da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então:"

Transcrição

1 Dfinição S ( i Dtrminnts um mtri qudrd d ordm n sor o orpo dos ris ssoimos um slr d R hmdo dtrminnt d omo sndo som d todos os trmos d form ond os t ( k k índis k i s ds oluns ssumm tods s rrumçõs possívis ns quis d olun é rprsntd tmnt um v m d trmo d som o pont t é lgum númro d trnsposiçõs nssáris pr trr d volt os índis ds oluns {k k k n } à su ordm nturl Indirmos o dtrminnt d mtri por dt [] ou Osrvçõs: Notmos qu os índis ds linhs s mntêm n ordm nturl os índis ds oluns ssumm tods s n! rordnçõs possívis lgoritmo pr álulo d dtrminnt d ordm : dt lgoritmo pr álulo do dtrminnt d ordm (rgr d Srrus: dt dt ( ( Dsnvolvimnto d dtrminnts por oftors (Torm d Lpl Dfinição d mnor omplmntr oftor S ( i nk n um mtri qudrd d ordm n sor o orpo dos ris S i sumtri d otid suprimindo-s i-ésim linh -ésim olun d O mnor do lmnto i d é o dtrminnt d sumtri i lmnto i indido por indido por dt C Emplo: Dd mtri o mnor do lmnto ; o oftor do lmnto Rsolução: dt C ( dt i ( i i O oftor do dt ( Torm d Lpl S ( i n sor o orpo dos ris ntão: dt i Ci i Ci C dt C C n C Sndo qu C i i dtrmin: um mtri qudrd d ordm in in i { n} n { n} é o oftor do lmnto i Osrvção: s prssõs dds n dfinição são hmds d dsnvolvimnto do dtrminnt d m rlção i-ésim linh -ésim olun rsptivmnt Emplo: S Clul dsnvolvndo m rlção à linh Clul dsnvolvndo m rlção à olun Rsolução: dt ( 9 dt 9

2 Propridds dos dtrminnts S i um mtri qudrd d ordm n sor o orpo dos ris P Os dtrminnts d mtri d su trnspost são iguis isto é dt dt t ( P S os lmntos d um fil qulqur d form nulos ntão dt P S os lmntos d dus fils prlls d form rsptivmnt iguis ntão dt P S os lmntos d dus fils prlls d form rsptivmnt proporionis ntão dt P S tm um fil qu é ominção linr d outrs fils prlls ntão dt P S trormos d posição dus fils prlls d otmos um nov mtri tl qu dt dt P7 S multiplirmos um fil qulqur d por um onstnt k otmos um nov mtri tl qu dt kdt P S multiplirmos todos os lmntos d por um onstnt k otrmos um nov mtri k tl qu dt dt (k k n dt ond n é ordm d P9 Torm d Joi: S diionrmos um fil qulqur um ominção linr ds dmis fils prlls d um mtri su dtrminnt não s ltr P Torm d Cuhy: som dos produtos dos lmntos d um fil d plos oftors dos orrspondnts lmntos d outr fil prll d é ro isto é: s k i Ck i Ck C i in kn t C C C k k n nk s k P dição d dtrminnts: S os lmntos d -ésim olun d são tis qu: n n n isto é n n ntão trmos qu: ( ( ( n n n n nn dt dt dt ond n n n n n nn n n n n n nn Osrvçõs: propridd P grnt qu tod propridd do dtrminnt d um mtri no qu di rspito às linhs trá um nálog m rlção às oluns S são s fils prlls d um mtri dirmos qu um fil é ominção linr ds outrs s istirm slrs (númros ris n nm todos nulos tis qu f f f f f n f n n Emplos: y mtris trnsposts nul y pois o dtrminnt possui fils prlls iguis d y y y pois são dtrminnts d pois o dtrminnt possui um fil pois o dtrminnt tm olun omo o doro d olun (fils prlls proporionis y pois linh é y ominção linr ds dmis ( L L L

3 f y oluns pois houv invrsõs d linhs g y y y y pois houv invrsão d linh por h y y y d lmnto do dtrminnt por i y y y pois multiplimos pois multiplimos pois sommos à olun um ominção linr ds outrs oluns (Torm d Joi m p m Dtrminnts d mtris spiis Mtri tringulr suprior ou infrior p S for um mtri tringulr suprior ou infrior ntão o dtrminnt d é o produto dos lmntos d digonl prinipl Emplo: 9 Mtri om todos lmntos im ou io d digonl sundári nulos S todos os lmntos d situdos im ou io d digonl sundári form nulos ntão o dtrminnt d é o produto dos lmntos d digo- k nl sundári prdido plo ftor ( ( ond n é ordm d mtri k o númro d ros im ou io onform o so d digonl sundári m p n( n Emplo: ( Mtri d Vndrmond ou mtri ds potênis Dnominmos mtri d Vndrmond ou mtri ds potênis qulqur mtri qudrd do tipo: n V ( ( ( ( n n n n n ( ( ( ( n ond su dtrminnt é indido por V [ n ] Podmos provr qu su dtrminnt é ddo por: V [ n ] ( ( ( ( n n ( i { n} { n } Emplo: 9 7 i V[ ] ( ( ( ( ( ( Torm d Bint S B são mtris qudrds d ordm n ntão dt (B dt (dt (B Osrvção: Podmos gnrlir o torm d Bint pr k mtris qudrds d ordm n: dt ( k = dt ( dt ( dt ( dt ( k Mtri invrs Um mtri qudrd d ordm n é dit mtri invrsívl s istir um mtri B tl qu B B I n Qundo ist mtri B l é hmd mtri invrs d indimos por ssim: I n Osrvção: S um mtri é invrsívl ntão é um mtri qudrd (Notmos qu multiplição é omuttiv dí são mtris qudrds d msm ordm i

4 Torm (Uniidd d mtri invrs S é um mtri rl invrsívl ntão su invrs é úni Dmonstrção: Vmos dmitir qu C B sm invrss d tis qu C B Pl dfinição d mtri invrs tmos: C C I n B B C I C ( B C B( C B I B n hipóts é um surdo I n n o qu por Emplo: Vrifir s é um mti invrsívl so s otr su invrs Rsolução: S d d ntão I d d d Portnto mtri é invrsívl ou s: d d 7 Invrsão d mtris por dtrminnts Mtri singulr Dimos qu um mtri qudrd d ordm n é singulr s somnt s su dtrminnt for nulo Ou s: dt é um mtri singulr dt é um mtri não singulr Mtri dos oftors ( Mtri dos oftors é mtri otid sustituindo d lmnto d por su rsptivo oftor Mtri dunt ( Mtri dunt é mtri otid d trvés d oprção d trnsposição isto é: ( t Torm S é um mtri qudrd d ordm n ntão dt I n Torm singulr ntão S é um mtri qudrd d ordm n não dt Emplo: Sndo lul: su dtrminnt; su mtri dos oftors; su mtri dunt; d su mtri invrs Rsolução: dt Clulndo os oftors otmos: C C C C ( ( ( ( Logo mtri dos oftors é dd por: ( t d dt Logo mtri invrs é dd por: Propridds ds mtris invrss P é invrsívl dt (mtri não singulr P não é invrsívl dt (mtri singulr P s dt (s oprçõs d trnsposição invrsão omutm P ( s dt ( t t ( P ( B B s dt dt B P dt ( s dt dt

5 O dtrminnt d mtri i i é igul : ( i B C D E ond Qul o vlor d k pr qu o dtrminnt d mtri B C k k s nulo? D E S mtri qudrd qu i igul : os s i i sn s i i B ( i C D d ordm tl o dtrminnt d é E Sndo-s qu o dtrminnt d mtri é igul qul é o vlor do sn B os os D E? C S o dtrminnt d mtri é k igul k ntão o vlor d k é: B 9 C 9 D E O dtrminnt d ( sndo: t t mtri trnspost d B é: B B C D E nd 7 S são s rís d qução: log log ond ntão é igul : B C S é um mtri qudrd d ordm I é mtri idntidd tmém d ordm ntão dt ( I é um polinômio d gru m ssinl ltrntiv orrspondnt o onunto ds rís do polinômio im dfinido ond D { } D { } B { } E { } C { } 9 S f dt vl: (Os: dt dtrminnt d E f ( ntão B C D E nd S f : M n R função dfinid por dtrminnt d ond M n é o onunto ds f ( mtris qudrds d ordm n ssinl ltrntiv orrt: f é intiv f é sortiv f ( B f ( f ( B d f ( f ( qulqur qu s R S f ( ntão O

6 O vlor do dtrminnt y y D y B E C ( ( ( y Qul o vlor d um dtrminnt d qurt ordm sndo-s qu multiplindo dus d sus linhs por dividindo sus oluns por otém-s o númro 7? B C D E 7 O dtrminnt d um mtri é S multiplirmos primir linh d mtri por três dividirmos su sgund olun por nov nov mtri trá dtrminnt igul : B C D Um mtri d trir ordm tm dtrminnt O dtrminnt d é: B C D E B são mtris qudrds d ordm B sndo um númro rl não nulo S o dtrminnt d é o dtrminnt d trnspost d B é ntão o vlor d é: B C D E S é mtri d dtrminnt ntão dt ( vl: B C D E 7 B são mtris qudrds d ordm S-s qu dt dt B t 9 Então: B D B 9 E C O produto ds mtris é um mtri d dtrminnt: igul o dtrminnt d d um dls B igul ro C mnor qu ro D om vlor soluto mnor qu E mior qu o dtrminnt d d um dls é: 9 Sndo B C mtris ris n n onsidr s sguints firmçõs: BC B C B B B B dt dt dt dt dt dt Então podmos firmr qu: são orrts B são orrts C são orrts D são orrts E são orrts ( ( ( B ( ( B ( B ( ( B Considr s sguints mtris: C B ond i i i (i são númros ris ssinl ltrntiv fls: (dt ( (dt (B (dt (C B dt ( dt (B C dt (B dt (C D dt ( dt (C E (dt ( dt (Bdt (C S f g são dus funçõs ris d vriávl rl stisfndo pr todo númro rl é o vlor do dtrminnt D( g( f ( D( f ( f ( g( ntão: g( g( D( B D( é ngtivo C D( é positivo D D D é positivo E D D é positivo ( ( ( ( O vlor do dtrminnt f ( B C D E é:

7 Dds s mtris B tis qu: B o vlor do dtrminnt d B é: 9 B C D E nd Considr s sguints firmtivs: I S é trnspost d mtri qudrd ntão II S é um mtri qudrd d ordm tl qu é invrsívl III S é um mtri invrsívl ntão dt ( (dt som dos númros ssoidos às firmtivs orrts é: B C D T T dt ( dt ( O ntão mtri I B são mtris d ordm O dtrminnt d é 9 S o dtrminnt d B é: B 9 9 d é um mtri qudrd d ordm invrsívl dt ( o su dtrminnt S dt ( dt ( ntão dt ( srá igul : 7 O dtrminnt io log (log (log log (log (log log ( log (log (log B C log D log log log log E d log (log (log vl: Dimos qu um mtri rl qudrd é singulr s dt ou s s o dtrminnt d é nulo não singulr s dt Mdint st dfinição qul ds firmçõs io é vrddir? som d dus mtris B é um mtri singulr s dt dt B B O produto d dus mtris é um mtri singulr s somnt s ms form singulrs C O produto d dus mtris é um mtri singulr s plo mnos um dls for singulr D Um mtri singulr possui invrs E trnspost d um mtri singulr é não singulr 7 9 Sm B P mtris ris qudrds d ordm n tis qu B P P Sndo P invrsívl dntr s firmçõs io qul é fls? S B é simétri ntão é simétri B S é simétri ntão B é simétri C S é invrsívl ntão B é invrsívl D S B é invrsívl ntão é invrsívl E dt dt B t Considr mtri sn log sn ond é rl Então podmos firmr qu: é invrsívl pns pr B é invrsívl pns pr C é invrsívl pr qulqur D é invrsívl pns pr d form k intiro E é invrsívl pns pr d form k k intiro mtri não dmit invrs s: B C ( k D E nd Sm m n númros ris om m n s mtris: B Pr qu mtri m nb s não invrsívl é nssário qu: m n sm positivos B m n sm ngtivos C m n tnhm sinis ontrários D n m E nd 7 Sm os númros ris d f Então pod-s firmr qu mtri d f dmit invrs pr qulqur rl B dmit invrs pr qulqur C dmit invrs pr qulqur prtnnt o onunto { d f } D não dmit invrs s somnt s prtn o onunto { } não dmit invrs s somnt s prtn o onunto { f d}

8 S um mtri rl qu possui invrs S n um númro intiro positivo o produto d mtri por l msm n vs Ds firmçõs io vrddir é: n possui invrs qulqur qu s o vlor d n B n possui invrs pns qundo n ou n C n possui invrs su dtrminnt indpnd d n D n não possui invrs pr vlor lgum d n n E Dpndndo d mtri mtri n podrá ou não tr invrs Sm B C mtris qudrds n n tis qu B são invrsívis BC t ond t é trnspost d mtri Então podmos firmr qu: C é invrsívl dt dt B C não é invrsívl pois dt C C C é invrsívl dt dt D C é invrsívl dt dt dt E C é invrsívl dt C C n ( B B C ( B dt C dt B (ESF Considr s mtris Y X ond os lmntos são númros nturis difrnts d ro Então o dtrminnt do produto ds mtris X Y é igul : B C + + D + E + 7 (ESF O dtrminnt d um mtri é igul S multiplirmos os três lmntos d ª linh por os três lmntos d ª olun por o dtrminnt srá: B C D E (ESF S um mtri qudrd por S multiplirmos os lmntos d sgund linh d mtri por dividirmos os lmntos d trir linh d mtri por o dtrminnt d mtri fi multiplido por B multiplido por / C multiplido por / D multiplido por / E multiplido por / 9 (ESF Um mtri X d quint ordm possui dtrminnt igul mtri B é otid multiplindo-s todos os lmntos d mtri X por Dss modo o dtrminnt d mtri B é igul : B C D E 7 (ESF O dtrminnt d mtri: X ond são intiros positivos tis qu > > é igul : B C D E ( (ESF O dtrminnt d mtri: X + D B E C + + (ESF Qulqur lmnto d um mtri X pod sr rprsntdo por i ond i rprsnt linh olun m qu ss lmnto s loli prtir d um mtri ( i d trir ordm onstrói-s mtri B( i tmém d trir ordm dd por: Sndo-s qu o dtrminnt d mtri é igul ntão o dtrminnt d mtri B é igul : B C D E (ESF Considr dus mtris qudrds d trir ordm B primir sgund trir oluns d mtri B são iguis rsptivmnt à trir à sgund à primir oluns d mtri Sndo-s qu o dtrminnt d é igul ntão o produto ntr os dtrminnts ds mtris B é igul : B C D E Grito C D D 7 E C E E B 9 C E B B 7 C E 7 B B E E 9 B C 9 D B E E D E D 7 B D B C B D 9 E C C

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

MATRIZES E DETERMINANTES LISTA 5

MATRIZES E DETERMINANTES LISTA 5 RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

Lista de Matemática ITA 2012 Trigonometria

Lista de Matemática ITA 2012 Trigonometria List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA:

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA: NOME: TURMA: DATA: 1. GRANDEZAS FÍSICAS 1.1. Grndzs Esclrs São totlmnt dfinids somnt por um lor numérico ssocido um unidd d mdid. Exmplos: Tmpo mss comprimnto tmprtur nrgi crg létric potncil létrico corrnt

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

Solução: log. 04. Se Z C, então z. 3 z. Solução: Se z C, então z 3 z z z z é igual a: Sabemos que: Portanto

Solução: log. 04. Se Z C, então z. 3 z. Solução: Se z C, então z 3 z z z z é igual a: Sabemos que: Portanto Qustõs Objtivs. Ds firmçõs: I., y R \ Q, com y, ntão + y R \ Q; II. Q y R \ Q, ntão y R \ Q; III. jm, b, c R, com < b < c. f: [, c] [, b] é sobrjtor, ntão f não é injtor, é (são) vrddir(s) n log log n

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

PREFÁCIO BOM TRABALHO!

PREFÁCIO BOM TRABALHO! PREFÁCIO Est volum corrspond o sgundo livro virtul lnçdo plo Sistm d Ensino Intrtivo SEI. O livro trt d um curso d cálculo voltdo pr os vstibulrs militrs o longo d qutro cpítulos. Cd um dos qutro cpítulos

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

Material Teórico - Módulo de Lei dos Senos e dos Cossenos. Razões Trigonométricas em Triângulos Retângulos. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de Lei dos Senos e dos Cossenos. Razões Trigonométricas em Triângulos Retângulos. Primeiro Ano do Ensino Médio Mtril Tórico - Módulo d Li dos Snos dos ossnos Rzõs Trigonométrics m Triângulos Rtângulos Primiro no do Ensino Médio Prof. ntonio minh M. Nto 1 Rcordndo triângulos rtângulos Em tudo o qu sgu, ddo um triângulo,

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS PROFESSOR: MARCOS AGUIAR CÁLCULO I. FUNÇÕES

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade.

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir TÓPICOS Mtriz. AULA Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

5 Reticulados e sua relação com a álgebra booleana

5 Reticulados e sua relação com a álgebra booleana Nots d ul d MAC0329 (2004) 30 5 Rticuldos su rlção com álgbr booln 5.1 Conjuntos prcilmnt ordndos Sj A um conjunto não vzio. Um rlção binári R sobr A é um subconjunto d A A, isto é, R A A. S (x, y) R,

Leia mais

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA.

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA. PROVA AMARELA Nº 0 PROVA VERDE Nº 09 Sej x um número rel tl que x + X 9. Um possível vlor de x X é. Sendo ssim, som dos lgrismos será: ) ) c) d) e) x 9 + MMC x + 9x x 9x + 0 x x 9 x x+ MMC x + 9x x 9x

Leia mais

2 A trigonometria no triângulo retângulo

2 A trigonometria no triângulo retângulo 16 A trigonometri no triângulo retângulo A trigonometri foi inventd á mis de dois mil nos. El onsiste, essenilmente, em ssoir d ângulo, definido omo união de um pr de semirrets de mesm origem, não ontids

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais

Prof. Jomar. matriz A. A mxn ou m A n

Prof. Jomar. matriz A. A mxn ou m A n MATRIZES Prof. Jomr 1. Introdução Em mtemátic, é comum lidr com ddos relciondos dus informções. Por isso, os mtemáticos crirm s sus própris tbels, que receberm o nome de mtrizes. N verdde, s mtrizes podem

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

Gabarito CN Solução: 1ª Solução: 2ª Solução:

Gabarito CN Solução: 1ª Solução: 2ª Solução: ) Sejm P e 5 9 Q 5 9 Qul é o resto de (A) (B) (C) 5 (D) (E) 5 P? Q GABARITO: B 6 8 0 5 9 P 5 9 6 8 0 5 9 Q 5 9 P Q P Q Dí, ) Sbendo que ABC é um triângulo retângulo de hipotenus BC =, qul é o vlor máximo

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Cludi gin Cmpos d Crvlho Módulo sistors Circuitos sistênci Elétric () sistors: sistor é o condutor qu trnsform nrgi létric m clor. Como o rsistor é um condutor d létrons, xistm quls qu fcilitm ou

Leia mais

Transformada de Fourier

Transformada de Fourier Transformada d orir Séri d orir: Uma fnção priódica pod sr rprsntada pla soma d m conjnto d snos o cosnos d difrnts frqências cada ma mltiplicada por m por m coficint Transformada d orir: Uma fnção não

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)

Leia mais

Denominamos matriz real do tipo m x n a toda tabela formada por m x n números reais dispostos em m linhas e n colunas. Exemplos:

Denominamos matriz real do tipo m x n a toda tabela formada por m x n números reais dispostos em m linhas e n colunas. Exemplos: CONTEÚDO PROGRMÁTICO DE RCIOCÍNIO LÓGICO - CONCURSO D POLÍCI FEDERL Estruturs lógics Lógic de rgumentção: nlogis, inferêncis, deduções e conclusões Lógic sentencil (ou proposicionl): proposições simples

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) = Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Relações Exercício: Seja A=B={1,2,3,4,5}. Define-se a relação R (menor do que) sobre A como: a R b se e somente se a<b. Neste caso R={...

Relações Exercício: Seja A=B={1,2,3,4,5}. Define-se a relação R (menor do que) sobre A como: a R b se e somente se a<b. Neste caso R={... Rlçõs Ligçõs ntr lmntos onjuntos são rprsntos usno um strutur hm rlção. No nosso i--i stmos frqüntmnt utilizno o onito rlçõs: Comprr ojtos (mior, mnor, igul); Mrio-Mulhr, Pi-pr-filho, Pi-mã-filho; t. Rlçõs

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais