Capacitância e Dielétricos

Tamanho: px
Começar a partir da página:

Download "Capacitância e Dielétricos"

Transcrição

1 9/7/07 Eltriidd Mgntismo - IME L of r Cpitâni Dilétrios Prof. Cristi Olivir Ed. Bsilio Jft sl 0 rislpo@if.usp.r CAPACITORES

2 9/7/07 L of r Cpitors m Pls d Ciruito Usdos m todo tipo d iruito létrio: Armznmnto d rgs / nrgi Apliçõs d tmporizção (Crg / Dsrg) Filtros d sinl (pss lt / pss ix) Control d sinttizção / just d som Sintonizção d nis / frquni ntr muits outrs pliçõs Dfinição d Cpitâni Cpitor: Cominção d dois ondutors rrgdos om msm rg ms sinis opostos. Os ondutors são dmindos pls um difrnç d potnil xist ntr dvido prsnç ds rgs. A pitâni C d um pitor é dfinid omo rzão ntr mgnitud d rg m d ondutor difrnç d potnil ntr os ondutors: C V V Como difrnç d potnil vri linrmnt om rg rmznd, pitâni é onstnt pr um ddo pitor, dpndndo pns do tmnho form do ondutor. Cpitâni é um mdid d pidd do pitor d rmznr rg.

3 9/7/07 Unidd d Cpiâni D dfinição ntrior, vmos qu SI, piâni tm unidds d ouloms por volt (C/V). Est unidd foi tizd d frd (F): L of r F C / V F é um quntidd muito grnd d pitâni tipimnt omponnts létrios possum piânis vrindo d mirofrds (0-6) piofrds (0-) Clulndo Cpitânis Enrgi Elétri 3

4 9/7/07 Clulndo Cpitânis Potnil Elétrio Enrgi létri/ unidd d rg U q L of r V V E.d s C V V Clulndo Cpitânis Cpitor d Pls prlls O mpo létrio intrior do pitor é ddo por: E 0 0A Pr otrmos o potnil ntr s pls, tmos f i V E ds E ds f i Como pr pitors stmos intrssdos vlor soluto d V podmos rsrvr st xprssão omo V E ds V E ds Ed V d 0 Usndo dfinição d pitâni, C V d / 0 A C 0 A d Cpitor d pls prlls 4

5 9/7/07 Clulndo Cpitânis Cpitor Cilíndrio Como suprfíi gussin solhmos um ilindro d omprimnto L rio r fhdo ns ss: 0 E da 0 EA 0 E r L E 0 Lr L of r Pr otrmos o potnil ntr s pls, tmos V E ds 0 L dr r V ln 0 L Usndo dfinição d pitâni, C V ln( / ) / 0 L C 0 L ln( / ) Suprfíi Gussin Cpitor ilíndrio Clulndo Cpitânis Cpitor Esfério Como suprfíi gussin solhmos um sfr d rio r : 0 E da 0 EA 0 E 4 r E r 4 0 r Pr otrmos o potnil ntr s pls, tmos V E ds 4 0 dr r V Usndo dfinição d pitâni, C V / / 4 0 C 4 0 Cpitor Esfério Cso prtiulr: Esfr rrgd Colondo rg ngtiv - infinito, C 4 0 R Esfr isold 5

6 9/7/07 Cominndo Cpitânis Cpitors m Prllo Os pontos stão ontdos um tri qu mntém difrnç d potnil V=V-V ontnt. S s pitnis form dds por C C, s rgs rmznds s pitors srão: CV L of r CV A rg totl rmznd é, CV CV C C V Isso s prmit dfinir pitâni quivlnt Cq C C V O msmo prodimnto pod sr xtndido pr n pitors m prllo: Cq C C C3... C n Cpitâni quivlnt pr ssoição m prllo Cominndo Cpitânis Cpitors m Séri Os pontos stão ontdos um tri qu mntém difrnç d potnil V=V-V ontnt trvés dos pitors. S um rg + é olod n pl suprior do primiro pitor, o mpo létrio induzirá um rg - n pl infrior dst. Est rg virá dos létrons tirdos d pl suprior do sgundo pitor, induzindo rgs + - ns pls dst.nst: O potnil trvés do primiro pitor srá: V V Vm C No sgundo pitor, V Vm V C A difrnç d potnil trvés dos dois pitors é som dsts dois vlors V V V V V V C C C C Isso s prmit dfinir pitâni quivlnt Cq Cq C C V O msmo prodimnto pod sr xtndido pr n pitors m séri:... Cq C C Cn Cpitâni quivlnt pr ssoição m séri 6

7 9/7/07 L of r Exmplo: Otndo pitâni quivlnt Enrgi Armznd m um Cpitor Sj q rg pitor durnt o prosso d rg. Nst instnt, difrnç d potnil m sus pls é v=q/c. O trlho nssário pr trnsfrir um inrmnto d rg dq d pl om rg -q pr pl om rg +q (qu possui um potnil létrio mior) é: dw v dq q dq C O trlho totl nssário pr rrgr o pitor d q=0 pr rg q= é q dq qdq W C C0 C 0 W Est trlho gsto n rg do pitor, pr omo nrgi potnil U rmznd pitor. Est nrgi pod sr srit d váris forms, onform onvniêni: U V C V C Est rsultdo pli-s pr qulqur pitor, indpndnt d su gomtri. N práti xist um limit máximo d nrgi (ou rgs) qu pod sr rmzndo m um pitor. Dst form, os pitors possum indição d máxim tnsão suportd m sus pls. 7

8 9/7/07 L of r Cuiddo Cpitors xplodm! Dnsidd d Enrgi Assumindo-s um dd gomtri podmos lulr nrgi por unidd d volum pr um pitor: Cpitor d pls prlls U C V C U 0 A d V Ed 0A E d 0 Ad E d Vol Ad U 0 Ad E 0 E Vol Ad 0E Dnsidd d nrgi ontid mpo létrio Indpnd do pitor Cpitor Cilíndrio U C V U U C 0 L V ln 0 L ln( / ) L 0 ln ln( / ) 0 L 4 0 L ln 0E E 0 Lr du dvol 0 rldr 0 L r du dr 4 0 L r U dvol 4 0 dr U L r 4 0L ln 8

9 9/7/07 Dnsidd d Enrgi Cpitor Esfério 0E U C V V r du dvol 0 4 r dr 4 0 r 4 dr 8 0 r L of r C 4 0 E U U du U dvol 8 0 U dr 8 0 r Cpitors om Dilétrios Dilétrio Dilétrio: Mtril isolnt omo orrh, vidro, ppl nrdo, t. undo rgião ntr s pls d um pitor são ompltmnt prnhids plo mtril dilétrio, o potnil, mdido por um voltímtro, diminui d um ftor, V V0 Como rg ntrs s pls é msm, onlui-s qu pitâni dv s ltrr: C V V V C C0 V V0 / V0 undo rgião ntr s pls d um pitor são ompltmnt prnhids plo mtril dilétrio, pitâni umnt por um ftor dimnsionl, dmindo onstnt dilétri. Pr um pitor d pls prlls, C0 0 A / d ntão, C 0 A d A d Ond é dmindo prmissividd do dilétrio 9

10 9/7/07 Cpitor omril típio Constnts dilétris onhids Ltur ts Prof. Cristi Rididz dilétri 0

11 9/7/07 Diminuição do potnil Efito d polrizção d moléuls L of r E E0 Eind Moléuls rndomimnt orintds S orintm qundo sugits o mpo létrio ds pls do pitor Est orintção gr um mpo induzido qu s por diminuir o mpo iniil Cpitor d pls prlls ind O mpo létrio originl tm grndz E 0 é ddo por ind E0 f 0 O mpo létrio dntro ds pls do dilétrio, oposto o mpo originl, dvido s rgs ind induzids é, 0 0 E ind 0 O mpo rsultnt E é difrnç dsts dois mpos ms tmém vl E0 / E E0 E E0 E E0 E0 Esrvndo ind/ 0 lugr d E 0/ 0 lugr d E0, ind 0 A rg ligd ind é smpr mr qu rg livr 0, nul qundo =, so m qu não há dilétrio.

12 9/7/07 L of r Tipos d Cpitors ris Apliçõs Pls d iruito imprsso Dsfirildor Flsh fotográfio Filtros d sinl Todo qulqur quipmnto ltrio/ltronio possui um ou mis pitors nl.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Cludi gin Cmpos d Crvlho Módulo sistors Circuitos sistênci Elétric () sistors: sistor é o condutor qu trnsform nrgi létric m clor. Como o rsistor é um condutor d létrons, xistm quls qu fcilitm ou

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

AULA 12. Otimização Combinatória p. 342

AULA 12. Otimização Combinatória p. 342 AULA 2 Otimizção Comintóri p. 342 Emprlhmntos pso máximo Otimizção Comintóri p. 343 Emprlhmntos Um mprlhmnto m um gro (não-orinto) é um onjunto rsts qu us--us não tm pont m omum. Exmplo: {, } {, } ormm

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5.

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5. PCS 5 Funmntos Engnhri Computção II Aul Molos R Algoritmo o Fluxo Máximo Contúo 5. Molos r lgoritmo o fluxo máximo 5. Molos r 5. Algoritmo o fluxo máximo Líri Sto Profssor Rsponsávl vrsão:. (st 00) Gomi,

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

Lecture notes Prof. Cristiano

Lecture notes Prof. Cristiano Eletricidade e Magnetismo IG apacitância e Dielétricos Oliveira Ed. Basilio Jafet sala crislpo@if.usp.r APAITORES Definição de apacitância apacitor: ominação de dois condutores carregados com mesma carga

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

WWW.escoladoeletrotecnico.com.br

WWW.escoladoeletrotecnico.com.br USOPE USO PEPAATÓIO PAA ONUSOS EM ELETOTÉNIA PE ELETIIDADE (Ligções SÉI E E PAALELA. EDE DELTA E ESTELA) AULA Prof.: Jen WWW.esoldoeletrotenio.om.r 0 de Setemro de 007 LIGAÇÕES SÉIES E PAALELAS USOPE.

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA:

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA: NOME: TURMA: DATA: 1. GRANDEZAS FÍSICAS 1.1. Grndzs Esclrs São totlmnt dfinids somnt por um lor numérico ssocido um unidd d mdid. Exmplos: Tmpo mss comprimnto tmprtur nrgi crg létric potncil létrico corrnt

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

Série de Fourier tempo contínuo

Série de Fourier tempo contínuo Fculdd d Engnhri Séri d Fourir mpo conínuo.5.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 7/8 Séri d Fourir m mpo conínuo ul d hoj Fculdd d Engnhri Rspos d SLIs conínuo ponnciis Eponnciis imgináris hrmonicmn rlcionds

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

8/5/2015. Física Geral III

8/5/2015. Física Geral III 8/5/5 Físic Gerl III Aul Teóric (p. 7 prte /): ) pcitânci ) álculo d cpcitânci pr cpcitores de plcs prlels, cilíndricos e esféricos 3) Associções de cpcitores Prof. Mrcio R. Loos pcitor Um cpcitor é um

Leia mais

Laboratório de Circuitos Polifásicos e Magnéticos

Laboratório de Circuitos Polifásicos e Magnéticos ortório de Ciruitos Polifásios e Mgnétios PÁTICA 3 CICUITOS TIFÁSICOS EQUIIBADOS E DESEQUIIBADOS OBJETIVOS: O ojetivo d práti é lulr orrentes/tensões em iruitos trifásios equilirdos e desequilirdos efetundo

Leia mais

Integrais triplas AULA

Integrais triplas AULA Intgris tripls META: Aprsntr intgris tripls d funçõs d vlors ris domínio m 3. OBJETIVOS: Ao fim d ul os lunos dvrão sr pzs d: finir intgrl tripl lulr lgums intgris tripls d funçõs d vlors ris domínio m

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes UNIVERSIAE FEERAL A BAHIA EPARTAMENTO E ENGENHARIA QUÍMICA ENG 008 Fnômnos d Trnsport I A Profª Fátim Lops Tnsão m um ponto A dscrição do cmpo d tnsõs é dsnvolvid prtir d nális d tnsão m um ponto. Considrndo

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Lista de Matemática ITA 2012 Trigonometria

Lista de Matemática ITA 2012 Trigonometria List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita Eletriidde Aplid Auls Teóris Professor: Jorge Andrés Cormne Angrit Ciruitos Trifásios Eletriidde Aplid Introdução A gerção, trnsmissão e prte de distriuição de grndes quntiddes de potêni elétri são feits

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES 8.1 Drivadas Parciais d Ordns Supriors Dada a função ral d duas variávis f : Dom(f) R 2 R X = ) f(x) = f ) aprndmos antriormnt como construir suas drivadas

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então:

da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então: Dfinição S ( i Dtrminnts um mtri qudrd d ordm n sor o orpo dos ris ssoimos um slr d R hmdo dtrminnt d omo sndo som d todos os trmos d form ond os t ( k k índis k i s ds oluns ssumm tods s rrumçõs possívis

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Áreas de Figuras Planas: Mais Alguns Resultados. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Áreas de Figuras Planas: Mais Alguns Resultados. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Mtril Tório - Módulo Árs d Figurs Plns Árs d Figurs Plns: Mis lguns Rsultdos Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio minh M Nto 6 d novmro d 08 Portl d OMEP fórmul d Hrão Nst ul, prsntrmos

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

COLÉGIO MONJOLO SUPER EXATAS - MUV

COLÉGIO MONJOLO SUPER EXATAS - MUV 1. Prtindo do rpouso, um vião prcorr pist ting vlocidd d 360 km/h m 25 s. Qul é o vlor d clrção sclr médi m m/s² no rfrido intrvlo d tmpo? Trfgndo por um vnid com vlocidd constnt d 108 km/h, num ddo instnt

Leia mais

basalto malhadinha a escolha natural

basalto malhadinha a escolha natural slto mlhdinh slto mlhdinh A Eoslto Loliz-s nos Cnhs m Pont do Sol, ddis à trnsformção omrilizção d pdr ornmntl d lçd m slto. As pdrs usds são provnints d Pdrir d Mlhdinh, sujits um rigoroso prosso d slção.

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS Hewlett-Pkrd GRANDEZAS PROPORCIONAIS Auls 01 03 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE PROPORCIONAIS

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

PROPOSTA DE RESOLUÇÃO DA FICHA DE TRABALHO SOBRE SOLUÇÕES TAMPÃO, HIDRÓLISE DE SAIS E TITULAÇÕES DE SOLUÇÕES ÁCIDAS E BÁSICAS

PROPOSTA DE RESOLUÇÃO DA FICHA DE TRABALHO SOBRE SOLUÇÕES TAMPÃO, HIDRÓLISE DE SAIS E TITULAÇÕES DE SOLUÇÕES ÁCIDAS E BÁSICAS PROPOSTA DE RESOLUÇÃO DA FICHA DE TRABALHO SOBRE SOLUÇÕES TAMPÃO, HIDRÓLISE DE SAIS E TITULAÇÕES DE SOLUÇÕES ÁCIDAS E BÁSICAS 1. ph =? 5ºC 1.1. [CN = 0,049 mol/l (HCN) = 4,910 10 CN é um sl muito solúvl,

Leia mais

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara Instituto d Física USP Física V - Aula 10 Profssora: Mazé Bchara Aula 10 O fito fotolétrico 1. Visão fotônica: a difração o carátr dual da radiação ltromagnética. 2. O qu é, o qu s obsrva. 3. Caractrísticas

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

Lei de Coulomb 1 = 4πε 0

Lei de Coulomb 1 = 4πε 0 Lei de Coulomb As forçs entre crgs elétrics são forçs de cmpo, isto é, forçs de ção à distânci, como s forçs grvitcionis (com diferenç que s grvitcionis são sempre forçs trtivs). O cientist frncês Chrles

Leia mais

Otimização em Grafos

Otimização em Grafos Otimizção m Grfos Luii G. Simontti PESC/COPPE 2017 Luii Simontti (PESC) EEL857 2017 1 / 25 Grfo (não iriono): G = (V, E) V - onjunto vértis - V = {1, 2, 3, 4, 5, 6, 7} E - onjunto rsts - E = {[1, 2], [1,

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

2 Patamar de Carga de Energia

2 Patamar de Carga de Energia 2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d

Leia mais

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50).

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50). Cpítuo : O dipoo infinitsim O dipoo infinitsim (tzino) é um mnto d cont d compimnto t qu

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

AULA 6 - ALETAS OU SUPERFÍCIES ESTENDIDAS

AULA 6 - ALETAS OU SUPERFÍCIES ESTENDIDAS Notas d aula d PME 336 Prossos d Transfrênia d Calor 4 AULA 6 - ALETAS OU SUPERFÍCIES ESTENDIDAS Considr uma suprfíi auida (rsfriada u s dsja troar alor om um fluido. Da li d rsfriamnto d Nwton, vm u o

Leia mais

WATERFLUX - MEDIDOR DE VAZÃO SEM NECESSIDADE DE TRECHOS RETOS - ALIMENTAÇÃO INTERNA (BATERIA) OU EXTERNA CA/CC

WATERFLUX - MEDIDOR DE VAZÃO SEM NECESSIDADE DE TRECHOS RETOS - ALIMENTAÇÃO INTERNA (BATERIA) OU EXTERNA CA/CC ATERFUX - MEDIDOR DE VAZÃO SEM NECESSIDADE DE TRECOS RETOS - AIMENTAÇÃO INTERNA (BATERIA) OU EXTERNA CA/CC PRINCIPAIS CARACTERÍSTICAS Montgem sem neessidde de trehos retos à montnte e à jusnte (0D:0D)

Leia mais

Teoremas sobre circuitos (corrente alternada)

Teoremas sobre circuitos (corrente alternada) Torms sor circuitos (corrnt ltrnd) Ojtivos Sr cpz d plicr o torm d suprposição os circuitos CA com fonts indpndnts dpndnts. Adquirir hilidd n plicção do torm d Thévnin os circuitos CA com fonts indpndnts

Leia mais

PROPOSTA DE RESOLUÇÃO DA FICHA DE EQUILÍBRIO DE ÁCIDO-BASE - CÁLCULOS DE ph

PROPOSTA DE RESOLUÇÃO DA FICHA DE EQUILÍBRIO DE ÁCIDO-BASE - CÁLCULOS DE ph Rsolução d fich d Trblho Cálculos d ph PROPOSTA DE RESOLUÇÃO DA FICHA DE EQUILÍBRIO DE ÁCIDO-BASE - CÁLCULOS DE ph 1. 1.1. Signific qu ist 97 g d H SO 4 m 0 g d solução. 1.. H O(l)? m m % m Ac sol. 1,84

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

Capítulo 9. Chopper(conversor CC-CC)

Capítulo 9. Chopper(conversor CC-CC) píulo 9 onrsor nrodução hoppr(conrsor rg Alimnção: nsão ix rg: nsão riál Equiln d um rnsormdor A A nsão d síd do conrsor pod sr mior ou mnor qu nsão d nrd Normlmn uilizdos m limnção d disposiios lromcânicos

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 14

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 14 SEL 329 CONVERSÃO ELETROMECÂNCA DE ENERGA Aul 14 Aul de Hoje Gerdor CC Composto Gerdor Série nterpolos Gerdor CC com Excitção Compost Estrutur Básic Utiliz combinções de enrolmentos de cmpo em série e

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais