PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

Tamanho: px
Começar a partir da página:

Download "PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO"

Transcrição

1 PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa, amal, plata, objeto ou eveto), assocada a uma ou mas característca de um eômeo. ESTATÍSTICA: É a cêca que tem por objetvo oretar a coleta, o resumo, a apresetação, a aálse e a terpretação dos dados. A ESTATÍSTICA SE DIVIDE EM: Estatístca Descrtva evolvda com resumo e apresetação dos dados. Estatístca Ierecal ajuda a coclur sobre cojuto maor de dados (população) quado apeas uma parte deste cojuto o estudada (amostra). ALGUMAS DEFINIÇÕES BÁSICAS UNIDADE EXPERIMENTAL é a meor udade a orecer uma ormação. Ex: pessoa, amal, plata, olha, peça de uma máqua, lote produzdo, etc. VARIÁVEL toda característca que, observada em uma udade expermetal, pode varar de dvíduo para dvíduo. Ex: sexo, peso, taxa de desemprego, cocetração de uma substâca, redmeto, etc. POPULAÇÃO todo cojuto de udades expermetas que apresetam pelo meos uma característca em comum. Ex: população de estudates uverstáros de Porto Alegre; população de pacetes dos hosptas públcos da Grade Poa; população de peças abrcadas por uma dústra o 1º semestre de 008. AMOSTRA qualquer ração de uma população. A amostra pode ou ão ser represetatva da população, para tetar azer com que ela seja, exstem dversas téccas de amostragem. CENSO é o resultado do estudo estatístco realzado em toda a população. AMOSTRAGEM É o processo de obteção de uma amostra, são téccas, plaos a m de torar represetatva a amostra extraída da população. PARÂMETRO é uma quatdade que resume a população, a ormação relatva a uma varável. ESTIMATIVA é uma quatdade que resume a amostra, a ormação relatva a uma varável. 1

2 CLASSIFICAÇÃO DAS VARIÁVEIS Varáves Qualtatvas Quattatvas Nomas Ordas Dscretas Cotíuas QUANTITATIVAS: são valores umércos, que expressam quatdade. Ex: altura (1,70m; 1 cm, etc.), peso (50kg, 50g, etc), úmero de baheros a casa. As varáves quattatvas podem ada ser subdvdas em: DISCRETAS: só podem ter valores teros, como por exemplo o úmero de rmãos, úmero de baxas hosptalares, etc. CONTÍNUAS: podem ter valores detro de tervalos de valores. Por exemplo, a estatura de uma pessoa pode estar etre 1,65 e 1,66, o valor 1,655 é possível, mas a prátca é muto dícl de termos esta precsão. A DIFERENÇA etre varáves cotíuas e dscretas é que as dscretas ão exste a possbldade, mesmo teórca, de se observar um valor racoáro: uma pessoa ão pode ter 1, rmãos. QUALITATIVAS (ou categórcas): orecem dados de atureza ão umérca. Ex: raça, sexo, classe socal, etc. Há dos íves de mesuração para este tpo de varável: 1) Nível omal este ível, dereca-se uma categora da outra somete através da deomação da categora. Podem ser dcotômcas ou polomas. Ex: ome, sexo, tpo sagüíeo, hábto de umar ) Nível ordal exste grau de tesdade etre as categoras. Ex: tesdade de dor, classe socal.

3 APRESENTAÇÃO DOS DADOS Vamos assumr o segute cojuto de dados: Uma amostra das otas de 3 estudates de uma turma está descrta a segur X: ota AMILCAR 6 ADRIANO 0 TASSIO ANDRE 6,5 ANDERSON 5 MARCELO 3,5 JACKSON 4 ALEXANDRE 7 GIAN 8 ROMEU 7 GUSTAVO A. 8,5 CESAR 6 RICARDO 4,5 REINALDO 0 GUSTAVO B. 6,5 BRUNO B. 6 ALEXSANDER CARLOS L. 5 LILIANE 5,5 DAVI 5 BRUNO A. 7 ESTEVAO 1,5 ELIAS 5 FILIPE 5 RAFAEL B. 4 GILSON 4,5 PRISCILLA 4 DIEGO 1 TATIANA 5,5 GISELE 3,5 MICHAEL,5 MILEN 4,5 3 - Dados solados: Represetam os dados a orma bruta. Sabemos a quem correspode cada valor da varável. Iormação é dvdualzada. Útl quado temos poucas ormações. 3

4 - Dados poderados: É uma tabela que cotém para cada valor observado o úmero de vezes que ele ocorre (reqüêca), mas ão sabemos a quem correspode cada valor. Nota Freqüêca ,5 1,5 1 3, , , , ,5 1 Total 3 - Dados agrupados : Apeas para dados quattatvos. É uma tabela que cotém dvsões da varável em estudo (tervalos) ode é observado o úmero de vezes que ocorrem os valores cotdos estes tervalos. Itervalo de ota Freqüêca Total 3 4

5 TIPOS DE FREQÜÊNCIA Geralmete, dados solados são agrupados a orma de tabelas de reqüêca, que ada mas são do que dados poderados ou agrupados. Exstem quatro tpos de reqüêcas: Freq. Absoluta da lha : represeta a quatdade de valores de x correspodete à lha Freq. Relatva: represeta a % que apresetam o valor da varável x gual ao da -ésma lha da tabela r ou r%. 100 Freq. Acumulada: é a soma das reqüêcas absolutas até a -ésma lha, ou seja, represeta o úmero de elemetos que apresetam valores da varável x meor ou gual ao da lha F j 1 j Freq. Acumulada Relatva: equvale a reqüêca acumulada porém acumula-se as reqüêcas relatvas. F F Fr ou Fr rj j 1 ou Fr %. 100 Exemplo: Tabela - Dâmetro (cm) de 5 peças produzdas por uma máqua. Dâmetro (x ) r (%) F Fr (%) ,0 1 4, ,0 1 4, ,0 3 1, ,0 4 16, ,0 7 8, ,0 1 48, , ,0 5. 8, , ,0 88, ,0 4 96, , ,0 Total 5 100,0 Fote: xxx Ode, reqüêca absoluta smples (Σ ) r reqüêca relatva smples ( /Σ *100) F reqüêca acumulada Fr reqüêca acumulada relatva 5

6 Iterpretação: 5 3 peças têm dâmetro 4,9 cm F 7 17 peças têm dâmetro de até 5,1 cm Fr 3 8% das peças têm dâmetro 4,7 cm Fr 9 88% das peças têm dâmetro de até 5,3 cm Tabela- Pesos (Kg) observados em 140 estudates da PUC. Peso (Kg) r (%) F Fr (%) ,0 6 4, ,0 6 18, , , , , , , , , , ,0 Total ,0 Fote: xxx Dcas para a coecção de tabelas: 1. Deve ser preceddo por um título, sucetemete claro para que o letor ão precse voltar ao texto para eteder o coteúdo da tabela.. A tabela é lmtada por uma lha superor e uma eror. O cabeçalho deve ser separado do resto do texto por uma lha horzotal. 3. NÃO SE USAM LINHAS VERTICAIS separado as coluas. 4. Abrevaturas e símbolos pouco cohecdos devem ser explcados o rodapé da tabela. 5. Deve ser dcada a ote dos dados. 6

7 PRINCIPAIS REPRESENTAÇÕES GRÁFICAS HISTOGRAMA % Peso (kg) Gráco - Peso (Kg) observado em 140 estudates uverstáros. GRÁFICO DE COLUNAS Os grácos de Barras são geralmete utlzados as mesmas stuações que os grácos de Coluas, derdo apeas a dsposção dos dados o exo y % Nº de lhos Gráco Dstrbução de 333 dvíduos, segudo o úmero de lhos. GRÁFICO DE SETORES Também é cohecdo por gráco de pzza ou de torta. SEXO (%) Masc 8% Fem 7% Gráco Dstrbução dos pacetes segudo o sexo. 7

8 GRÁFICO DE DISPERSÃO 10 Taxa Bruta vs Nascdos Vvos Mortaldade Iatl Nascdos Vvos Gráco Gráco de dspersão da taxa de mortaldade atl e do úmero de ascdos vvos os mucípos do RS, 004. GRÁFICO DE LINHAS Gráco Taxa de crescmeto aual do Ídce Trmestral de Atvdade Produtva (ITAP) e do Produto Itero Bruto (PIB) do RS, o período de 001 a 006. CARTOGRAMA Fgura Mapa do bloco Reda do Ídce de Desevolvmeto Sóco Ecoômco (IDESE/FEE) o RS,

9 MEDIDAS DE TENDÊNCIA CENTRAL São valores calculados com o objetvo de represetar os dados de uma orma mas codesada do que usado-se uma tabela. MÉDIA ARITMÉTICA SIMPLES É a medda de tedêca cetral mas utlzada. Fácl de calcular e terpretação amlar. Útl as comparações etre populações e outras erêcas. Também pode ser chamada de valor esperado ou esperaça matemátca. Notação: Na população deomamos por µ. Na amostra deomamos por X. Cálculo para dados ão agrupados: N x µ 1 N ode x: valores observados N: tamaho da população : tamaho da amostra X x 1 Também podemos calcular a méda para dados poderados ou agrupados. µ N x N 1 1 ode x: valores observados ou poto médo do tervalo : reqüêca absoluta N: tamaho da população : tamaho da amostra N x X x 1 1 x Propredades: 1. A méda de um cojuto de úmeros sempre pode ser calculada.. Para um dado cojuto de úmeros, a méda é úca. 3. Somado-se ou subtrado-se uma costate a cada valor de um cojuto, a méda cará, respectvamete, somada ou subtraída do valor da costate. Aalogamete, multplcado-se ou dvddo-se por uma costate cada valor de um cojuto, a méda cará multplcada ou dvdda, respectvamete, pela costate. 4. A soma dos desvos dos úmeros de um cojuto em relação à méda é zero, sto é, ( x µ) A méda é sesível a todos os valores de um cojuto, soredo luêca de valores extremos. 9

10 Exemplo (dados solados): Supoha que ao passar pelo acabameto de certo processo de mauatura, observe-se o tempo que 10 operáros levam para examar sete embalages do mesmo produto. Cosdere o tempo em segudos: 50 s 51 s 49 s 5 s 51 s 49 s 50 s 51 s 49 s 48 s 10 Etão: T X 500 s > µ 50 s 1 Exemplo (dados poderados): Número de peças deetuosas em uma amostra de 50 lotes produzdos em determada ábrca. Nº de peças (x ) Nº de lotes ( ).x.(x - X ) F , , , , , , , , , ,0 Logo, x X , peças Iterpretação: Os 50 lotes produzdos a determada ábrca apresetaram, em méda, 3, peças deetuosas. Uma propredade mportate é que a soma dos desvos de cada valor de x em relação à méda é zero. (4ª colua da tabela). Exemplo (dados agrupados): Idade, em aos, em uma amostra de craças da prmera sére de uma escola rural Idade (aos) x x F 5,5 6, ,5 7, ,5 8, ,5 9, Logo, x x X 1 1 M 0 0/30 X 7,3 aos 30 10

11 MEDIANA É a medda estatístca de tedêca Cetral que dvde a dstrbução dos dados ordeados em duas partes de gual reqüêca, de orma que 50% das observações a atecedem. De orma geral, podemos ecotrar a posção da medaa através da órmula: Propredades: P N+1 ou P A medaa ão depede de todos os valores observados, além dsso, ão sore luêca de valores extremos.. Não pode ser aplcada a varáves omas. 3. Adequado quado os dados apresetam grade varabldade ou dstrbução assmétrca, além de valores extremos dedos (ex. maor do que...). Exemplo ateror: Ordeamos os dados: Calculamos a Posção da medaa: P (N+1)/ P 5,5 A medaa se ecotra etre o 5 o e o 6 o elemeto: x5+ x Md 50 s Iterpretação: 50% dos operáros tveram tempo de até 50 s. Para dados poderados devemos observar o valor da a F (reqüêca acumulada) e o valor da posção da medaa. A medaa é o valor de x cuja F gualar ou exceder ao valor da posção. Para calcular a medaa para dados agrupados, devemos segur os segutes passos: 1) Ecotrar a classe que cotém a medaa: Achar a posção da medaa P(+1)/ Calcular as reqüêcas acumuladas ) Calcular o valor da medaa F 1 Md l + h ode: l : lmte eror da classe medaa F -1 : reqüêca acumulada da classe ateror à classe medaa : reqüêca absoluta da classe medaa h : ampltude da classe medaa 11

12 Exemplo (dados agrupados): Idade, em aos, em uma amostra de craças da prmera sére de uma escola rural Idade (aos) F 5,5 6, ,5 7, ,5 8, ,5 9, P(30+1)/15,5 comparado com a F cocluímos que a medaa ecotra-se o tervalo 6,5 7,5. Aplcado a órmula da medaa para dados agrupados obtemos o valor 7,5 Iterpretação: Metade das craças da prmera sére de uma escola rural apreseta até 7,5 aos. MODA É o valor mas reqüete em uma sére de valores. Em dados apresetados em tervalos de classe podemos ctar o tervalo modal ou etão dzermos que a moda é o poto médo do tervalo de maor reqüêca. Nos grácos, detcamos a moda ou as modas pelos pcos de reqüêca. Um cojuto de dados pode ser bmodal, sto é, ter dos valores que são os mas reqüetes gualmete, ou ser multmodal. A preseça de moda a dstrbução ão é obrgatóra, e este caso temos uma dstrbução amodal. No exemplo ateror podemos observar que o tervalo modal é 6,5 7,5, pos é o tervalo que mas reqüete, também podemos apresetar a moda bruta como o valor 7, ou seja, o poto cetral do tervalo. 1

13 MEDIDAS DE DISPERSÃO OU VARIABILIDADE Um aspecto udametal da atureza dos dados é o ato que eles ão se repetem com precsão, pelo cotráro, são caracterzados por certa dereça etre os elemetos, a varabldade. Exemplo: Supohamos que se deseja comparar o desempeho de dos ucoáros, com base a produção dára de peças: Empregado A: 800, 810, 790, 800, 800 Empregado B: 700, 900, 800, 70, 930 > µ A 800 peças > µ B 810 peças Baseados estes úcos resultados obtdos, dríamos que o desempeho de B é melhor do que de A, já que B produz, em méda, um maor úmero de peças daramete. No etato, se ormos um pouco cudadoso, podemos perceber que a produção de A vara de 790 a 810 peças, ao passo que a de B vara de 700 a 930 peças, o que dca que o desempeho de A é bem mas uorme do que de B. É evdete que um alto grau de uormdade costuma ser cosderado como uma qualdade desejável essa stuação. AMPLITUDE DE VARIAÇÃO É a medda estatístca de varabldade ou dspersão mas smples, deda pela dereça etre o maor e o meor valor. H Xmáx - Xmí No exemplo: Para o empregado A temos: H peças Desvatages: 1) Só utlza os valores extremos, descosderado os termedáros; ) Quado se mede a ampltude a amostra, geralmete se está subestmado a ampltude da população, pos como os extremos são mas raros, dclmete se terá bem represetado a amostra. 13

14 VARIÂNCIA É uma medda estatístca que leva em cosderação todas as ormações do cojuto em aálse, azedo uso da soma de quadrados dos desvos em toro da méda. Notação: Na amostra deomamos por S. Na população deomamos por σ. Fórmula para seu cálculo: N ( X µ ) ( 1 X X ) 1 σ S N 1 ode x: valores observados µ: méda populacoal X : méda amostral N: tamaho da população : tamaho da amostra No exemplo: O empregado B tem varâca σ ( ) + ( ) + ( ) + ( ) + ( ) peças OBS: Aqu a udade de medda é ao quadrado. Há uma órmula alteratva, que é útl quado o valor da méda ão é exato e até é mas correto, pos ão depede da méda que pode ter sordo arredodameto. Fórmula alteratva - Varâca (População) Para dados ão-agrupados Para dados poderados/agrupados x x σ µ σ µ N N Formula alteratva - Varâca (Amostra) Para dados ão-agrupados s ( x) x 1 Para dados poderados/agrupados s ( x) x 1 14

15 Exemplo: Amostra do redmeto mesal de 4 ucoáros (saláros mímos) da empresa A: x x X 4 1 x 14 3,5 sm. 4 s ( x) x 1 (14) ,67 sm. 3 DESVIO PADRÃO A desvatagem da varâca é que ela é medda em uma udade derete da udade em que o medda a varável, etão a solução é extrar a raz quadrada da varâca e com sso voltamos à udade orgal da varável, esta ova medda chamamos de desvo padrão. Notação: Na amostra deomamos por S. Na população deomamos por σ. População Amostra σ σ S S Exemplo: Reerete ao redmeto dos 4 ucoáros: s 1,67 1,9 sm. 15

16 COEFICIENTE DE VARIAÇÃO (CV) Quado se aalsa a mesma varável em duas amostras, pode-se comparar os desvos padrões observados e vercar ode a varação é maor (só podemos comparar varâca e desvo padrão etre varáves se elas apresetarem médas guas ou muto próxmas). Se em uma amostra o desvo para a espessura das peças é s1,9 mm e em outra amostra o desvo é s0,51 mm, coclu-se que a varação é maor a amostra 1. No etato, se as peças da amostra 1 também oram pesados e o desvo o 0,009g, ada se pode armar sobre o peso ser meos varável que a espessura, pos são varáves deretes. Mas se temos varáves deretes e gostaríamos de comparar suas varabldades, podemos azer sto pelo coecete de varação, que é uma medda de dspersão depedete da udade de mesuração da varável. O coecete de varação represeta uma ração em relação à méda e é calculado da segute orma: Na população: σ γ µ ou σ γ % 100 µ Na amostra: CV s X ou CV% 100 s X Exemplo: Espessura: Peso: X E 3, 5mm e S E 1, 9mm X P 0, 00g e S P 0, 009g Etão, o CV para cada varável é 1,9mm CV (espessura) 3,5mm 0,37 ou (37%) 0,009g CV (peso) 0,00g 0,45 ou (45%) Pode-se, etão, vercar que a espessura das peças é uma característca meos varável que o peso. 16

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Professor Mauricio Lutz ESTATÍSTICA BÁSICA

Professor Mauricio Lutz ESTATÍSTICA BÁSICA Proessor Maurco Lutz ESTATÍSTICA BÁSICA. Coceto Exstem mutas deções propostas por autores, objetvado estabelecer com clareza o que é estatístca, como por exemplo: Þ A Estatístca é um cojuto de métodos

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Notas de aula da disciplina Probabilidade e Estatística

Notas de aula da disciplina Probabilidade e Estatística otas de aula da dscpla Probabldade e Estatístca Proessor M Sc Adré Luz DAMAT - UTFPR Esta apostla apreseta os tópcos prcpas abordados em sala de aula, cotedo deções, teoremas, eemplos Sua letura ão é obrgatóra,

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Introdução à Estatística

Introdução à Estatística Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

9 Medidas Descritivas

9 Medidas Descritivas 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela ou de um gráfco. Se o cojuto refere-se

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Introdução à Estatística. Júlio Cesar de C. Balieiro 1

Introdução à Estatística. Júlio Cesar de C. Balieiro 1 Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Qwertyuopasdghjklzcvbmqwerty uopasdghjklzcvbmqwertyuopasd ghjklzcvbmqwertyuopasdghjklz cvbmqwertyuopasdghjklzcvbmq wertyuopasdghjklzcv bmqwertyuopasdghjklzcvbmqw ertyuopasdghjklzcvbmqwertyuo pasdghjklzcvbmqwertyuopasdgh

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini Estatístca Agosto 009 Campus do Potal Prof. MSc. Qutlao Squera Schrode Nomel - ESTATÍSTICA DESCRITIVA. - A NATUREZA DA ESTATÍSTICA COMO SURGIU A ESTATÍSTICA????? A Matemátca surge do covívo socal, da cotagem,

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

ESTATÍSTICA BÁSICA - Profº Marcos Nascimento

ESTATÍSTICA BÁSICA - Profº Marcos Nascimento ESTATÍSTICA BÁSICA - Proº Marcos Nascmeto CÁPITULO I- Itrodução Atualmete a utlzação da Estatístca é cada vez maor em qualquer atvdade prossoal. Nos mas dverscados ramos, as pessoas estão requetemete epostas

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Maríla Brasl Xaver REITORA Prof. Rubes Vlhea Foseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odvaldo Texera Lopes ARTE FINAL DA CAPA Odvaldo Texera Lopes REALIZAÇÃO

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

CAPÍTULO 1 PROBABILIDADE

CAPÍTULO 1 PROBABILIDADE CAPÍTULO PROBABILIDADE. Coceto O coceto de probabldade está sempre presete em osso da a da: qual é a probabldade de que o meu tme seja campeão? Qual é a probabldade de que eu passe aquela dscpla? Qual

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

TRABALHO DE COMPENSAÇÃO DE FALTAS - DP

TRABALHO DE COMPENSAÇÃO DE FALTAS - DP Cotrole do Proº Compesou as Faltas Não Compesou as Faltas TRABALHO DE COMPENSAÇÃO DE FALTAS - DP (De acordo coma s ormas da Isttução) CURSO: CIÊNCIAS CONTÁBEIS DISCIPLINA: INTRODUÇÃO À ESTATÍSTICA 2º ANO

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA SONIA ISOLDI MARTY GAMA

Leia mais

FUNDAMENTOS DE FINANÇAS E CUSTOS MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO E NEGÓCIOS

FUNDAMENTOS DE FINANÇAS E CUSTOS MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO E NEGÓCIOS 1 João Edso Tamel Marts FUNDAMENTOS DE FINANÇAS E CUSTOS & MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO E NEGÓCIOS Permtda a reprodução pelos aluos dos Cursos Téccos da ETE Pro. Camargo Araha 013 Apresetação

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM Fabríca D. Satos, Lucla G. Rbero, Leoardo G. de R. Guedes, Weber Marts Uversdade Católca de Goás, Departameto de Computação Uversdade

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

CAPITULO 1 CONCEITOS BÁSICOS

CAPITULO 1 CONCEITOS BÁSICOS DISCIPLIA: ESTATÍSTICA PROFESSOR: JOSELIAS SATOS DA SILVA - joselas@uol.com.br ÍDICE CAPITULO 1 COCEITOS BÁSICOS... 3 1.1 ESTATÍSTICA... 3 1. ESTATÍSTICA DESCRITIVA... 3 1.3 ESTATÍSTICA IFERECIAL... 3

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário Estatístca Área 4 BACEN Aula 0 Estatístca Descrtva Prof. Aleadre Lma Aula 0 Sumáro Itrodução à Estatístca... 3 Tpos de Varáves... 4 3 Rol... 5 4 Séres Estatístcas... 6 5 Téccas de Descrção Gráfca... 8

Leia mais

Etapas para a construção de uma distribuição de frequências por ponto

Etapas para a construção de uma distribuição de frequências por ponto Dtrbuçõe de Frequêca Uma dtrbução de requêca é uma tabela que reúe o cojuto de dado, coorme a requêca ou a repetçõe de eu valore o capítulo ateror, vmo como ão eta ea tabela quado a varável é qualtatva

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

3 Precificação de resseguro

3 Precificação de resseguro Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

Estatística: uma definição

Estatística: uma definição Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade Do que trata a Estatístca A essêca da cêca é a observação. Estatístca: A cêca que se preocupa com a orgazação, descrção, aálse e terpretação dos dados epermetas. Ramo da Matemátca Aplcada. A palavra estatístca

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção Prof. Lorí Val, Dr. val@pucr.br http://www.pucr.br/~val/ Grade Cojuto de Dado Orgazação; Reumo; Apreetação. Amotra ou População Defeto em uma lha de produção Lacado Deeho Torto Deeho Torto Lacado Torto

Leia mais

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida Gestão de Sstemas de Produção/Operações Profº Túlo de Almeda 3. AVALIAÇÃO DE DESEMPENHO E INDICADORES 3.1. INDICADORES DE DESEMPENHO Os dcadores são tes essecas para qualquer tpo de projeto, processo,

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A.

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A. MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS M. Z. Nascmeto, A. F. Frère e L. A. Neves INTRODUÇÃO O cotraste as radografas vara ao logo do campo de

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

ESTATÍSTICA 2º. SEMESTRE DE 2016

ESTATÍSTICA 2º. SEMESTRE DE 2016 ESTATÍSTICA O presete materal fo elaborado com o objetvo de facltar as atvdades em sala de aula, segudo a bblografa apresetada o fal do texto. Esclarece-se que o materal, ão substtu a bblografa apresetada,

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais