Quantidade de oxigênio no sistema

Tamanho: px
Começar a partir da página:

Download "Quantidade de oxigênio no sistema"

Transcrição

1 EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão de 2 no interior do forno. Não há mis nenhum elemento químico regindo, no sistem. Ao fim do processo form diciondos 3 kg de oxigênio o sistem. Trce um gráfico mostrndo o que contece com s seguintes vriáveis medid que pressão de oxigênio ument: () quntidde de cd fse presente no sistem, (b) composição de cd fse presente no sistem. s resultdos d Lei de Sievert presentdos n figur indicm que, 16 o C, existe equilíbrio entre 2 fses: ferro liquido (com oxigênio dissolvido) e gás, té cerc de,23% 5 de oxigênio dissolvido no ço e P,5 1 ou P 5, A prtir deste ponto, ocorre sturção do ferro liquido em oxigênio e formção de um nov fse, o óxido de ferro ( Fe ). Como dição totl, prentemente, é mior que,23%, um gráfico semi-quntittivo d quntidde de fses seri: Fse Metl Líquido Quntidde de Fse Fse Gsos Fse Óxido Líquido Inicio d dição de o sistem 9 P 5,6 1 2,23% no Fe Liquido Quntidde de oxigênio no sistem A quntidde ds fses não está em escl. bserve que quntidde d fse metl líquido deve umentr um pouco, pois medid que o oxigênio vi se dissolvendo no ferro, o peso de metl líquido ument. A quntidde de fse gsos depende, nturlmente, do espço livre pr o gás ocupr, dentro do sistem.

2 Embor exist vpor de ferro no gás, quntidde é pequen, pois pressão de vpor do ferro nest tempertur não é lt. Podemos considerr que o gás é sempre composto por oxigênio, pens e que o óxido líquido, enqunto estiver em equilíbrio com o ferro, terá composição constnte (exigênci do fto de hver equilíbrio: o potencil químico do oxigênio não pode vrir, durnte o equilíbrio). Assim, únic fse cuj composição vri, neste cso, será o metl liquido, té ficr sturdo em oxigênio. A composição d fse óxido somente começri vrir qundo TD o metl tivesse sido convertido óxido e fse metl íiquido desprecesse. Isto não ocorre com,3% de oxigênio no sistem. Composição do metl líquido %Fe 1% % Inicio d dição de o sistem 9 P 5,6 1 2,23% no Fe Liquido Quntidde de oxigênio no sistem 2. Desej-se produzir um ço IF com C=,25% empregndo vácuo. ço inicil, ntes do trtmento sob vácuo, tem C=,5% e =,6%. processo se pss 165 o C. () Qul mior pressão de C ceitável no interior do desgseificdor pr produzir este ço? (b) Qul seri o teor de oxigênio em equilíbrio com o teor de crbono finl desejdo? (c) É possível produzir este ço sem dição de oxigênio? Explique. (d) Qul seri o efeito d presenç de Fe n escóri d pnel, durnte este processo? Itens c e d: A quntidde de crbono ser consumido, n reção C + C é de,5-16,25%=,475%. Pel estequiometri, serim necessários,475 =,63% de 12 oxigênio. sistem inicil não contém tnto oxigênio. Logo, seri necessário fornecer oxigênio dicionl pr produzir descrburção desejd, simplesmente por cus do blnço de mss d reção. (ém disto, é importnte ter oxigênio em excesso pr fvorecer cinétic d reção). A presenç de Fe n escóri pode funcionr como um fonte dicionl de oxigênio. A medid que o oxigênio do ço (inicilmente,6%) for sendo reduzido pel descrburção, deve hver reoxidção pelo Fe d escóri, trvés d reção: Fe Fe +.

3 item está reltivmente ml formuldo. Do modo que foi formuldo, mior pressão viável é quel que corresponde o mior teor de oxigênio possível no ço. Como o processo se pss 165 o C, não form fornecidos ddos que permitm determinr este vlor. Se usrmos o vlor de,23% (do gráfico d questão 1, pr 16 o C) podemos determinr: Reção H - S C(gr) + ½ 2 (g) = C (g) ,8 C(gr) = C ,26 ½ 2 (g)= ,63 C+ = C (g) ,91 = = ' = 47 + RT ln Assim, pr,25% C e,23% estrem em equilíbrio, = 47 = 47,25,23 =,23tm Termodinmicmente, pressões bixo dest permitirim produzir este teor de crbono, sem sturr o ferro em oxigênio. É evidente que não se trblh com teores tão ltos de oxigênio. Um cálculo mis interessnte (e est seri um questão mis bem formuld) seri determinção d pressão necessári pr tingir-se este teor de crbono com um teor de oxigênio em equilíbrio de, por exemplo, 2ppm. Est pressão seri de,2 tm, proximdmente. 3. Um ço contendo,5% de crbono é mntido em um cdinho de grfit 16 o C. que ocorre com o ço? Pelo digrm ferro crbono sbe-se que Fe-C com,5% C 16 o C NÃ está em equilíbrio com grfit. Logo, o sistem buscrá o equilíbrio, dissolvendo crbono d grfit no ço. equilíbrio será tingido qundo composição for quel indicd pel linh de inicio do cmpo bifásico L+Gr.

4 4. Um escóri, contendo 13%Mg, 47%C, 17%Si 2 e 23%Fe está em equilíbrio com refrtários contendo Mg puro, 16 o C. Qul tividde do Mg nest escóri? Se há equilíbrio, o potencil químico é o mesmo ns dus fses e, conseqüentemente, tividde tmbém. Se um ds fses é Mg puro, tividde do Mg nest fse é 1. Logo, tividde do Mg n escóri é Um ço contém oxigênio e enxofre. Desej-se relizr um dição de cálcio pr produzir sulfetos de cálcio e controlr nistropi d ductilidde do produto produzido. A formção de óxido de cálcio é indesejd e resultri em menor eficiênci do processo. Como seri possível estimr, um dd tempertur, s condições em que dição de C produziri pens CS? (Não é necessário clculr, bst indicr quis cálculos serim feitos.) Há competição entre formco de C e de CS, neste problem simplificdo. Um form de estudr o problem seri vlir o equilíbrio: C+S = CS+ Tendo-se os ddos termodinâmicos d formção do C e do CS e d dissolução do S e do no ferro, poder-se-i clculr este equilíbrio. A constnte de equilíbrio obtid, pr um pressão e tempertur definidos seri clculd como: = = CS C ' % = K( T) % S + RT ln CS C % % S

5 Definid tempertur e fixds s tividdes do oxido e do sulfeto, pode-se definir s condições de equilíbrio entre o oxido e o sulfeto: dições de cálcio em ços que, pr um certo teor de enxofre, contenhm MENS oxigênio do que o clculdo pr o equilíbrio, resultrão n formção de CS. 6. BÔNUS (Questão extr, que só pode umentr not). Clcule o vlor de do lumínio no ferro 168 o C. Usndo definição de tividde e Lei de Henry µ µ M1% M1% = M 1% = RT ln M = RT ln 1M = RT ln M = RT ln 1M 1% ,91 ( ) = 8,314 ( ) ln 1 27 =,34 Fe Fe

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Psicrometria e balanços entálpicos

Psicrometria e balanços entálpicos álculo d entlpi Psicrometri e blnços entálpicos m Psicrometri pr o cálculo d entlpi dum corrente de r recorre-se à entlpi específic. egundo crt que usmos em PQ entlpi específic vem express em J/g de r

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

GRUPO I. Espaço de rascunho: G 2 10

GRUPO I. Espaço de rascunho: G 2 10 GRUPO I I.1) Considere o seguinte grfo de estdos de um problem de procur. Os vlores presentdos nos rcos correspondem o custo do operdor (cção) respectivo, enqunto os vlores nos rectângulos correspondem

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Reações Químicas em Sistemas Biológicos

Reações Químicas em Sistemas Biológicos Reções Químics em Sistems Biológicos 1. Cínétic e Equilíbrio Químico s reções químics que ocorrem entre s substâncis devem ser entendids tnto do ponto de vist cinético, isto é, trvés d txs com que ocorrem

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

Estudo dos Logaritmos

Estudo dos Logaritmos Instituto Municipl de Ensino Superior de Ctnduv SP Curso de Licencitur em Mtemátic 3º no Prátic de Ensino d Mtemátic III Prof. M.Sc. Fbricio Edurdo Ferreir fbricio@ffic.br Situção inicil Estudo dos Logritmos

Leia mais

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

O Amplificador Operacional

O Amplificador Operacional UFSM CT DELC O Amplificdor Opercionl Prte I Giovni Brtto 6/26/2007 Introdução Neste texto, o mplificdor opercionl será considerdo como um cix pret. Estmos interessdos em compreender o seu funcionmento

Leia mais

Solução da prova da 1 fase OBMEP 2013 Nível 1

Solução da prova da 1 fase OBMEP 2013 Nível 1 Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur

Leia mais

AULA 7. Equilíbrio Ácido Base envolvendo soluções de ácidos e bases fracas e sais

AULA 7. Equilíbrio Ácido Base envolvendo soluções de ácidos e bases fracas e sais Fundmentos de Químic Anlític, Ione M F liveir, Mri José S F Silv e Simone F B Tófni, Curso de Licencitur em Químic, Modlidde Distânci, UFMG AULA 7 Equilírio Ácido Bse Equilírio Ácido Bse envolvendo soluções

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

Física III Escola Politécnica de maio de 2010

Física III Escola Politécnica de maio de 2010 P2 Questão 1 Físic - 4320203 Escol Politécnic - 2010 GABATO DA P2 13 de mio de 2010 Considere um cpcitor esférico formdo por um condutor interno de rio e um condutor externo de rio b, conforme figur. O

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Laboratórios de Máquinas Eléctricas

Laboratórios de Máquinas Eléctricas Lbortórios de Máquins Eléctrics L.E.M L.E.A.N. 004/005 TRABALHO Nº3 Máquins de Comutção Mecânic José Miguel Rodrigues, 45063 Ctrin Ferreir, 4644 Dimbi Domnuel, 54651 José Luis, 51659 Índice 1 Introdução,

Leia mais

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho Equilíbrio do indivíduo-consumidor-trblhdor e ofert de trblho 6 1 Exercício de plicção: Equilíbrio de um consumidor-trblhdor e nálise de estátic comprd Exercícios pr prátic do leitor Neste cpítulo, presentmos

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

1 heae. 1 hiai 1 UA. Transferência de calor em superfícies aletadas. Tot. Por que usar aletas? Interior condução Na fronteira convecção

1 heae. 1 hiai 1 UA. Transferência de calor em superfícies aletadas. Tot. Por que usar aletas? Interior condução Na fronteira convecção Trnsferênci de clor em superfícies letds Por ue usr lets? Interior condução N fronteir convecção = ha(ts - T Pr umentr : - umentr o h - diminuir T - umentr áre A Intensificção d trnsferênci de clor Exemplo:

Leia mais

b para que a igualdade ( ) 2

b para que a igualdade ( ) 2 DATA DE ENTREGA: 0 / 06 / 06 QiD 3 8º ANO PARTE MATEMÁTICA. (,0) Identifique o monômio que se deve multiplicr o monômio 9 5 8 b c. 5 b pr obter o resultdo. (,0) Simplifique s expressões bixo. ) x + x(3x

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

1.14 Temas Diversos a Respeito dos Condutos Forçados

1.14 Temas Diversos a Respeito dos Condutos Forçados .4 Tems iersos Respeito dos Condutos Forçdos escrg ire Velocidde Máxim Aplicndo Bernoulli H P tm A g P tm B g V = 0 (níel de águ considerdo constnte) Tem-se ue: B g(h ) Exemplo : ul o olume diário ornecido

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

PARTE I - Circuitos Resistivos Lineares

PARTE I - Circuitos Resistivos Lineares Prolem 1.1 Leis de Kirchhoff PARTE I Circuitos Resistivos Lineres i 1 v 2 R 1 10A 1 R 2 Considere o circuito d figur 1.1. ) Constru o seu grfo e indique o número de rmos e de nós. ) Clcule os vlores ds

Leia mais

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço 2º. Teste de Introdução à Mecânic dos Sólidos Engenhri Mecânic 25/09/2008 25 Pontos 1ª. Questão: eterminr os digrms de esforços solicitntes d Vig i-poid com blnço bixo. 40kN 30 0 150 kn 60 kn/m 3 m 2 m

Leia mais

Algoritmos de Busca de Palavras em Texto

Algoritmos de Busca de Palavras em Texto Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr

Leia mais

Circuitos simples em corrente contínua resistores

Circuitos simples em corrente contínua resistores Circuitos simples em corrente contínu resistores - Conceitos relciondos esistênci elétric, corrente elétric, tensão elétric, tolerânci, ssocição em série e prlelo, desvio, propgção de erro. Ojetivos Fmilirizr-se

Leia mais

3 - A Metalurgia Extrativa

3 - A Metalurgia Extrativa 7 3 - A Metlurgi Extrtiv 3-1. Principis metis A metlurgi extrtiv estud otenção dos metis prtir de fontes mineris d nturez e d suct. Um comprção entre os principis metis produzidos pelo Homem em escl mundil

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Nível. Ensino Médio. 2ªFASE 20 de outubro de 2007

Nível. Ensino Médio. 2ªFASE 20 de outubro de 2007 Ensino Médio 2ªFASE 20 de outubro de 2007 Nível 3 Prbéns pelo seu desempenho n 1ª Fse d OBMEP. É com grnde stisfção que contmos gor com su prticipção n 2ª Fse. Desejmos que você fç um bo prov e que el

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

Aos pais e professores

Aos pais e professores MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens. 136 + 5 = (100 + 30 + 6) + (00 + 50 + ) 300 + 80 + 8 MAT3_015_F0.indd

Leia mais

Física II Aula A08. Prof. Marim

Física II Aula A08. Prof. Marim Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Controle e Automção Período/Módulo: 3 o Período Disciplin/Unidde Curriculr: Cálculo III

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

6 Conversão Digital/Analógica

6 Conversão Digital/Analógica 6 Conversão Digitl/Anlógic n Em muits plicções de processmento digitl de sinl (Digitl Signl Processing DSP), é necessário reconstruir o sinl nlógico pós o estágio de processmento digitl. Est tref é relizd

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

CTM Primeira Lista de Exercícios

CTM Primeira Lista de Exercícios CTM Primeir List de Exercícios. Cite crcterístics típics de cd um ds 5 clsses de mteriis presentds no curso. Metis: resistentes, dúcteis, bons condutores térmicos/elétricos Cerâmics: resistentes, frágeis,

Leia mais

1 MÁQUINAS ELÉTRICAS II 1233 A/C : PROF. CAGNON - 2005 ENSAIO 01 : OBTENÇÃO DA CARACTERÍSTICA A VAZIO DE UMA MÁQUINA CC

1 MÁQUINAS ELÉTRICAS II 1233 A/C : PROF. CAGNON - 2005 ENSAIO 01 : OBTENÇÃO DA CARACTERÍSTICA A VAZIO DE UMA MÁQUINA CC 1 MÁQUINS ELÉTRICS II 1233 /C : PROF. CGNON - 2005 LBORTÓRIO L1 ENSIO 01 : OBTENÇÃO D CRCTERÍSTIC ZIO DE UM MÁQUIN CC 1. Objetivo Neste ensio será relizdo o levntmento d crcterístic de funcionmento vzio

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

2 Patamar de Carga de Energia

2 Patamar de Carga de Energia 2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

Sub-rede Zero e toda a sub-rede

Sub-rede Zero e toda a sub-rede Sub-rede Zero e tod sub-rede Índice Introdução Pré-requisitos Requisitos Componentes Utilizdos Convenções Sub-rede zero A sub-rede unificd Problems com sub-rede zero e com sub-rede tudo um Sub-rede zero

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

PROVA COM JUSTIFICATIVAS

PROVA COM JUSTIFICATIVAS FÍSICA 01. Um inseto de mss 1 g, vondo com velocidde de 3 cm/s, tem energi cinétic denotd por E inseto. Sbe-se ue o celerdor de prtículs LHC celerrá, prtir de 2009, prótons té um energi E LHC = 7 10 12

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4 MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO)

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) GESTÃO DE EMPRESAS CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) Exercícios Amortizção de Empréstimos EXERCÍCIOS DE APLICAÇÃO Exercício 1 Um empréstimo vi ser reembolsdo trvés de reembolsos nuis, constntes

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos Licencitur em Engenhri Informátic DEI/ISEP Lingugens de Progrmção 26/7 Fich 4 Autómtos Finitos Determinísticos Ojectivos: Vlidção de plvrs utilizndo Autómtos Finitos; Conversão de utómtos finitos não determinísticos

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

características dinâmicas dos instrumentos de medida

características dinâmicas dos instrumentos de medida crcterístics dinâmics dos instrumentos de medid Todos nós sbemos que os instrumentos de medid demorm um certo tempo pr tingirem o vlor d medid. sse tempo ocorre devido inércis, resitêncis e trsos necessários

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

Sólidos semelhantes. Um problema matemático, que despertou. Nossa aula. Recordando semelhança 2 = 9 3 = 12 4

Sólidos semelhantes. Um problema matemático, que despertou. Nossa aula. Recordando semelhança 2 = 9 3 = 12 4 A UA UL LA Sólidos semelhntes Introdução Um problem mtemático, que despertou curiosidde e mobilizou inúmeros ciddãos n Gréci Antig, foi o d dupli- cção do cubo. Ou sej, ddo um cubo de rest, qul deverá

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV dministrção Fse 9/junho/005 MTMÁTI 0. ntônio investiu qunti recebid de hernç em três plicções distints: do totl recebido em um fundo de rend fi; 40% do vlor herddo em um

Leia mais

FACULDADES OSWALDO CRUZ ESCOLA SUPERIOR DE QUÍMICA

FACULDADES OSWALDO CRUZ ESCOLA SUPERIOR DE QUÍMICA ULDDES OSWLDO RUZ ESOL SUERIOR DE QUÍMI DIÂMI ) rofessor: João Rodrigo Esclri Quintilino escl R b D figur: R 3 6 lterntiv e. x x v t t 4 x t 4t 8 m/s Se m 4 kg: R m 4 8 R 3 7 R v? v b) omo c R: b R, 9

Leia mais

CINÉTICA DE SECAGEM DE FOLHAS DE ERVA-DOCE EM SECADOR SOLAR EXPOSTO À SOMBRA

CINÉTICA DE SECAGEM DE FOLHAS DE ERVA-DOCE EM SECADOR SOLAR EXPOSTO À SOMBRA CINÉTICA DE SECAGEM DE FOLHAS DE ERVA-DOCE EM SECADOR SOLAR EXPOSTO À SOMBRA José Diorgenes Alves Oliveir 1, Krl dos Sntos Melo de Sous 2 1 Universidde Federl de Cmpin Grnde cmpus de Sumé; Ru Luiz Grnde,

Leia mais