CPV 82% de aprovação na ESPM em 2011
|
|
- Stéphanie Conceição Santiago
- 3 Há anos
- Visualizações:
Transcrição
1 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis sete coxinhs custrm R$,78 e dus empds mis oito coxinhs custrm R$ 0,, o vlor de um empd mis três coxinhs será: ) R$ 8,60 b) R$ 7,80 c) R$ 0,0 d) R$ 5,0 e) R$,00 Como z =. xy, temos: x + y z = x xy + y = ( ) = = x y x y, pois x > y. Como x = 97 e y = 907, temos: A prtir do enuncido, podemos montr o seguinte sistem: E + 7C =,78 E + 8C = 0, Somndo s dus equções, temos: 5E + 5C = Dividindo mbos os membros por 5, concluímos que: = = 58 Alterntiv B E + C = 8,60 Alterntiv A CPV ESPMjul0
2 ESPM 0/07/0 CPV especilizdo n ESPM. Um prede retngulr pode ser totlmente revestid com ldrilhos retngulres de 0 cm por 0 cm ou com ldrilhos qudrdos de 50 cm de ldo, inteiros, sem que hj espço ou superposição entre eles. A menor áre que ess prede pode ter é igul : ),5 m b),5 m c),0 m d),0 m e),5 m Consideremos um prede de dimensões x e y:. Durnte os 5 primeiros dis de bril, o consumo médio diário de águ num residênci esteve 0% cim d médi diári pr esse mês. Podemos firmr que o consumo médio diário dos outros dis desse mês foi: ) % bixo d médi b) 0% bixo d médi c) 5% bixo d médi d) 5% bixo d médi e) 8% bixo d médi Considerndo x o consumo médio diário de águ pr o mês de bril, temos: 0. x , x 5. (i). x = 0. x x y A prtir do enuncido, podemos concluir que x será multiplo de 0 cm e 50 cm e que y será múltiplo de 0 cm e 50 cm. Totl de águ pr os 0 dis, seguindo médi 0% de gsto cim d médis nos 5 primeiros dis Redução no gsto relizdo nos outros 5 dis pr mnter médi Totl de consumo do mês. Como queremos clculr menor áre que prede pode ter, x deve ser o MMC entre 0 e 50 e y, o MMC entre 0 e 50. Logo: Þ 5. 0,. x = 5. i. x 0, = 5. i i = 0,08 = 8% x = 50 cm =,5 m y = 00 cm =,0 m Alterntiv E A menor áre, portnto, será,5.,0 =,0 m. Alterntiv C CPV ESPMjul0
3 CPV especilizdo n ESPM ESPM 0/07/0 5. Um número nturl N é formdo por lgrismos cuj som é igul 9. A diferenç entre esse número e o número que se obtém invertendo-se ordem dos seus lgrismos é igul 7. A quntidde de divisores nturis de N é: ) b) c) 8 d) 6 e) Considerndo N = b, temos: + b = b (0b + ) = 7 + b = 9 + b = 9 = 6 Þ Þ 9( b) = 7 b = b = 6. Sejm x e y números nturis e F(x,y) um função tl que y se x = 0 F(x,y) = x se y = 0 F(x, y ) se x > 0 e y > 0 O vlor de F(5,70) é: ) b) 8 c) 5 d) 6 e) A prtir d lei d função dd, temos: F(5,70) = F(5,69) = F(50,68) =... = F(,9) = F(0,8) = 8 Alterntiv B Anlisndo quntidde de divisores nturis de N: N = 6 =. 7 Sendo ssim, ( + ). ( + ) = 6 divisores nturis. Alterntiv D ESPMJUL0 CPV
4 ESPM 0/07/0 CPV especilizdo n ESPM 7. Todo número nturl pode ser escrito de form únic utilizndo-se um bse ftoril, como, por exemplo, 7 =.! +.! + +.! = (,, ) ft. Genericmente, podemos representr N = n. n! + n. (n )! + n. (n )! ! = ( n, n, n,..., ) ft, em que i Î {0,,,..., i}. Dess form, o número (,,0,) ft equivle, n bse 0, o número: ) 8 b) 5 c) 79 d) 65 e) 7 8. Sejm f e g funções reis tis que f(x + ) = x + e g(x + ) = x pr todo x Î. Podemos firmr que função fog(x) é igul : ) x b) x + c) x + d) x e) x f(x + ) = x + = (x + ) + Þ f(x) = x + g(x + ) = x = (x + ) Þ g(x) = x Assim, fog(x) = f(g(x)) = g(x) + = (x ) + Þ fog(x) = x Alterntiv D O número (,, 0, ) ft equivle :.! +.! + 0.! +.! = = 79 Alterntiv C CPV ESPMjul0
5 CPV especilizdo n ESPM ESPM 0/07/ Sej A o conjunto de todos os vlores de k pr os quis equção, em x, log x (5 x) = k dmite um riz inteir. O número de elementos de A é igul : ) 0 b) c) d) e) Verificndo s condições de existênci do logritmo, temos: 5 x > 0 log x (5 x) CE. x > 0 x x < 5 x CE. x > CE. < < 5 ex x Considerndo solução d equção log x (5 x) = k é um número inteiro e não há vlores inteiros no intervlo obtido pel condição de existênci, o número de elementos de A é 0. Alterntiv A 0. Se log 5 = e log 0 = b, o vlor de log 0 é: ) + b b b) b + b c) + + d) b + + b e) + + b b Ds informções do enuncido, temos: log 5 = Þ 5 = (I) log 0 = b (II) Substituindo (I) em (II), temos: log 0 5 = b Þ log 0 5 = b Þ log 0 5 = b Como 5 =. 0, temos: log 0 + log 0 0 log 0 = b log 0 = log 0 + b log 0 0 log 0 = b + b Alterntiv B ESPMJUL0 CPV
6 6 ESPM 0/07/0 CPV especilizdo n ESPM. Sej S = (,,,..., n,...) sequênci definid por = 5 e n + = n pr n. O produto dos infinitos termos dess sequênci é igul : ) b) 0 c) 0 d) 5 e) 5 Como n + = n, temos:. As medids dos ldos de um triângulo retângulo formm um PA. Se x é medid do menor ângulo interno desse triângulo, o vlor de tg x é: ) 0,6 b) 0,5 c) 0,8 d) 0,5 e) 0,75 Representndo P.A. de termos por r,, + r e nomendo o menor ângulo de x, temos: S = { 5, 5, 8 5, } Assim, o produto dos elementos de S é: P = r + r Þ Þ P = O expoente é um som de PG infinit de primeiro termo e rzão, ou sej, = 8 6 = +... Portnto, P = = 5 = 5 Alterntiv E x Pelo Teorem de Pitágors, temos: ( + r) = ( r) + Þ = r tg x = - r r Þ tg x = 075 r =, Alterntiv E CPV ESPMjul0
7 CPV especilizdo n ESPM ESPM 0/07/0 7. Os dis x de mrço e x de gosto do mesmo no cem no mesmo di d semn. O vlor de x é: ) 8 b) c) d) 0 e) 7 Dd tbel: Mês Mrço Abril Mio Junho Julho Dis 0 0 De x de mrço x de gosto, pss-se o seguinte número de dis: ( x) x = 5 + x Sbe-se que esse vlor deve ser um múltiplo de 7 (porque os dis cem no mesmo di d semn) e que x 0 (porque x deve ser um di de gosto, que tem dis). Portnto, o único vlor de x que stisfz às restrições é x =. Alterntiv C. A figur bixo mostr um retângulo de ldos 7 cm e 8 cm no qul estão contidos os qudrdos A, B e C. A medid x pode vrir entre,5 cm e 7 cm, fzendo com que os ldos dos três qudrdos se lterem. Dentro desse intervlo, o mior vlor que áre do polígono P pode ter é igul : ) 8 cm b) 5 cm c) 7 cm d) 9 cm e) 6 cm A áre A P do polígono P pode ser clculd subtrindo-se s áres dos qudrdos A, B e C do retângulo: A P = 56 (8 x) x (7 x) A P = x + 0x 57 A áre máxim ocorre no vértice d prábol, portnto: A Pmáx = = A Pmáx = 8 cm ( 0) ( ) ( 57) ( ) Alterntiv A ESPMJUL0 CPV
8 8 ESPM 0/07/0 CPV especilizdo n ESPM 5. Ddo, no plno crtesino, o triângulo de vértices A(0 ; 0), B( ; ) e C( ; 5), equção d ret suporte d ltur reltiv o vértice A será: ) y = x b) y = x c) y = x d) y = x e) y = 5x Coeficiente d ret suporte que pss pelos pontos B e C: 6. Pr efeitos práticos, relção entre s grndezs x e y que, teoricmente, seri dd por y = + x e cujo gráfico crtesino se vê bixo, em linh trcejd, foi substituíd pel relção liner representd pel ret que pss por A e B. Dess form, diferenç dy, que se obtém qundo x = 6, vle: ),5 b),0 c),5 d),0 e),5 m BC = y C y B = xc xb 5 ( ) = N linh trcejd, temos: (, ) B H 5 C (, 5) x = 0 Þ y = + 0 x = Þ y = + = Þ A = (0; ) = 5 Þ B = (; 5) A (0, 0) x = 6 Þ Y = + 6 = 0 Þ C = (6; 0) N ret AB (y = x + b), temos: Como BC ^ AH, temos: m BC. m AH = Þ m AH = Portnto: y ya = m AH (x x A ) y 0 = (x 0) 5= + b = = 0+ b b = y= x+ C D y = x Alterntiv B Pr x = 6 Þ y = 6 + = 7 Þ D = (6; 7) Portnto, dy = y C y D = 0 7 = Alterntiv D CPV ESPMjul0
9 CPV especilizdo n ESPM ESPM 0/07/ Sendo A = b um mtriz qudrd de ordem, som c d de todos os elementos d mtriz M = A. A t é dd por: ) + b + c + d b) ( + b + c + d) c) ( + b) + (c + d) d) ( + d) + (b + c) e) ( + c) + (b + d) b A c d ea c = t = b d Þ 8. N figur bixo, sbe-se que os ângulos EÂD e DÊA são iguis. A medid do segmento CE é igul : ),8 b), c),0 d),5 e), M b = c d b c b c bd d = + + c + bd c + d Temos figur: C E Som de todos os elementos de M: x x + b + c + bd + c + bd + c + bd + c + d = + c + c + b + bd + d = x D x ( + c) + (b + d) Alterntiv E B F A No ΔABC: tg x tg x = = tg x tg x + 6tg x = 0 Þ tg x= ou tg x= ( não serve) No ΔAFE: tg x = AF EF CE = = Þ CE = 5 =,5 Alterntiv D ESPMJUL0 CPV
10 0 ESPM 0/07/0 CPV especilizdo n ESPM 9. N figur pln bixo, ABCD é um qudrdo de áre 0 cm. Os segmentos CE e CF medem cm cd. Ess figur deverá ser dobrd ns linhs trcejds, fzendo com que os pontos E e F coincidm com um ponto P do espço. A distânci desse ponto P o ponto A é igul : ) 6 cm b) 5 cm c) cm d) 5 cm e) 6 cm 0. No di o de bril, Pulo fez um plicção finnceir, com cpitlizção mensl, no vlor de R$.000,00. No di o de mio, depositou outros R$.000,00 n mesm plicção. No di o de junho, ele resgtou tod plicção e, com mis R$ 690,00, comprou tão sonhd TV digitl que custv R$.000,00. A tx mensl de juros dess plicção er de: ) 8% b) 6% c) 0% d) 9% e) 7% Sendo i tx mensl de juros, temos: 000 ( + i) ( + i) = 000 Ao fzermos coincidir os pontos E e F num ponto P, temos que AP é digonl de um prlelepipedo de bse ABCD e ltur CP. E = F = P 000( + i) + 000( + i) 0 = 0 Resolvendo equção do o gru, temos: + i =, (não convém) ou + i =, Þ i = 0, = 0% Alterntiv C C 0 B D 0 A Portnto AP = ( 0) + ( 0) + ( ) = 6 = 6 Alterntiv A COMENTÁRIO DA PROVA DE MATEMÁTICA A Prov de Mtemátic do Processo Seletivo d ESPM o semestre de 0 presentou, como de costume, questões conceituis, bem elbords e um competente distribuição de ssuntos. Embor tenh presentdo um nível de dificuldde ind superior o idel esperdo pelo cndidto d ESPM, Bnc Exmindor tem mostrdo evolução contínu nesse quesito. Estmos certo de que o índice de discriminção dest prov se mostrrá melhor comprtivmente semestres nteriores. CPV ESPMjul0
4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.
EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /
cpv especializado na espm
0 espm 05/07/009 cpv especilizdo n espm Mtemátic. O vlor d epressão. + pr = 0 é igul : ), b) c) d) 0 e). + = + = +. ( + ) = =. = ( + ). + Substituindo = 0 = 0,, temos: + 0, +, = = = 0, 0, = +. Sobre o
1 Assinale a alternativa verdadeira: a) < <
MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )
Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16
MATEMÁTICA 77 Num bolão, sete migos gnhrm vinte e um milhões, sessent e três mil e qurent e dois reis. O prêmio foi dividido em sete prtes iguis. Logo, o que cd um recebeu, em reis, foi: ) 3.009.006,00
XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 ) C 6) B ) C 6) D ) D ) C 7) B ) D 7) A ) D 3) C 8) B 3) A 8) D 3) D 4) A 9) B 4) C 9) D 4) E 5)
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e
Simulado EFOMM - Matemática
Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,
IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:
IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação
Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis
QUESTÃO 01. QUESTÃO 02.
PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções
Matemática B Extensivo V. 8
Mtemátic B Extensivo V. 8 Resolv Aul 9 9.01) = ; b = c = + b c + 9 c = Distânci focl = c 0 9.0) x = 0 0 x = ; b = c = + b c = + c = Como o eixo rel está sobre o eixo e o centro é (0, 0), então F 1 (0,
facebook/ruilima
MATEMÁTICA UFPE ( FASE/008) 01. Sej áre totl d superfície de um cubo, e y, o volume do mesmo cubo. Anlise s firmções seguir, considerndo esss informções. 0-0) Se = 5 então y = 7. 1-1) 6y = 3 -) O gráfico
xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0
EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,
o Seu pé direito na medicina
o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,
( 3. a) b) c) d) 10 5 e) 10 5
Pré-F 207 Simuldo # 26 de bril de 207 2 Q. (EsS) Em um progressão ritmétic cujo primeiro termo é, 87 e rzão é 0, 004, temos que som dos seus dez primeiros é igul : () 8, 99 () 9, 5674 () 8, 88 (D) 9, 5644
FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x
FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)
Área entre curvas e a Integral definida
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 07 GABARITO COMENTADO 1) Se o resto d divisão de 47 por x é 7, então x divide 47 7 = 40 D mesm mneir, x divide
Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes:
Questão 01 O polinômio P ( ) 10 0 81 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do polinômio. p ( ) 10 0 81 z bi z bi 1 z bi z ( ) bi z rel
CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV
a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível
CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números
Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que
Revisão Primeiro Semestre 01 prof. Less Auls 1 1. (ESPM) A metde de vlem, respectivmente: A) 0,6 1 e e 1. Se 1 e 9 e 9 8 e 1, e o triplo de x =, então o vlor de x é: A) 6. (FUVEST) Rcionlizr o denomindor
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
CPV O cursinho que mais aprova na GV
O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo
Mtemátic Simuldo. Um pedço de mdeir tem form retngulr e sus medids são 2,5 cm por 7 cm. Quntos pedços de mdeir, são necessários pr revestir um sl de 2 m 2 de áre? 798 pedços. b) 789 pedços. 978 pedços.
{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada
MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3
QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2
PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que
Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental
Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,
Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.
O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de
Exercícios. setor Aula 25
setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis
FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo
57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,
11
01 O vlor de 8 6 0,15 é : (A) 8 (B) (C) (E) 6 0 Os números x, y e z são diretmente proporcionis, 9 e 15respectivmente. Sendo que o produto desses números é xyz 960, som será : (A) 5 (B) 8 (C) 6 7 (E) 0
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO
QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas:
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO Sej f : R R um
AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles
AULA - GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Rets prlels cortds por um trnsversl São queles que possuem dois ldos iguis. Ligndo o vértice A o ponto médio d bse BC, germos dois triângulos
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Colocm-se qutro cubos de
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e
Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale
Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0
Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.
Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod
Matemática B Superintensivo
GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen
Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.
Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +
Aula de solução de problemas: cinemática em 1 e 2 dimensões
Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN-2005) Prova : Amarela MATEMÁTICA
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN005) Prov : Amrel MATEMÁTICA 1) Num triângulo ABC, AB = AC, o ponto D interno o ldo AC é determindo
3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença
Exponencição e Logrítmos - PRO HELO /06/ ) Pr que vlores reis se verific sentenç x x x x x4 < 4 : ) { x / x } [, ] ) { x / x } ], [ ) Se, e c são reis positivos, então simplificndo ) ) 4 log c log c..
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo GABARITO MATEMÁTICA 0 Considere equção
SERVIÇO PÚBLICO FEDERAL Ministério da Educação
SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:
EXERCÍCIOS RESOLVIDOS MATEMÁTICA II
Vestibulr1 A melhor jud o vestibulndo n Internet Acesse Agor! www.vestibulr1.com.br EXERCÍCIOS RESOLVIDOS MATEMÁTICA II 01) Um certo tipo de vírus tem diâmetro de 0,010 - mm. Admit que um colôni desses
Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução
(9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se
a, pois dois vértices desse triângulo são pontos
UFJF MÓDULO DO PSM TRÊNO 0-0 REFERÊNC DE CORREÇÃO D PROV DE MTEMÁTC PR O DESENVOLVMENTO E RESPOST DS QUESTÕES, SÓ SERÁ DMTDO USR CNET ESFEROGRÁFC ZUL OU PRET Questão Um empres promoveu um concurso pr que
GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é
GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros
Vestibular UFRGS 2013 Resolução da Prova de Matemática
Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
Fatoração e Produtos Notáveis
Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
Conhecendo-se os valores aproximados dos logaritmos decimais, log = 1,114 e log = 1,176, então, o valor de log 10
MATEMÁTICA Considere os conjuntos A e B: A = { 0, 0, 0, 0,0, 0, 0} e B = {00,00,00,00,500,600,700,800,900,000}, e função f : A B, f(x) = x + 00. O conjunto imgem de f é, ) { 0, 0, 0,0,0,0,0}. ) {00,00,500,000}.
CÁLCULO I. 1 Funções denidas por uma integral
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por
Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor
Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0
FUNÇÃO EXPONENCIAL REPRESENTAÇÃO Atenção y y x x y y : bse x Um situção muito comum de função exponencil é quel em que um determind grndez, que pr um instnte t = el present um medid y y, prtir deste instnte,
Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento
81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$
81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como
Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13
Mtemátic UNICAMP QUESTÃO 1 Em 1 de outubro de 01, Felix Bumgrtner quebrou o recorde de velocidde em qued livre. O slto foi monitordo oficilmente e os vlores obtidos estão expressos de modo proximdo n tbel
"Bem-vindos ao melhor ano de suas vidas #2018"
COLÉGIO SHALOM Ensino Fundmentl 8ª no ( ) 65 Profº: Wesle d Silv Mot Disciplin: Mtemátic Aluno ():. No. Trblho de recuperção Dt: 17 /12/ 2018 "Bem-vindos o melhor no de sus vids #2018" 1) Sobre s proprieddes
a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =
List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (
REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.
NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms
Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 2
Mteril Teórico - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio minh M.
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o
Seu pé direito nas melhores faculdades
MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo
PROFESSOR: EQUIPE DE MATEMÁTICA
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA ª SÉRIE ENSINO MÉDIO ============================================================================================= Questões de Vestibulr: Polinômios
PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou
Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo
Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014
y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y
Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x
EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.
EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =
15 aulas. Qual o número m ximo de faltas que ele ainda pode ter? (A) 9 (B) 10 (C) 12 (D) 16 (E) 24
Pré-AFA 2017 Simuldo A 28 de junho de 2017 Questão 1 (CFN) Qul é o número nturl que elevdo o qudrdo é igul o seu triplo somdo com 0? (A) 5 (B) 6 (C) 8 (D) 9 Questão 2 (CFN) Sbendo-se que tn(0 ) =, o vlor
a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1
A AVALIAÇÃO ESPECIAL UNIDADE I -0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Sejm n n b e bn b n. Se P = b, então P é um número: 0) inteiro
DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2
DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no
ESTÁTICA DO SISTEMA DE SÓLIDOS.
Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem
5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:
MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics
AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA
AULA DE VÉSPERA VESTIBULAR 09 MATEMÁTICA Prof. Luiz Henrique 0) A figur indic um circunferênci de diâmetro AB 8 cm, um triângulo equilátero ABC, e os pontos D e E pertencentes à circunferênci, com D em
Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.
Aula 1 - POTI = Produtos Notáveis
Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)
GABARITO IME DISCURSIVAS 2017/2018 MATEMÁTICA
GABARITO IME DISCURSIVAS 07/08 MATEMÁTICA DISCURSIVAS /0/7 Questão 0 Sej o número complexo z que stisfz relção ( z i) 07 ( + i)( iz ) 07. Determine z, sbendo- -se que z. Gbrito: ( z i) ( + i) ( i z ) 07
Matemática A - 10 o Ano Ficha de Trabalho
Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?
Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.
ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts
Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.
Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde
x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff
NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
COLÉGIO NAVAL 2016 (1º dia)
COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel
NOTA DE AULA. Tópicos em Matemática
Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis
FENÔMENOS DE TRANSPORTE EMPUXO. Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO
FENÔMENOS DE TRANSPORTE EMPUXO Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO É o esforço exercido por um líquido sobre um determind superfície (pln ou curv). E = γ. h C. A E : Empuxo ( N ou kgf ) : Peso
MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações:
MATEMÁTICA Considere os conjuntos S = {0,,, 6}, T = {,, } e U = {0, } e s firmções: I. {0} S e S U. II. {} S \ U e S T U = {0,}. III. Eiste um função f : S T injetiv. IV. Nenhum função g: T S é sobrejetiv.