Eletrotécnica TEXTO Nº 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Eletrotécnica TEXTO Nº 7"

Transcrição

1 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos (proximdmente) equilibrdos e simétricos... O operdor O ângulo crcterístico de um sistem trifásico é ddo por θ c π 0 3 () Por definição, é um operdor que se plicdo um fsor provoc um giro neste fsor de um ângulo igul θ c no sentido positivo (ou nti-horário), sem modificr o seu módulo. Dest form e e jθc j π /3 θc 0 () Exemplo: Sej tensão de certo ponto de um sistem elétrico representd por um fsor E 30. Assim E 0 E E 0 E E 0 E E 0 E de 0

2 .3. Algums proprieddes do operdor jθc e θ rotção de θ c 0 no sentido c negtivo ou horário π ± 3k j ± 3k 3 ± j kπ 0 e e rotção de ± kπ, voltndo o mesmo lugr ( k inteiro positivo ). m m 3 m 3 m rotção de m.θ c ou de (3 m).θ c. m m 3 m (3 m) rotção de m.θ c ou de (3 m).θ c cos 0 jsen 0 cos 0 jsen cos 0 + jsen 0 + cos 0 + jsen 0 0 Exemplo: Sej tensão de certo ponto de um sistem elétrico representd por um fsor 30. Assim E E 0 E 360 E E E E E E E E E E E E E E E E E de 0

3 .4. Ligções de Crgs e Fontes em Sistems Trifásicos Os equipmentos de um sistem trifásico podem ser ligdos ds mis diverss mneirs. Seguem lguns exemplos título de ilustrção: () Ligção d crg em estrel 4 fios Crg trifásic ligd em estrel qutro fios com neutro solidmente terrdo. (b) Ligção d crg em estrel 4 fios com impedânci de neutro Crg trifásic ligd em estrel qutro fios com neutro terrdo por impedânci de neutro. (c) Ligção d crg em estrel 3 fios Crg trifásic ligd em estrel três fios ou com neutro isoldo.. 3 de 0

4 (d) Ligção d crg em delt ou triângulo Crg trifásic ligd em delt. (e) Fontes de tensão ideis trifásics ligds () em estrel com neutro solidmente terrdo e (b) em delt (f) Exemplo de ligção de fonte de tensão idel trifásic e crg trifásic em estrel qutro fios com neutro solidmente terrdo 4 de 0

5 .5. Definições Importntes DEFINIÇÃO : Um circuito trifásico é simétrico qundo ele possui tensões e correntes trifásics simétrics em qulquer ponto de su configurção. DEFINIÇÃO : As tensões (ou correntes) trifásics de um circuito trifásico são dits simétrics qundo els podem ser representds por fsores blncedos. DEFINIÇÃO 3: Diz-se que um conjunto de três fsores, representtivos de três tensões (ou correntes) de um certo sistem trifásico, são blncedos, qundo eles possuem o mesmo módulo e estão defsdos um do outro de um mesmo ângulo, igul o ângulo crcterístico θ c do sistem trifásico. ω Conjunto de três fsores blncedos representtivos ds três tensões de fse simétrics de um sistem trifásico. DEFINIÇÃO 4: Um conjunto de três tensões de um circuito trifásico é de seqüênci diret qundo els são tis que θ b θ 0 c θ 40 ω Conjunto de três fsores blncedos representtivos de três tensões de fse simétrics de seqüênci diret. 5 de 0

6 DEFINIÇÃO 5: Um conjunto de três tensões de um circuito trifásico é de seqüênci invers qundo els são tis que θ b θ + 0 c θ + 40 ω Conjunto de três fsores blncedos representtivos de três tensões de fse simétrics de seqüênci invers. DEFINIÇÃO 6: Diz-se que um circuito trifásico é equilibrdo qundo ele é composto por equipmentos equilibrdos, ou sej, que podem ser representdos por mtrizes de impedâncis de fse equilibrds. DEFINIÇÃO 7: Diz-se que um mtriz de impedâncis de fse é equilibrd qundo el é compost de elementos n digonl iguis entre si e elementos for d digonl tmbém iguis entre si. A mtriz Z F bixo é um mtriz equilibrd e pode ser utilizd pr representr um equipmento elétrico trifásico equilibrdo. Z p Zm Z m ZF Zm Zp Zm Zm Zm Z p (3) Qundo o elemento não possui impedâncis mútus, o que vi ser o cso neste curso, mtriz de impedâncis de fse vi ser digonl, com elementos iguis entre si. 6 de 0

7 .6. Relções de tensões em circuitos trifásicos equilibrdos e simétricos Tensões de Fse: tensões tomds entre um fse qulquer e neutro (retorno), em um determindo ponto do sistem trifásico. θ θ n φ n θ 0 θ 0 b bn φ n θ 40 θ 40 c cn φ n (4) Tensões de Linh: tensões tomds entre dus fses quisquer, em um determindo ponto do sistem elétrico. b b θ + 30 bc b c b b θ + 30 c c c c φn b b φn b θ + 30 c c φn c (5) - - c bc c 30 b b As tensões de linh são 3 vezes miores que s tensões de fse estão dintds de 30 em relção els. 7 de 0

8 .7. Relções de correntes em circuitos trifásicos equilibrdos e simétricos Correntes de Fse (ou de Linh) : correntes tomds ns linhs do circuito trifásico, em qulquer um de sus fses. I I φ I I I φ 0 b I I I φ 40 c (6) Correntes de Rmo (ou de Pern): correntes tomds em quisquer dos rmos de um crg ou fonte trifásic equilibrd. As correntes de pern dependem do tipo de ligção d crg. Pr um crg ligd em estrel, s correntes de linh e de rmo são idêntics, como mostr o circuito o ldo. I I I A B C I I I b c (7) 8 de 0

9 Pr um crg ligd em delt, s correntes de linh e de rmo não são mis idêntics, como mostr o circuito bixo. I c I CA - I BC - I AB I AB I b I BC - I CA I Pr este circuito vle: ( ) ( 3 30 ) I I I I I I I (8) I AB CA AB AB AB AB I I I I ( ) I ( 3 30 ) ( 3 30 ) IAB ( 3 30 )( 0 ) IA B ( 3 50 ) I AB I b BC AB BC BC BC ( ) ( 3 30 ) ( 3 30 ) ( IAB 3 30 )( 40 ) I ( 3 90 ) I AB c CA BC CA CA CA (9) I I I I I I AB I CA BC (0) Pr crgs ou fontes em estrel ( três ou qutro fios) s correntes de rmo e de fse são s mesms. Pr crgs ou fontes em delt, s correntes de rmo são 3 vezes menores que s correntes de linh ou fse e estão dintds de 30 em relção els. 9 de 0

10 RESUMINDO: s tensões nos rmos d crg em delt são 3 vezes miores que s tensões nos rmos d crg em estrel equivlente e estão dintds de 30 ; s correntes nos rmos d crg em delt são 3 vezes menores que s correntes nos rmos d crg em estrel equivlente e estão tmbém dintds de 30 ; ests relções mntém constnte potênci complex totl..8. Análise de circuito trifásico com fonte e crg ligds em estrel qutro fios A figur bixo mostr um fonte de tensão idel trifásic simétric, ligd em estrel, limentndo um crg equilibrd, tmbém ligd em estrel, trvés de um linh de trnsmissão qutro fios (o neutro d fonte está ligdo o neutro d crg trvés de um condutor neutro, representdo pel impedânci de retorno Z n ). 0 de 0

11 Pr este sistem tem-se Z I + Z I + Z I + Z I Z I + Z I + Z I + Z I Z I + Z I + Z I + Z I S l L n n b S b l b L b n n c S c l c L c n n () Como fonte de tensão é simétric, de seqüênci diret e o sistem é equilibrdo, s correntes tmbém vão ser simétrics de seqüênci diret. Então, corrente de retorno I n vi vler I I + I + I I + I + I + + I 0 () n b c Substituindo est equção n equção (4) vem que Z + Z + Z I Z + Z + Z I Z + Z + Z I S l L b S l L b c S l L c (3) Como s correntes e s tensões são simétrics, então ZS + Zl + ZL I Z + Z + Z I Z + Z + Z I S l L S l L (4) Simplificndo segund e terceir equção, vem que Z + Z + Z I Z + Z + Z I Z + Z + Z I S l L S l L S l L (5) Ou sej, só existe um únic equção ser resolvid dd por Z + Z + Z I (6) S l L de 0

12 Cuj solução é I Z + Z + Z S l L (7) Como o circuito trifásico é simétrico, s correntes ns outrs dus fses vão ser dds por Ib I Ic I (8) O leitor pode perceber que equção (6) corresponde à equção de um mlh compost de um fonte de tensão idel e três impedâncis em série, respectivmente Z s, Z l e Z L, sendo percorrids por um corrente I, conforme mostr o circuito bixo, denomindo circuito equivlente por fse. Percebe-se neste circuito que impedânci de retorno Z n não influenci ns correntes, um vez que corrente de retorno I n é nul em sistems trifásicos simétricos. Dest form, nálise de um circuito trifásico equilibrdo, com tensões e correntes simétrics, se resume n nálise de um circuito equivlente monofásico, tornndo bem mis simples est tref. A potênci complex entregue pel fonte o circuito é dd por S tot l S I + I + I 3Φ b b c c I + I + I I + I + I I + I + I 3 I 3S 3S Φ (9) de 0

13 Ou sej, potênci complex trifásic (totl) é igul três vezes potênci complex monofásic (de um ds fses). As potêncis tiv e retiv por fse vão ser dds por ( Φ) ( ) ( Φ) ( ) P Φ R e S Re I Q Φ I m S Im I (0) Considerndo Φn θ I I θi () vem que ( ) ( n θ) ( θi) n cos( θ θi) ( n θ ) ( θi) n sen ( θ θi) P e I e I Φ R R Φ Φ I Q Φ Im I Im Φ I Φ I () onde θ θi θz θs (3) é o ângulo d potênci complex ou d impedânci equivlente. As potêncis tiv e retiv trifásics vão ser dds por ( θ θ ) ( θ θ ) P3 Φ 3Φn I cos I 3 3Φn I cos I 3 ΦΦ I cos( θ θi) 3 ΦΦ I cosθs Q3Φ 3Φn I sen( θ θi) 3 ( 3Φn ) I sen( θ θi) 3 ΦΦ I sen( θ θi) 3 ΦΦ I senθs (4) É comum encontrr-se expressões simples n form P3 Φ Q3Φ 3 Icosθ 3 Isenθ (5) No entnto o leitor deve sber interpretr ests expressões de form não plicá-ls de form errône. 3 de 0

14 .9. Análise pr circuito trifásico com fonte e crg ligds em estrel três fios A figur seguir mostr um fonte de tensão idel trifásic simétric, ligd em estrel, limentndo um crg equilibrd, tmbém ligd em estrel, trvés de um linh de trnsmissão três fios (não existe conexão físic entre os neutros d fonte e d crg). Utilizndo-se o método ds tensões de nós, elegendo o nó n como referênci e escrevendo lei de Kirchoff ds correntes pr o nó N, vem que I + Ib + Ic Ou ind Ou sej 0 N N b N c 0 Z + Z + Z Z + Z + Z Z + Z + Z S l L S l L S l L ( ) ( ) ( ) 0 N N b N c (6) (7) + + (8) Ou finlmente que N + b + c (9) 4 de 0

15 Como tensão do neutro d crg em relção o neutro d fonte é nul, pode-se lig-los trvés de um condutor (fio), como mostr o circuito bixo, onde est conexão (teóric, ms não físic) está indicd por um segmento de ret trcejdo. O leitor pode perceber que s equções pr este circuito serão idêntics às equções pr o circuito qutro fios do item nterior e, dest form, tmbém su solução, representd pels equções (7) e (8)..0. Equivlênci entre crgs equilibrds ligds em estrel três fios e em delt Y Y A figur o ldo mostr um crg trifásic equilibrd ligd em delt (em verde) e crg equivlente em estrel três fios, com neutro isoldo (em vermelho), onde Y Z Y Z (30) 3 5 de 0

16 .. Análise pr circuito trifásico com fonte e crg ligds em delt O leitor pode perceber que este tipo de crg (e de fonte) deve inicilmente ser trnsformd pr configurção estrel três fios (com neutro isoldo) utilizndo-se s equções (5) pr fonte de tensão e (30) pr impedânci. Um vez convertids (crg e fonte) pr estrel com neutro isoldo, nálise vi ser mesm d presentd no item.9 nterior. EXEMPLO: Um circuito trifásico simétrico e equilibrdo, de tensão nominl de linh de 480, liment dus crgs equilibrds. Um dels é um motor síncrono que fornece 30 HP, qundo oper com um eficiênci de 75% e ftor de potênci 0,8 dintdo. A outr é um motor de indução que desenvolve 40 HP qundo oper com um eficiênci de 85% e um ftor de potênci de 0,8 trsdo. Desenhe o circuito e clcule s correntes drends pelos motores e corrente totl de linh. Como trt-se de um circuito trifásico simétrico e equilibrdo pode-se utilizr o conceito de circuito equivlente por fse, que será d seguinte form: I T O motor síncrono funcionndo com ftor de potênci dintdo I R I R (cpcitivo) foi representdo por um circuito RC série. O motor de E indução foi representdo por um X C X L circuito RL série por estr trblhndo com ftor de potênci trsdo (indutivo). O dimensionmento dos prâmetros destes dois circuitos se fz d seguinte form: () Dimensionmento d corrente do motor síncrono Considerndo que HP é 745,7 W, então potênci tiv trifásic líquid no eixo do motor síncrono é de P 3 Φ ( líquid) ,7 37 W 6 de 0

17 Com um eficiênci de 75%, ele está consumindo d rede um potênci tiv trifásic brut de P P W 0, 75 0, 75 3 Φ( líquid) 3Φ A potênci tiv por fse (ou monofásic) é um terço d potênci tiv trifásic, ou sej P P P Φ Φ 994,67 W Como o ftor de potênci é de 0,8 dintdo, então o ângulo d impedânci equivlente d crg vi ser θ rccos( 0,8) 36,87 O cálculo d potênci complex por fse pode ser feito de dus mneirs: um primeir utilizndo o fto de que P 994,67 P S θ S A cos 48,33 cosθ 0,8 S 48,33 36,87 A 994,67 j7457,0 A A segund mneir é fzendo Q tg tg 994,67 tg 36,87 S ( θ ) Q P ( θ ) P 7457,00 Ar ( 994,67) ( 7457,00) 48,33 A + S 48,33 36,87 A 994,67 j7457,0 A A tensão nominl de linh do circuito é 480. Logo tensão nominl de fse vi ser dd por 480 Φ n 77,3 3 7 de 0

18 Admitindo rbitrrimente tensão de fse n referênci, o fsor de tensão plicd o motor síncrono vi ser Φn 0 77,3 0 Dest form, corrente que pss no motor síncrono vi ser ou sej S S I I I ` S I S 48,33 36,87 44,85 36,87 77,3 0 A O leitor pode perceber que trt-se de um corrente cpcitiv, um vez que está dintd em relção à tensão plicd. O cálculo d impedânci equivlente do motor síncrono pode ser feito sbendo-se que Z 77,3 0 6,8 36,87 Ω I 44,85 36,87 Express n notção crtesin est impedânci vle ( j ) Z 6,8 36,87 4, 98 3, 7 Ω Ou sej, por fse, tem-se um resistor de 4,98 Ω e um retânci cpcitiv de 3,7 Ω em série. (b) Dimensionmento d corrente do motor de indução A potênci tiv trifásic líquid no eixo do motor de indução é de P 3 Φ ( líquid ) ,7 988 W Com um eficiênci de 80% ele está consumindo d rede um potênci tiv trifásic brut de P P 988 0,80 0,80 3 Φ( líquid) 3Φ 3785 W 8 de 0

19 A potênci tiv por fse consumid pelo motor de indução é um terço d potênci tiv trifásic, ou sej P 3785 Φ 48, Φ P P W Como o ftor de potênci é de 0,8 trsdo, então o ângulo d impedânci equivlente d crg vi ser θ rccos ( 0,8) 36,87 A potênci complex por fse vi ser P 48,33 P S θ S A cos 5535, 4 cosθ 0,8 S 5535, 4 36,87 A 48, 7 + j93, 7 Dest form, corrente que pss no motor de indução vle S S I I I Como s tensões plicds os dois motores são iguis, ou sej,, vem que S I S 5535, 4 36,87 56,06 36,87 77,3 0 A O leitor pode verificr que trt-se de corrente indutiv, pois está trsd em relção à tensão de limentção. O cálculo d impedânci equivlente do motor síncrono pode ser efetudo fzendo Z 77,3 0 Ω I 56,06 36,87 9 de 0 4, 94 36,87 Express n notção crtesin est impedânci vle ( j ) Z 4,94 36,87 3,95,97 Ω Ou sej, por fse, tem-se em série um resistor de 3,95 Ω e um retânci indutiv de,97 Ω.

20 (c) Cálculo d corrente totl fornecid pel fonte A corrente totl vi ser dd pel som ds dus correntes clculds nteriormente, ou sej IT I+ I 44,85 36, ,06 36,87 8,0 4,76 A O leitor pode perceber que o sistem, considerdo como um todo, está consumindo um potênci complex por fse de S I T T 77,3 0 8,0 4,76 449, 49 4,76 A 370,97 + j864, 5 A E o ftor de potênci totl d instlção é de fp cos 4, 76 0, 997 indutivo Ou sej, muito próximo d unidde, um vez que o motor síncrono, o consumir potênci retiv cpcitiv, está fornecendo quse tod potênci retiv indutiv que o motor de indução está consumindo. 0 de 0

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas Análise de Circuitos Trifásicos Desequilibrdos Utilizndo-se Componentes Simétrics Prof. José Rubens Mcedo Jr. Exercício: Um determind crg trifásic, ligd em estrel flutunte, é limentd pels seguintes tensões

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Técnicas de Análise de Circuitos

Técnicas de Análise de Circuitos Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução

Leia mais

O Amplificador Operacional

O Amplificador Operacional UFSM CT DELC O Amplificdor Opercionl Prte I Giovni Brtto 6/26/2007 Introdução Neste texto, o mplificdor opercionl será considerdo como um cix pret. Estmos interessdos em compreender o seu funcionmento

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtnto de Engenhri Elétric Aul 2.3 Máquins Rottivs Prof. João Américo Vilel Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução à Eletrônic De Potênci. 7ª Edição,

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA

Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA UNERSDADE DO ESTADO DE SANTA CATARNA UDESC FACULDADE DE ENGENHARA DE JONLLE FEJ DEPARTAMENTO DE ENGENHARA ELÉTRCA CRCUTOS ELÉTRCOS CEL PROF.: CELSO JOSÉ FARA DE ARAÚJO RoteiroReltório d Experiênci N o

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:rphelbenedito@utpr.edu.br disponível em: http://pginpessol.utpr.edu.br/rphelbenedito

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

Compensação de Sistemas Elétricos. Desequilíbrios e Compensação. Luís Carlos Origa de Oliveira

Compensação de Sistemas Elétricos. Desequilíbrios e Compensação. Luís Carlos Origa de Oliveira Compensção de Sistems Elétricos Desequilíbrios e Compensção Luís Crlos Orig de Oliveir A Btlh dos Sistems Corrente Contínu Corrente Alternd X Edison Morgn Tesl Westinghouse questões científics envolvids

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

QUESTÃO 01. QUESTÃO 02.

QUESTÃO 01. QUESTÃO 02. PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções

Leia mais

1. Sistemas Trifásicos

1. Sistemas Trifásicos Sistemas Elétricos de Potência 1. Sistemas Trifásicos Professor: Dr. Raphael Augusto de Souza Benedito E-mail:raphaelbenedito@utfpr.edu.br disponível em: http://paginapessoal.utfpr.edu.br/raphaelbenedito

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

Aula 04: Circuitos Trifásicos Equilibrados e Desequilibrados

Aula 04: Circuitos Trifásicos Equilibrados e Desequilibrados UNIERSIDADE FEDERAL DE JUIZ DE FORA Análise de Sistemas Elétricos de Potência 1 Aula 04: Circuitos Trifásicos Equilibrados e Desequilibrados P r o f. F l á v i o a n d e r s o n G o m e s E - m a i l :

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de Engenhri Elétric Conversão de Energi II Aul 6.4 Máquins íncrons rof. João Américo Vilel Máquin íncron Curv de Cpcidde r um tensão terminl e corrente de rmdur constnte (no vlor máximo permitido

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros Relções Métrics e Rzões Trigonométrics no Triângulo Retângulo - bombeiros Os ctetos de um triângulo retângulo medem cm e 8cm Nesss condições determine: ) medid "" d ipotenus b) medid "" d ltur reltiv à

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015 Físic - 4323203 Escol olitécnic - 2015 GABARTO DA 2 14 de mio de 2015 Questão 1 Considere um csc esféric condutor de rios interno e externo e b, respectivmente, conforme mostrdo n figur o ldo. A resistividde

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução

Leia mais

Resolução: Questão 03

Resolução: Questão 03 005 IME MTEMÁTIC mtemátic é o lfeto com que Deus escreveu o mundo Glileu Glilei uestão 01 Dd função f ( x) = (156 x + 156 x ), demonstre que: f(x + y) + f(x - y) = f(x). f(y) Escrevendo f(x+y) e f(x-y)

Leia mais

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ;

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ; TÍTULO: NÚMEROS COMPLEXOS INTRODUÇÃO: Os números complexos form desenvolvidos pelo mtemático K Guss, prtir dos estudos d trnsformção de Lplce, com o único ojetivo de solucionr prolems em circuitos elétricos

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Circuitos Trifásicos Aula 6 Wattímetro

Circuitos Trifásicos Aula 6 Wattímetro Circuitos Trifásicos Aula 6 Wattímetro Engenharia Elétrica Universidade Federal de Juiz de Fora tinyurl.com/profvariz (UFJF) CEL62 tinyurl.com/profvariz 1 / 18 Método dos 3 Wattímetros Conexão Y com Neutro

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Lista de Exercícios 4 - Circuitos Elétricos II

Lista de Exercícios 4 - Circuitos Elétricos II Lista de Exercícios 4 - Circuitos Elétricos II Tópicos: Sistemas Polifásicos, Sistemas Monofásicos a Três Fios, Conexão Trifásica Y-Y, Conexão Triângulo, Sistemas Trifásicos. 1. Para uma determinada fonte

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Colégio Marista Diocesano. Lista de Exercícios de Trigonometria 2 Ano Prof. Maluf

Colégio Marista Diocesano. Lista de Exercícios de Trigonometria 2 Ano Prof. Maluf Colégio Mrist Diocesno List de Exercícios de Trigonometri Ano Prof. Mluf 01 - (UEG GO) Um luno de mtemátic desenhou em um crtolin um plno crtesino e colocou sobre el um rod de biciclet de form que o centro

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS Un/SP INMTRO Ns questões de 1 70, mrque, pr cd um, únic opção corret, de cordo com o respectivo comndo. Pr s devids mrcções, use folh de resposts, único documento válido pr correção ds sus provs. Texto

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

6 Conversão Digital/Analógica

6 Conversão Digital/Analógica 6 Conversão Digitl/Anlógic n Em muits plicções de processmento digitl de sinl (Digitl Signl Processing DSP), é necessário reconstruir o sinl nlógico pós o estágio de processmento digitl. Est tref é relizd

Leia mais

Circuitos Trifásicos Aula 3 Carga Trifásica

Circuitos Trifásicos Aula 3 Carga Trifásica Circuitos Trifásicos Aula 3 Carga Trifásica Engenharia Elétrica Universidade Federal de Juiz de Fora tinyurl.com/profvariz (UFJF) CEL062 tinyurl.com/profvariz 1 / 33 Cargas trifásicas Conexão em estrela

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações: (9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais