2 Patamar de Carga de Energia

Tamanho: px
Começar a partir da página:

Download "2 Patamar de Carga de Energia"

Transcrição

1 2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d 24 ou 48 uniddes de informção, em um di, dão origem à urv de rg diári. Os ptmres de rg de energi são gregções d rg de energi em intervlos horários, e estes são pré-estbeleidos om o objetivo de simplifir quntidde de informções utilizds ns nálises e proedimentos de fenômenos que oorrem n operção de sistems elétrios.. A tbel 2 present os horários de oorrêni dos ptmres de rg de energi leve, medi e pesd o longo de um semn, nos períodos om e sem horário de verão. Est tbel é utilizd no setor elétrio há muitos nos [16], e foi onebid om bse em estudos relizdos por ténios do setor elétrio brsileiro. bel 2 Intervlos dos Ptmres Ptmr de Crg 2ª feir à Sábdo LEVE 00:00 às 06:59 MEDIA Sem Horário de Verão 07:00 às 17:59 21:00 às 23:59 Domingo e Ferido 00:00 às 16:59 22:00 às 23:59 17:00 às 21:59 2ª feir à Sábdo 00:00 às 06:59 07:00 às 18:59 22:00 às 23:59 PESADA 18:00 às 20:59 19:00 às 21:59 Com Horário de Verão Domingo e Ferido 00:00 às 17:59 23:00 às 23:59 18:00 às 22:59 A urv de rg diári represent o omportmento d soiedde, em termos do onsumo de energi. No Subsistem Sudeste/Centro Oeste, por exemplo, é possível observr questões bstnte relevntes que possuem relção diret om os ptmres, tis omo: As rgs mis bixs do di n mdrugd, qundo diminui utilizção de energi elétri ns residênis;

2 21 O umento d rg no iníio d mnhã (por volt ds 8 hors), qundo miori ds pessos está sindo pr o trblho; Outro umento d rg qundo omeç entrr iluminção públi, no iníio d noite; O pio de energi pós entrd d iluminção públi e utilizção d energi ns residênis; Além disso, eventos ulturis, esportivos e soiis tmbém têm influêni sobre s urvs de rg, omo, por exemplo: O iníio, o intervlo e o fim de um jogo de futebol d seleção do Brsil em um prtid de op do mundo; Um finl de novel de grnde udiêni; O deslomento d urv de rg no horário de pont do sistem n entrd e síd do horário de verão. Questões omo esss são estudds trvés ds urvs de rg e tmbém podem ser levds em ont qundo se estiver pensndo n previsão dos ptmres de rg. A figur 2 present um exemplo de urv de rg e lguns detlhes que podem ser observdos qunto os ptmres de rg n mesm. Curv x Ptmr x Demnd - SE/CO (10/05/07) Curv Ptmr Crg de Energi Médi Diári Demnd de Pont Ptmr Pesdo Ptmr Medio Ptmr Medio Ptmr Leve Demnd Mínim 00:00-00:59 01:00-01:59 02:00-02:59 03:00-03:59 04:00-04:59 05:00-05:59 06:00-06:59 07:00-07:59 08:00-08:59 09:00-09:59 10:00-10:59 11:00-11:59 12:00-12:59 13:00-13:59 14:00-14:59 15:00-15:59 16:00-16:59 17:00-17:59 18:00-18:59 19:00-19:59 20:00-20:59 21:00-21:59 22:00-22:59 23:00-23:59 Figur 2 Curv de Crg Diári e ipos de Agregção d Crg

3 22 Pel tbel 2 e o exemplo presentdo n, not-se lrmente que os intervlos dos ptmres form definidos levndo-se em ont os níveis d urv de rg durnte o di, ou sej, o ptmr leve qundo rg é mis bix, o ptmr de medi, qundo rg tinge níveis médios, e o ptmr de pesd, qundo os níveis são mis elevdos. Dispondo ds informções de energi diári medids o álulo do ptmr de rg diário é feito de form bem simples: 1. Verifim-se tods s oorrênis de rg dentro dos intervlos de d ptmr; 2. Clul-se médi ritméti desss oorrênis pr d ptmr de rg de energi. Dess form, são obtidos os vlores verifidos diários dos ptmres de rg de energi leve, médi e pesd. Um exemplo gráfio dos vlores dos ptmres pr um di útil, om urv de rg d figur 3, pode ser visto n figur 4. Est dissertção fz uso desses 3 vlores verifidos que irão ompor s 3 séries de ptmres de rg Subsistem Sudeste/Centro Oeste (13/05/2003) MW Medios Subsistem Sudeste/Centro Oeste (13/05/2003) e LEVE MEDIA PESADA Ptmres Figur 3 Curv de Crg Figur 4 Ptmres de Crg

4 Cálulo de Ptmres Os ptmres de rg k(k1, 2,..., K) estão reliondos um intervlo temporl (I) de um período (di, semn ou mês) do no e são luldos pr um subonjunto de instntes de tempo () desse intervlo. Assim, o vlor de um ptmr de rg k, qulquer, é luldo trvés de um função que tem omo rgumento os instntes de tempo * pertenentes o subonjunto do intervlo I pr o ptmr k. Ess função não é definid nos instntes de tempo que não pertençm esse subonjunto, pr o ptmr em questão. Cd ptmr k terá o seu próprio subonjunto no intervlo I. Sej, por exemplo, I[t 1, t z ], o intervlo temporl de interesse e k,i {t j, t j+1, t j+2, t n, t n+1, t q, t x }, (t 1 < t j, t x t z ) o subonjunto de I onde o ptmr k está definido. O vlor do ptmr k no intervlo I, denotdo por P k (I), pode ser obtido por: P k (I) f(t j, t j+1, t j+2, t n, t n+1, t q, t x ), onde f(t) é função que reliz o álulo desejdo. O intervlo temporl utilizdo neste trblho é o diário, representdo por D d,, onde d1,2,...,366 é o di referente o no. Pr outros intervlos temporis onsulte referêni [3]. A função f(t) é médi ritméti dos vlores de rg verifid nos instntes de tempo do subonjunto k,d d,, e o vlor de P k (Dd,) é ddo por: P k ( D ) d, t k, D d, k, D ( d, t ) d, onde: no de interesse * Gerlmente, o instnte de tempo, t, está reliondo om um vlor médio de rg de um período de tempo em um urv de rg de energi diári verifid. Por exemplo, pr um período de mei hor, tem-se: t1 > rg médi entre 0h e 0,5h; t2 > rg médi entre 0,5h e 1h e ssim por dinte.

5 24 d di onsiderdo do no D d, intervlo do di d k1,2,...,k ptmr onsiderdo k,d d, subonjunto dos instntes de tempo de D d, pr o ptmr k t instnte de tempo pertenente k, D d, (d,t) rg verifid no instnte t do di d P k (D d, ) ptmr de rg k pr D d, - tmnho do onjunto, definido omo o número de elementos do onjunto. Segue um exemplo pr o álulo dos ptmres de rg, onsiderndo urv de rg pr um di d95 de um no qulquer, e que este di é um sext-feir for do horário de verão, e que o número de ptmres K3 (leve1, médi2 e pesd3). Dí, utilizndo tbel 2, os ptmres pr esse di serim obtidos de: P 1 (D 95, ) P 2 (D 95, ) P 3 (D 95, ) t 1, D95, ( 95, t) 1, D95, t 2, D95, ( 95, t) 2, D95, t 3, D95, ( 95, t) 3, D95, (95, 1) + (95,2) (95, 7) ; 7 (95, 8) + (95, 9) (95,18) + (95, 22) (95, 24) 14 (95, 19) + (95,20) + (95, 21) ; 3 ; 2.3 Séries A nálise relizd neste trblho é feit onsiderndo séries temporis [seção 0] de ptmres de rg diári, e onforme explido nteriormente serão 3 (três) s séries de rg: leve, médi e pesd. O estudo de so de que trt este trblho está bsedo n série temporl de ptmres de rg do Subsistem Sudeste/Centro-Oeste brsileiro. Os ddos histórios

6 25 (01/01/ /01/2008) utilizdos form edidos pelo ONS, n bse horári, e estes form gregdos em ptmres de rg usndo o lgoritmo indido n seção 0. A figur 5 present um mostr ds séries dos ptmres de rg leve, médi e pesd Ptmres de Crg - Subsistem Sudeste/C.Oeste /01/03 01/02/03 01/03/03 01/04/03 01/05/03 01/06/03 01/07/03 01/08/03 01/09/03 01/10/03 01/11/03 01/12/03 01/01/04 01/02/04 01/03/04 01/04/04 01/05/04 01/06/04 01/07/04 01/08/04 01/09/04 01/10/04 01/11/04 01/12/04 01/01/05 01/02/05 01/03/05 01/04/05 01/05/05 01/06/05 01/07/05 01/08/05 01/09/05 01/10/05 01/11/05 01/12/05 MWmedio Di Ptmr de Crg Leve Ptmr de Crg Médi Ptmr de Crg Pesd Figur 5 Ptmres de Crg Leve, Médi e Pesd (01/01/2003 té 31/12/2005) Em relção às três séries presentds n figur 5 é possível relizr lgums nálises somente observndo mesm e verifindo lgums rterístis, tis omo: O omportmento semelhnte entre os ptmres; O resimento nul ds três séries, bem omo sus szonliddes; No ptmr de rg pesd, s flhs, que indim s oorrênis de feridos e domingos, onde este ptmr não é definido; A redução de nível nos ptmres de rg leve e médi nos feridos e domingos; Os diferentes níveis dos ptmres de rg. Um onsttção importnte que os ddos nos mostrm é que o di d semn e oorrêni de feridos são de grnde importâni n vlição de um modelo de previsão pr s séries dos ptmres de rg. Além d série de rg horári, tmbém série de tempertur horári foi forneid pr o mesmo horizonte d série de rg. Como este trblho nlis o omportmento ds séries de ptmres de rg, pr verifir o omportmento ds

7 26 mesms em relção às vrições de tempertur, foi neessário seleionr lguns vlores representtivos dess vriável pr se tentr estbeleer lgum relção om s informções de ptmres diários. O que foi feito neste sentido, foi estbeleer pr d informção de ptmr de rg diário quis erm s temperturs máxim, mínim e médi diári orrespondente. A figur 6 present o gráfio ds temperturs mínim, médi e máxim diári (entre 01/01/2003 e 31/12/2005) ssoids às séries de ptmres de rg. 40 emperturs Diáris - Subsistem Sudeste/C.Oeste /01/03 01/02/03 01/03/03 01/04/03 01/05/03 01/06/03 01/07/03 01/08/03 01/09/03 01/10/03 01/11/03 01/12/03 01/01/04 01/02/04 01/03/04 01/04/04 01/05/04 01/06/04 01/07/04 01/08/04 01/09/04 01/10/04 01/11/04 01/12/04 01/01/05 01/02/05 01/03/05 01/04/05 01/05/05 01/06/05 01/07/05 01/08/05 01/09/05 01/10/05 01/11/05 01/12/05 ºC Di empertur Mínim empertur Máxim empertur Médi Figur 6 emperturs Mínim, Máxim e Médi (01/01/2003 té 31/12/2005) D mesm form que no so dos ptmres de rg, é possível relizr lgums nálises somente observndo o gráfio ds temperturs verifids neste intervlo de tempo, tis omo: O omportmento semelhnte entre s temperturs; Não há resimento nul ds três séries, ms há um omportmento szonl no no; Os níveis mis bixos ds temperturs no meio do no, bem omo s temperturs mis elevds no finl e no iníio dos nos. Esss temperturs mis elevds, prtimente, ombinm om o período de oorrêni do horário de verão brsileiro; Outr informção referente à rg que é utilizd nesse trblho é rg globl diári, definid por:

8 27 ( d ) t Dd, D ( d, t) d, Esss informções formm o onjunto de ddos ser utilizdo no proedimento de previsão desenvolvido nesse trblho e desrito no pítulo 0.

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Sub-rede Zero e toda a sub-rede

Sub-rede Zero e toda a sub-rede Sub-rede Zero e tod sub-rede Índice Introdução Pré-requisitos Requisitos Componentes Utilizdos Convenções Sub-rede zero A sub-rede unificd Problems com sub-rede zero e com sub-rede tudo um Sub-rede zero

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira Dosgem de onreto Prof. M.S. Rirdo Ferreir Regressão liner simples Método dos mínimos qudrdos Prof. M.S. Rirdo Ferreir Fonte: Drio Dfio Regressão liner simples Método dos mínimos qudrdos 3/3 Dd um onjunto

Leia mais

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho Equilíbrio do indivíduo-consumidor-trblhdor e ofert de trblho 6 1 Exercício de plicção: Equilíbrio de um consumidor-trblhdor e nálise de estátic comprd Exercícios pr prátic do leitor Neste cpítulo, presentmos

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular.

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular. Lingugens Formis Nom Chomsky definiu que s lingugens nturis podem ser clssificds em clsses de lingugens. egundo Hierrqui de Chomsky, s lingugens podem ser dividids em qutro clsses, sendo els: Regulres

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

6 Conversão Digital/Analógica

6 Conversão Digital/Analógica 6 Conversão Digitl/Anlógic n Em muits plicções de processmento digitl de sinl (Digitl Signl Processing DSP), é necessário reconstruir o sinl nlógico pós o estágio de processmento digitl. Est tref é relizd

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000) Teori d Computção Unidde 3 Máquins Universis (cont.) Referênci Teori d Computção (Divério, 2000) 1 Máquin com Pilhs Diferenci-se ds MT e MP pelo fto de possuir memóri de entrd seprd ds memóris de trblho

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

GRUPO I. Espaço de rascunho: G 2 10

GRUPO I. Espaço de rascunho: G 2 10 GRUPO I I.1) Considere o seguinte grfo de estdos de um problem de procur. Os vlores presentdos nos rcos correspondem o custo do operdor (cção) respectivo, enqunto os vlores nos rectângulos correspondem

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção

Leia mais

Dinâmica dos corpos rígidos

Dinâmica dos corpos rígidos Dinâmi dos orpos ríidos Moimento em D Métodos de resolução Num instnte prtiulr: Equções de moimento Moimento finito: Prinípio d onserção de eneri meâni (forçs onsertis) Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL,

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

FICHA TÉCNICA FONTE NOBREAK FONTE NOBREAK - Compacta e fácil de instalar - Carregador de baterias de 3 estágios - Microprocessador Inteligente Rev_01

FICHA TÉCNICA FONTE NOBREAK FONTE NOBREAK - Compacta e fácil de instalar - Carregador de baterias de 3 estágios - Microprocessador Inteligente Rev_01 FICHA TÉCNICA FTE NOBREAK FTE NOBREAK - Compt e fáil de instlr - Crregdor de teris de 3 estágios - Miroproessdor Inteligente Rev_01 APLICAÇÃO Pensndo em tender os merdos mis exigentes, linh de Fontes Norek

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

Psicrometria e balanços entálpicos

Psicrometria e balanços entálpicos álculo d entlpi Psicrometri e blnços entálpicos m Psicrometri pr o cálculo d entlpi dum corrente de r recorre-se à entlpi específic. egundo crt que usmos em PQ entlpi específic vem express em J/g de r

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

características dinâmicas dos instrumentos de medida

características dinâmicas dos instrumentos de medida crcterístics dinâmics dos instrumentos de medid Todos nós sbemos que os instrumentos de medid demorm um certo tempo pr tingirem o vlor d medid. sse tempo ocorre devido inércis, resitêncis e trsos necessários

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

O Amplificador Operacional

O Amplificador Operacional UFSM CT DELC O Amplificdor Opercionl Prte I Giovni Brtto 6/26/2007 Introdução Neste texto, o mplificdor opercionl será considerdo como um cix pret. Estmos interessdos em compreender o seu funcionmento

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA

Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA UNERSDADE DO ESTADO DE SANTA CATARNA UDESC FACULDADE DE ENGENHARA DE JONLLE FEJ DEPARTAMENTO DE ENGENHARA ELÉTRCA CRCUTOS ELÉTRCOS CEL PROF.: CELSO JOSÉ FARA DE ARAÚJO RoteiroReltório d Experiênci N o

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

CINÉTICA DE SECAGEM DE FOLHAS DE ERVA-DOCE EM SECADOR SOLAR EXPOSTO À SOMBRA

CINÉTICA DE SECAGEM DE FOLHAS DE ERVA-DOCE EM SECADOR SOLAR EXPOSTO À SOMBRA CINÉTICA DE SECAGEM DE FOLHAS DE ERVA-DOCE EM SECADOR SOLAR EXPOSTO À SOMBRA José Diorgenes Alves Oliveir 1, Krl dos Sntos Melo de Sous 2 1 Universidde Federl de Cmpin Grnde cmpus de Sumé; Ru Luiz Grnde,

Leia mais

Cálculo Diferencial e Integral: um tema para todos

Cálculo Diferencial e Integral: um tema para todos SEED/FEUSP - São Pulo, 6 de mio de 28 Cálculo Diferencil e Integrl: um tem pr todos Nílson Mchdo Universidde de São Pulo Idéis fundmentis do Cálculo: um tem pr todos Lnd, L. N. - Cibernétic y Pedgogi...los

Leia mais

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO SECRETARIA DE POLÍTICA AGRÍCOLA DEPARTAMENTO DE GESTÃO DE RISCO RURAL PORTARIA Nº 193, DE 8 DE JUNHO DE 2011 O DIRETOR DO DEPARTAMENTO DE GESTÃO DE RISCO

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600 1 - INTRODUÇÃO Ests instruções têm por objetivo fornecer s orientções pr utilizção do critério pr cálculo d demnd de edifícios residenciis de uso coletivo O referido critério é plicável os órgãos d COPEL

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

Avaliação da fitotoxicidade de duas diferentes formulações de nicosulfuron na cultura do milho associada à adubação nitrogenada em cobertura

Avaliação da fitotoxicidade de duas diferentes formulações de nicosulfuron na cultura do milho associada à adubação nitrogenada em cobertura vlição d fitotoxiidde de dus diferentes formulções de niosulfuron n ultur do milho ssoid à dubção nitrogend em obertur nderson L. Cvenghi 1 ; Sebstião C. Guimrães 2 ; Rogério D. de Cstro 1 ; Sérgio Y.

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezdos Estudntes, Professores de Mtemátic e Diretores de Escol, Os Problems Semnis são um incentivo mis pr que os estudntes possm se divertir estudndo Mtemátic, o mesmo tempo em que se preprm pr s Competições

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

Intenção de Consumo Páscoa

Intenção de Consumo Páscoa Intenção de Consumo A Pásco é um fest religios e um período de intensificção do movimento no comércio, principlmente n busc por chocoltes. Tendo em vist este impcto n tividde comercil, áre de Estudos Econômicos

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

Laboratórios de Máquinas Eléctricas

Laboratórios de Máquinas Eléctricas Lbortórios de Máquins Eléctrics L.E.M L.E.A.N. 004/005 TRABALHO Nº3 Máquins de Comutção Mecânic José Miguel Rodrigues, 45063 Ctrin Ferreir, 4644 Dimbi Domnuel, 54651 José Luis, 51659 Índice 1 Introdução,

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

Índices de instabilidade aplicados ao litoral leste do Nordeste do Brasil

Índices de instabilidade aplicados ao litoral leste do Nordeste do Brasil Índies de instilidde plidos o litorl leste do Nordeste do Brsil Roerto Crlos Gomes Pereir 1 e Enilson Plmeir Cvlnti 2 Universidde Federl de Cmpin Grnde ( UFCG) Av. Aprígio Veloso, 882, irro do Bodoongó

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

1.14 Temas Diversos a Respeito dos Condutos Forçados

1.14 Temas Diversos a Respeito dos Condutos Forçados .4 Tems iersos Respeito dos Condutos Forçdos escrg ire Velocidde Máxim Aplicndo Bernoulli H P tm A g P tm B g V = 0 (níel de águ considerdo constnte) Tem-se ue: B g(h ) Exemplo : ul o olume diário ornecido

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Capítulo 3: Curvas Características de Bombas Centrífugas

Capítulo 3: Curvas Características de Bombas Centrífugas Cpítulo 3: Curvs Crcterístics de ombs Centrífugs Curvs Crcterístics e ssocição de ombs em erie e em Prlelo 3- Cpítulo 3: Curvs Crcterístics de ombs Centrífugs 3. Fluxo de Energi e Rendimentos Considerndo

Leia mais

ESCOLA SECUNDÁRIA DE VIRIATO 11 º ANO Física e Química A 2009/2010. AL 1.4 Satélite geoestacionário.

ESCOLA SECUNDÁRIA DE VIRIATO 11 º ANO Física e Química A 2009/2010. AL 1.4 Satélite geoestacionário. ESCOLA SECUNDÁRIA DE VIRIAO 11 º ANO ísi e Quíi A 009/010 AL 1.4 Stélite geoestionário. Questão - proble U stélite geoestionário desreve u órbit proxidente irulr à ltitude de 35 880 k e o período de 4

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

Medidas de Associação.

Medidas de Associação. Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis

Leia mais

EQUAÇÕES INTENSIDADE / DURAÇÃO / PERÍODO DE RETORNO PARA ALTO GARÇAS (MT) - CAMPO ALEGRE DE GOIÁS (GO) E MORRINHOS (GO)

EQUAÇÕES INTENSIDADE / DURAÇÃO / PERÍODO DE RETORNO PARA ALTO GARÇAS (MT) - CAMPO ALEGRE DE GOIÁS (GO) E MORRINHOS (GO) ABES - Associção Brsileir de Engenhri Snitári e Ambientl V - 002 EQUAÇÕES INTENSIDADE / DURAÇÃO / PERÍODO DE RETORNO PARA ALTO GARÇAS (MT) - CAMPO ALEGRE DE GOIÁS (GO) E MORRINHOS (GO) Alfredo Ribeiro

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Unidade 8 Geometria: circunferência

Unidade 8 Geometria: circunferência Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais