Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais"

Transcrição

1 Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre o armazeameto de vitamia A em ratos. Ele quer saber se uma dieta deficiete em vitamia E altera a quatidade de vitamia A armazeada. A perguta que ele faz é: O valor médio de vitamia A armazeada em ratos com dieta deficiete em vitamia E é igual ao valor médio de vitamia A armazeada em ratos com dieta ormal? Para respoder a sua perguta, o pesquisador toma um grupo de 0 ratos e os divide aleatoriamete em dois grupos de 0. Durate um certo tempo, um dos grupos é alimetado com a dieta ormal e o outro grupo é alimetado com uma dieta deficiete em vitamia E. Depois disso, o pesquisador sacrifica os ratos dos dois grupos e mede a quatidade de vitamia A o fígado deles. O valor médio de vitamia A o fígado dos ratos alimetados com a dieta ormal foi de 3.37 ui (uidades iteracioais) e o valor médio de vitamia A armazeada o fígado dos ratos alimetados com a dieta deficiete em vitamia E foi de.570 ui, de maeira que a difereça etre as médias das duas amostras é de: 805 ui. O problema agora é decidir se essa difereça é grade o suficiete para que o pesquisador possa cocluir que eiste realmete uma difereça a quatidade de vitamia A armazeada etre as duas populações, ou se a difereça obtida é apeas uma variação amostral.

2 Estatística II Atoio Roque Aula Vamos supor que o pesquisador tem bos motivos para crer que as distribuições populacioais da vitamia A armazeada o fígado de ratos com dietas ormal e deficiete em vitamia E são ormais. Vamos supor também que o pesquisador cohece as variâcias populacioais e. Este é um caso muito difícil de acotecer a prática, mas vamos cosiderá-lo aqui apeas para ilustrar o método. Vamos supor que 600 ui. Para este caso, sabemos que a distribuição amostral da difereça etre as médias tem média igual a µ µ e desvio padrão igual a µ + + ( 600) 0 68, ui. A hipótese ula a ser testada este caso é: H 0 : µ µ µ µ 0; H : µ µ µ µ 0. Portato, o teste é bilateral. Para ecotrar o valor P, calculamos o valor z correspodete a 805 : z 68, 3,0. Isto implica que o valor P é 0,006 (veja a figura a seguir).

3 Estatística II Atoio Roque Aula Para um ível de sigificâcia de α 0,05, temos que P < α e deve-se rejeitar a hipótese ula. O pesquisador coclui etão que, com um ível de sigificâcia de 0,05 eiste uma difereça etre as quatidades de vitamia A armazeadas o fígado de ratos alimetados com dieta ormal e deficiete em vitamia E. O eemplo dado foi para um teste bilateral. Etretato, o pesquisador poderia ter feito um teste uilateral. Supoha que ele teha certeza que a dieta deficiete em vitamia E ão pode ocasioar um aumeto a quatidade de vitamia A armazeada. Neste caso, a sua perguta seria: µ é maior do que µ? Agora a hipótese ula é H 0 : µ µ e o valor P deve ser calculado apeas como a probabilidade de que seja maior que 805 ui se µ µ. Neste caso, o valor P é 0,003 e cotiua meor que 0,05. Novamete a hipótese ula é rejeitada e a coclusão do eperimeto favorece a hipótese alterativa com um ível de sigificâcia de 0,05: H : µ > µ. Vamos agora cosiderar o caso mais realista em que as variâcias populacioais e são descohecidas. 3

4 Estatística II Atoio Roque Aula Neste caso, sabemos que há duas possibilidades: e. Já vimos, as aulas sobre distribuições amostrais, como tratar os dois casos. Aqui, vamos cosiderar apeas o caso em que. Vamos supor que o caso do eemplo aterior é descohecida, mas o desvio padrão foi calculado para cada amostra, dado: s 66 ui e s 538 ui. Cohecedo-se s e s, pode-se estimar o valor descohecido de como: ( ) s + ( ) s 9(66) + 9(538) ui. Desta forma, o valor estimado para o desvio padrão da distribuição amostral da difereça etre as médias é, ui. Como o eemplo aterior, a hipótese ula é: H 0 : µ µ µ µ 0; H : µ µ µ µ 0. Agora porém, como as amostras são pequeas e as variâcias populacioais são descohecidas, devemos usar a distribuição t de Studet. Para ecotrar o valor P, calculamos o valor t correspodete a 805 : 4

5 Estatística II Atoio Roque Aula t ,. Cosultado a tabela para a distribuição t de Studet para gl 8, vemos que todos os valores são meores do que 3, (desde a colua para t.90 até a colua para t.995 ). Portato, sabemos que a área à esquerda de t 3, é maior que 0,995. Isto implica que a área à direita de t 3, é meor do que 0,005. Para um teste bilateral, o valor P será etão: P < 0,005 0,00 P < α 0,05. Portato, deve-se rejeitar a hipótese ula: há evidêcia suficiete para rejeitar a afirmação de que o valor médio de vitamia A armazeada em ratos com dieta deficiete em vitamia E é igual ao valor médio de vitamia A armazeada em ratos com dieta ormal. Para um teste uilateral, P < 0,005 < α. Logo, também rejeita-se a hipótese ula. Dados emparelhados Nos eemplos ateriores, o pesquisador tratou as duas amostras de 0 ratos como se elas fossem idepedetes, ou seja, com se ão houvesse qualquer relação etre a amostra de ratos alimetados com dieta ormal e a amostra de ratos alimetados com a dieta deficiete em vitamia E. Porém, em muitos casos em que se faz um teste de hipóteses sobre a difereça etre duas médias costuma-se trabalhar com amostras que possuem algum grau de relação etre si. 5

6 Estatística II Atoio Roque Aula Em tais casos, em que as amostras ão são idepedetes, costuma-se chamálas de amostras emparelhadas. Um eemplo disso ocorre quado se compara uma amostra de pesos de pessoas ates de se submeterem a uma dada dieta com a amostra de pesos das mesmas pessoas após se submeterem à dieta. Neste caso, o que se faz é comparar a difereça etre os pesos de uma mesma pessoa ates e depois da dieta. Um outro eemplo, aproveitado o caso dos 0 ratos apresetado acima, é dado a seguir. Vamos supor que ao ivés de escolher 0 ratos de forma aleatória e separá-los em duas amostras de 0 ratos cada, uma alimetada com a dieta ormal e a outra alimetada com dieta deficiete em vitamia E, o pesquisador prefira trabalhar com 0 pares de ratos, sedo que cada par é composto por ratos retirados da mesma ihada e com o mesmo peso. Desta forma, pode-se cosiderar que os ratos de um dado par possuem as mesmas codições ates do eperimeto, ou seja, eles ão são idepedetes. Desta forma, o pesquisador vai trabalhar com 0 pares de ratos as mesmas codições iiciais. A partir daí, as codições passam a ser diferetes. Um rato de cada par é escolhido para ser alimetado com a dieta ormal e o outro rato é alimetado com a dieta deficiete em vitamia E. Após um certo tempo, o pesquisador mede as quatidades de vitamia A armazeadas os fígados dos 0 pares de ratos. Como os dados estão emparelhados (eistem 0 pares de ratos), é coveiete trabalhar com a variável defiida como sedo a difereça etre as quatidades de vitamia A armazeadas para cada par de ratos:. A tabela abaio ilustra isso. 6

7 Estatística II Atoio Roque Aula Par (ui) (ui) (ui) (dieta ormal) (dieta deficiete) (difereça: ) Soma Note que a tabela acima diz respeito a 0 ratos, só que eles estão emparelhados em 0 pares. Um rato de cada par foi alimetado com a dieta ormal e o outro foi alimetado com a dieta deficiete. A variável de iteresse agora ão é a difereça etre as médias das amostras de ratos alimetados com cada tipo de dieta ( ), como os casos ateriores. A variável de iteresse para o caso dos dados emparelhados é a difereça etre os valores de vitamia A armazeados para cada par de ratos (). Podemos cosiderar que a tabela acima os dá uma amostra de 0 pares de ratos, com os valores de 0 difereças de quatidades de vitamia A armazeadas em ratos alimetados com dietas ormais e deficietes em vitamia E. 7

8 Estatística II Atoio Roque Aula O valor médio e o desvio padrão dessas 0 difereças são: ui; s 8050 s ui. Podemos cosiderar que todas as difereças possíveis formam uma população e que as 0 difereças obtidas costituem uma amostra de tamaho 0 desta população. Vamos assumir que a distribuição da população de é ormal. Como ão se cohece o desvio padrão da população de, vamos aproimar o valor de por s. Desta forma, o desvio padrão da distribuição amostral das difereças é s 59 67,4 ui. 0 A hipótese ula é a de que a média das difereças seja igual a zero: H 0 : µ 0; H : µ 0. Se o úmero de pares de ratos escolhido fosse maior ou igual a 30, faríamos o cálculo do valor P correspodete usado o valor z da distribuição ormal. Porém, como o úmero de pares de ratos é meor do que 30, teremos que fazer o cálculo de P usado a distribuição t de Studet. O valor de t para este caso é: t ,4 4,8. 8

9 Estatística II Atoio Roque Aula Para gl 0 9, todos os valores da tabela para a distribuição t de Studet são meores do que 4,8. Logo: P < 0,005 0,00 P < α 0,05. Portato, deve-se rejeitar a hipótese ula: as evidêcias levam o pesquisador a rejeitar a hipótese de que o valor médio de vitamia A armazeada em ratos com dieta deficiete em vitamia E é igual ao valor médio de vitamia A armazeada em ratos com dieta ormal. Eemplos. Um epidemiologista quer estudar os efeitos de duas vacias ati-rábicas para verificar qual é a mais efetiva. Ele dividiu um grupo de idivíduos que já foram vaciados ateriormete cotra a raiva em duas amostras. Os idivíduos da amostra receberam uma dose etra da vacia do tipo e os idivíduos da amostra receberam uma dose etra da vacia do tipo. As respostas dos ati-corpos foram medidas duas semaas depois, resultado os seguites dados (uidades arbitrárias): Amostra s 0 4,5,5 9,5,0 O epidemiologista pode cocluir que a vacia é mais eficaz que a vacia? Cosidere α 0,05. Assuma que as variâcias populacioais são iguais. 9

10 Estatística II Atoio Roque Aula Neste caso, como a perguta do epidemiologista é se a vacia é mais eficaz do que a vacia (se a resposta média dos idivíduos vaciados com a vacia, µ, é maior do que a resposta média dos idivíduos vaciados com a vacia, µ ), a hipótese ula e a hipótese alterativa devem ser: H 0 : µ µ 0; H : µ µ 0. > Estimado : ( ) s + ( ) s 9 6, , + 7 5,,3. O valor t para este caso é: t ( ) ( µ µ ) ( 4,5,5) 0,0 5, 3,, ,9. Olhado para a tabela da distribuição t de Studet para gl + 7, vemos que,9 está etre,7396 e,098 (veja abaio). 0

11 Estatística II Atoio Roque Aula Logo, 0,05 < P < 0,05. Como P < α, o epidemiologista deve rejeitar a hipótese ula e cocluir que as evidêcias eperimetais favorecem a hipótese de que a vacia é mais eficaz do que a vacia.. Um persoal traier garate que uma pessoa que faça giástica sob a sua supervisão por um mês perderá peso sem ecessitar fazer qualquer tipo de dieta especial. Para testar a afirmação do persoal traier, selecioa-se uma amostra de 7 pessoas e toma-se os seus pesos ates do iício do programa de giásticas. As 7 pessoas são etão submetidas ao treiameto oferecido pelo persoal traier durate mês, com a recomedação de ão alterar seus hábitos alimetares em seu modo de vida. Após o mês de treiameto, os pesos das 7 pessoas são ovamete medidos, resultado a tabela abaio. Idivíduo Peso ates (kg) Peso depois 93, (kg) Pode-se cocluir, baseado estes dados e com um ídice de sigificâcia α 0,05, que a afirmação do persoal traier é correta? Este é um caso para trabalharmos com dados emparelhados, pois podemos cosiderar que temos 7 pares de valores ão idepedetes: eles são as difereças dos pesos das mesmas pessoas, ates e depois do treiameto. Como a afirmação do persoal traier é a de que os pesos das pessoas dimiuem, as hipóteses ula e alterativa devem ser:

12 Estatística II Atoio Roque Aula H 0 : µ 0; H : µ < 0. Da tabela, temos: 0,9; s,0. O desvio padrão da distribuição amostral de é etão: s,0 7 0,75. O valor de t é etão: t 0,9 0 0,75,. Pela tabela da distribuição t de Studet para gl 7 6, vemos que este valor de t é meor do que todos os valores listados. Isto implica que P > 0,0. Como o valor P para este caso é maior do que α, ão se pode rejeitar a hipótese ula. Ou seja, as evidêcias ão apóiam fortemete a afirmação do persoal traier de que as pessoas perdem peso após se submeter ao seu programa de eercícios por um mês.

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD Teste de ióteses VÍCTOR UGO LACOS DÁVILAD Teste De ióteses. Exemlo. Cosidere que uma idustria comra de um certo fabricate, ios cuja resistêcia média à rutura é esecificada em 6 kgf (valor omial da esecificação).

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

INFERÊNCIA ESTATÍSTICA

INFERÊNCIA ESTATÍSTICA Uiversidade Federal da Bahia Istituto de Matemática Departameto de Estatística Estatística IV (MAT027) e Itrodução à Estatística (MAT050) NOTAS DE AULA UNIDADE III INFERÊNCIA ESTATÍSTICA 1 1 INTRODUÇÃO

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Exame - Época Normal 006/00 Data: 14de Julhode 00 Tópicos de Resolução Duração: 3 horas 1. SejaΩumespaçoamostraleA,BeCacotecimetoscomasseguitescaracterísticasA

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS rof. Vieira Filho SOLUÇÕES e GSES- EXERCÍCIOS RESOLVIDOS SOLUÇÕES. em-se 500g de uma solução aquosa de sacarose (C O ), saturada a 50 C. Qual a massa de cristais que se separam da solução, quado ela é

Leia mais

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples: PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

O teste de McNemar. A tabela 2x2. Depois

O teste de McNemar. A tabela 2x2. Depois Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br O teste de McNemar O teste de McNemar para a significância de mudanças é particularmente aplicável aos experimentos do tipo "antes

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA UNICAMP-FASE PROFA MARIA ANTÔNIA C GOUVEIA O velocíetro é u istrueto que idica a velocidade de u veículo A figura abaio ostra o velocíetro de u carro que

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Capítulo 1. Teoria da Amostragem

Capítulo 1. Teoria da Amostragem Capítulo 1 Teoria da Amostragem 1.1 Itrodução A amostragem e em particular os processos de amostragem aplicam-se em variadíssimas áreas do cohecimeto e costituem, muitas vezes, a úica forma de obter iformações

Leia mais

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição Avaliação da Cofiabilidade de Ites com Testes Destrutivos - Alicação da Estimação da roorção em uma oulação Fiita Amostrada sem Reosição F. A. A. Coelho e Y.. Tavares Diretoria de Sistemas de Armas da

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Métodos Não-Paramétricos

Métodos Não-Paramétricos Programa Métodos Não-Paramétricos Isabel Fraga Alves Departameto de Estatística e Ivestigação Operacioal Itrodução Aálise de Dados Categorizados Teste do Qui-Quadrado Teste de Ajustameto Tabelas de Cotigêcia

Leia mais

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt:

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt: Proposta de Resolução do Exame de Matemática Aplicada às Ciêcias Sociais Cód. 835-2ª 1ª Fase 2014 1.1 Comecemos por determiar a distribuição de represetates por aplicação do método de Hodt: Divisores PARTIDOS

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 3º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 3º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 0) Aalise a(s) afirmação(ões) abaio e assiale V para a(s) verdadeira(s) e F para a(s) falsa(s). Um raio lumioso propaga-se do meio A, cujo ídice de

Leia mais

ERROS ERRO DE ARREDONDAMENTO

ERROS ERRO DE ARREDONDAMENTO ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

Cálculo Financeiro Comercial e suas aplicações.

Cálculo Financeiro Comercial e suas aplicações. Matemática Fiaceira Uidade de Sorriso - SENAC M, Prof Rikey Felix Cálculo Fiaceiro Comercial e suas aplicações. Método Algébrico Parte 0 Professor Rikey Felix Edição 0/03 Matemática Fiaceira Uidade de

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2008 Duração: 2 horas Prova com cosulta Questão (Costrução de modelo ER) Deseja-se projetar uma base de dados que dará suporte a

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS

PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS O coteúdo programático das provas objetivas, apresetado o Aexo I do edital de abertura do referido cocurso público, iclui etre os tópicos de

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente.

1. Os métodos Não-Paramétricos podem ser aplicados a uma ampla diversidade de situações, porque não exigem populações distribuídas normalmente. TESTES NÃO - PARAMÉTRICOS As técnicas da Estatística Não-Paramétrica são, particularmente, adaptáveis aos dados das ciências do comportamento. A aplicação dessas técnicas não exige suposições quanto à

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2007 Duração: 2 horas Prova com cosulta Questão 1 (Costrução de modelo ER - Peso 3) Deseja-se costruir um sistema WEB que armazee

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais