca é um cojuto de métodos

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

Notas em Matemática Aplicada 9

Notas em Matemática Aplicada 9 Notas em atemátca Aplcada 9 Edtado por Elaa XL de Adrade Uversdade Estadual aulsta - UNES São José do Ro reto, S, Brasl Rubes Sampao otfíca Uversdade Católca do Ro de Jaero Ro de Jaero, RJ, Brasl Geraldo

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA ESTIMAÇÃO DE RIGIDEZES DE MANCAIS DE ROTORES POR ANÁLISE DE SENSIBILIDADE. Leonardo Caldiron

UNIVERSIDADE ESTADUAL PAULISTA ESTIMAÇÃO DE RIGIDEZES DE MANCAIS DE ROTORES POR ANÁLISE DE SENSIBILIDADE. Leonardo Caldiron uesp UNIVERIDADE ETADUA PAUITA FACUDADE DE ENGENHARIA DE IHA OTEIRA PROGRAA DE PÓ-GRADUAÇÃO E ENGENHARIA ECÂNICA ETIAÇÃO DE RIGIDEZE DE ANCAI DE ROTORE POR ANÁIE DE ENIBIIDADE eoardo Cadro Dssertação apresetada

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I CURSO DE ESTATÍSTICA Prof. Paulo Rcardo Bttecourt Gumarães O SEMETRE

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM Fabríca D. Satos, Lucla G. Rbero, Leoardo G. de R. Guedes, Weber Marts Uversdade Católca de Goás, Departameto de Computação Uversdade

Leia mais

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA KÁTIA MARIANA SILIVELI EPALANGA - Egehera Químca Dssertação

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Orientadora: Profª Drª Maria Adélia Oliveira M. da Cruz Co-Orientadores: Prof Dr. Paulo de Paula Mendes Prof Dr. Manoel da Cunha Costa

Orientadora: Profª Drª Maria Adélia Oliveira M. da Cruz Co-Orientadores: Prof Dr. Paulo de Paula Mendes Prof Dr. Manoel da Cunha Costa UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO - UFRPE PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO - PRPPG PROGRAMA DE PÓS-GRADUAÇÃO EM BIOMETRIA (NÍVEL: MESTRADO) Dssertação apresetada ao Programa de Pós-Graduação

Leia mais

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA O objetvo deste capítulo é apresetar formas da equação da coservação da massa em fução de propredades tesvas faclmete mesuráves, como a temperatura, a pressão,

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

Teoria da Amostragem

Teoria da Amostragem Teora da Amostragem I- oções fudametas sobre amostragem. Amostragem é todo o processo de recolha de uma parte, geralmete pequea, dos elemetos que costtuem um dado couto. Da aálse dessa parte pretede obter-se

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

CAPÍTULO 1 PROBABILIDADE

CAPÍTULO 1 PROBABILIDADE CAPÍTULO PROBABILIDADE. Coceto O coceto de probabldade está sempre presete em osso da a da: qual é a probabldade de que o meu tme seja campeão? Qual é a probabldade de que eu passe aquela dscpla? Qual

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais