Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Tamanho: px
Começar a partir da página:

Download "Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)"

Transcrição

1 Prof. Lorí Vili, Dr. hp:// hp:// Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no inrvlo [; b] s ssum odos os vlors com igul probbilidd. Iso é, s f(x) for: s x b f(x) b c.c. Sj X um VAC com disribuição uniform no inrvlo [; 6], iso é, X ~ U(; 6). Enão fdp é dd por: f (x) 6-4 c. c. s x 6

2 Fdp d U(; 6),,5,,5,,5, A função F(x) é dd por: s x < x F(x) s x b b s x > b Sj X um uniform no inrvlo [; 6], não FDA d X é dd por: s x < x F(x) s x 6 4 s x > 6,,9,8,7,6,5,4,,,, E(X ) + x.f (x)dx b x dx b b x b (b ).( b + ) (b ) b (b ) + b

3 A vriânci srá não: σ V(X) E(X ) E(X) E(X ) + x b b x.f (x)dx b (b ) b x dx b σ b ( b ) ( b V ( X ) b ( b ) ) E ( X + b ) E ( X ) + b b 4 γ ϕ() E( X ) b b x b dx (b ) γ -6/5 φ() E( ix ) b b ix ib i dx i(b ) Um vriávl lóri T m um disribuição xponncil s su fdp for do ipo: f ().. <

4 O mpo d rblho sm flhs d um quipmno (m hors) é ddo pl função, bixo. Drminr probbilidd d qu o quipmno não flh durn s primirs 5 hors. f (), -, c.c. s A probbilidd solicid é dd pl ingrl d função no inrvlo T < 5, iso é: P (T < 5 ),. 5 -,5 5 -,, d 9,5 % d,., -, -, 5,,5,,5 E(,) E(,) E(,5) A função F() é dd por: F() - - s < s, Obs.: Tn drminr! O mpo d rblho sm flh d um quipmno (m hors) é um xponncil d prâmro,. Drmin probbilidd d l funcionr sm flhs por plo mnos 5 hors. A FDA pr s fdp é dd por: -, F() - A probbilidd solicid é dd por: P(T 5) F(5) - - -,5 9,5% -,.5 4

5 ,,9,8 E(,),7,6 E(,),5,4 E(,5),,,, E(T) [ ] +.f ()d +. d d Foi uilizdo ingrção por prs σ V(T) E(T ) E(T) E( T [ ) + ] +.f ()d d. d. d A vriânci srá não: σ V(T) E(T ) E(T) Sj T um VAC com disribuição xponncil d prâmro. Drminr o vlor mdino d disribuição. 5

6 Conform viso mdin é o vlor qu divid disribuição d form qu: P(T < m) P(T > m) 5%. Tm - s F() P(T < ) Enão : P(T < m) F(m) m Assim m,5,5 m ln(,5) ln(,5) m - m ln(),5. γ ( X) x x ϕ ) E( pr < dx γ 6 φ ( ) ix E( ) x ix dx i Pr s dfinir Disribuição Gm é ncssário dfinir inicilmn Função Gm. Γ( k) k x x dx, pr k > 6

7 A função Gm é rcursiv, iso é: Γ(k+) k.γ(k) É qução funcionl d função Gm. S n é um iniro posiivo, não: Γ(n) (n )! E um vz qu : Γ( ) x dx A função gm pod sr considrd um gnrlizção do Foril. Vrificr, ind, qu: Γ π f (x) Um vz dfinid Função Gm, pod-s dfinir, não, Disribuição Gm: (x) Γ(r) r x s x > c.c. Ond os prâmros r > > são dnomindos d prâmro d form (r) prâmro d scl (). S r for iniro não disribuição Gm é dnomind d disribuição d Erlng. Agnr Krrup Erlng (878 99) Exis um rlção bsn próxim nr Gm Exponncil. S r, disribuição gm s rduz um xponncil. 7

8 S um vriávl lóri X é som d r vriávis indpndns xponncilmn disribuíds cd um com prâmro, não X m um dnsidd Gm com prâmros r.,,8,6,4, G(; ) G(; ) G(; ),,, 4, 6, 8,,,,5,4, G(; ) G(; ) G(5; ) A função F(x) é dd por:,, r- - (u) -u x du F(x) Γ(r) s x s x >,,, 4, 6, 8,,, S r é um iniro posiivo FDA pod sr ingrd por prs forncndo: F(x) r k k x (x) /k! s x > qu é som dos rmos d um Poisson com médi x. Assim FDA d Poisson pod sr usd pr vlir Gm. A vid d quipmno lrônico é dd por Y X + X + X + X 4, som ds vids d sus componns. Os componns são indpndns, cd um ndo mpo d flh xponncil com médi nr flhs d 4 hors. Qul é probbilidd d qu o sism opr plo mnos 4 hors sm flhs? 8

9 Como r 4, não FDA d Gm é dd por: F(x) k k x / 4 (x/4) /k! s x > qu é som dos rmos d um Poisson com médi x 4/4 6. P(Y > 4) F(4) ( k 6 5,% 6 k )/k!,,8 G(; ) G(; ) G(5; ),6,4,,,, 4, 6, 8,,, A xpcânci ou vlor sprdo d um Disribuição Gm é dd por: + µ E (X) x.f (x)dx r A Vriânci d Disribuição Gm é dd por: σ V(X) r 9

10 γ r ϕ() E( X ) pr < x f (x)dx r γ 6/r ϕ() E( X ) x r i f (x)dx A Disribuição d Wibull (95) é plicávl um séri d fnômnos, sndo um ds principis árs os mpos d flh d componns léricos mcânicos. Erns Hjlmr Wloddi WEIBULL ( ) A função dnsidd d probbilidd d Wibull é dd por: β β β xγ xγ xp f (x) δ δ δ s x γ c.c. Os prâmros são γ (- < γ < ) o d locção, δ > o d scl β > o d form. Qundo γ β, Wibull s rduz um xponncil d prâmro /δ

11 ,6,4,, W(,,) W(,,) W(,,) W(,4,) A função F(x) é dd pl sguin xprssão rlivmn simpls:,8,6,4,,,,4,8,,6,,4,8,,6 4, β x-γ - xp - F(x) δ s x γ s x < γ,,9,8,7,6,5,4,,, W(,,) W(,,) W(,,) W(,4,),,,4,8,,6,,4,8,,6 4, A disribuição do mpo d flh pr um quipmno lrônico é um Wibull com prâmros γ, β ½ δ. Drmin frção d quipmnos qu spr rsism mis d 4 hors P(X > 4) F(4) xp( 4/) -,5%

12 A xpcânci ou vlor sprdo d um Disribuição d Wibull é dd por: µ E(X) γ + δ Γ + β A Vriânci d Disribuição d Wibull é dd por: V(X) σ δ Γ + Γ + β β Γ( + ) δ µσ µ β γ σ X ϕ( ) E( ) x f (x)dx X ϕ( ) E( ) x f (x)dx DANTAS, Crlos A. B. Probbilidd: Um Curso Inroduório. São Pulo: Edusp,. MEYER, Pul L. Probbilidd: plicçõs à Esísic. Rio d Jniro: Livros Técnicos Ciníficos,. PITMAN, Jim. Probbiliy. Nw York (NY): Springr, 997. TRIVEDI, Kishor Shridhrbhi. Probbiliy nd Sisics wih Rlibiliy, Quuing, nd Compur Scinc Applicions. Nw York: John Wily & Sons,.

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

A distribuição Beta apresenta

A distribuição Beta apresenta Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Bta Cauchy Erlang Exponncial F (Sndkor) Gama Gumbl Laplac Logística Lognormal Normal Parto Qui-quadrado - χ Studnt - t Uniform Wibull

Leia mais

Série de Fourier tempo contínuo

Série de Fourier tempo contínuo Fculdd d Engnhri Séri d Fourir mpo conínuo.5.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 7/8 Séri d Fourir m mpo conínuo ul d hoj Fculdd d Engnhri Rspos d SLIs conínuo ponnciis Eponnciis imgináris hrmonicmn rlcionds

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Transformada de Clarke e Park

Transformada de Clarke e Park Cnro d Tcnologi Pós-Grdução m Engnhri Eléric Aplicçõs d Elrônic d Poênci m Sisms d Poênci Trnsformd d Clrk Prk Prof. Klbr Lim Dprmno d Engnhri Eléric Sumário Obivos Inrodução Trnsformd d Clrk Vor spcil

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE MOVIMENTOS SOB A AÇÃO DE UMA ORÇA RESULTANTE DE INTENSIDADE CONSTANTE Trjóris Tmos os sguins csos: 1º) S forç rsuln ivr dirção d vlocidd só vrirá o módulo ds rjóri srá rilín. v R Ou R v º) S forç rsuln

Leia mais

O E stado o d o o Solo

O E stado o d o o Solo O Etdo do Solo Índic Fíico Elmnto Contituint d um olo O oloéummtril contituídoporum conjunto d prtícul ólid, dixndo ntr i vzio qu podrão tr prcil ou totlmnt prnchido pl águ. É poi no co mi grl, um itm

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f(x) 1.e 1 2. x µ σ 2, x R 2π. σ com - < µ < e σ >

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00%

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00% Anxo V 1) Srá purd rlção conform bixo: = Folh d Slários incluídos ncrgos (m 12 mss) Rcit Brut (m 12 mss) 2) Ns hipótss m qu corrspond os intrvlos cntsimis d Tbl V-A, ond < signific mnor qu, > signific

Leia mais

Exemplo um: Determinar a distribuição da variável Y = 3X, dada a distribuição de X da tabela:

Exemplo um: Determinar a distribuição da variável Y = 3X, dada a distribuição de X da tabela: Prof. Lorí Viali, Dr. UFRGS Istituto d Matmática - D partam to d Estatística Sja X uma variávl alatória discrta com fp p(x i ). Sja Y f(x). S X for moótoa, tão i f(x i ), od x i são os valors d X, com

Leia mais

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A função densidade de probabilidade. Exemplo

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A função densidade de probabilidade. Exemplo Estatística Computacional Geração de Variáveis Aleatórias Contínuas 06 Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ A função densidade de probabilidade Seja X uma variável aleatória

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Processos Estocásticos. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais

Processos Estocásticos. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais Processos Estocásticos Luiz Affonso Guedes Sumário Probbilidde Vriáveis Aletóris Funções de Um Vriável Aletóri Funções de Váris Vriáveis Aletóris Momentos e Esttístic Condicionl Teorem do Limite Centrl

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

Capítulo 9. Chopper(conversor CC-CC)

Capítulo 9. Chopper(conversor CC-CC) píulo 9 onrsor nrodução hoppr(conrsor rg Alimnção: nsão ix rg: nsão riál Equiln d um rnsormdor A A nsão d síd do conrsor pod sr mior ou mnor qu nsão d nrd Normlmn uilizdos m limnção d disposiios lromcânicos

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A Normal. A Normal. Normal Log-Normal Gama Erlang Beta.

Geração de Variáveis Aleatórias Contínuas. Mat02274 Estatística Computacional. A Normal. A Normal. Normal Log-Normal Gama Erlang Beta. Estatística Computacional Geração de Variáveis Aleatórias Contínuas 6 Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Normal Log-Normal Gama Erlang Beta Weibull Student (t) Qui-Quadrado

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo MAT46 - Cálculo I - Teorems Fundmentis do Cálculo Alexndre Mirnd Alves Anderson Tigo d Silv Edson José Teixeir Os Teorems Fundmentis do Cálculo Os próximos teorems fzem conexão entre os conceitos de ntiderivd

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012)

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012) ANEO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigênci: 01/01/2012) (Rdção dd pl Li Complmntr nº 139, d 10 d novmbro d 2011) Alíquots Prtilh do Simpls Ncionl - Comércio Rcit Brut m 12 mss

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO UNIFORME Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Análises de sistemas no domínio da frequência

Análises de sistemas no domínio da frequência prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sej um vriável letóri com conjunto de vlores (S). Se o conjunto de vlores for infinito não enumerável então vriável é dit contínu. É função

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls formlids imigrção pgr su bggm

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

MATRIZES E DETERMINANTES LISTA 5

MATRIZES E DETERMINANTES LISTA 5 RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo

Leia mais

d) xy 2 h) x c a b c) d) e) 20

d) xy 2 h) x c a b c) d) e) 20 AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Rdicis ) Escrev em form de potênci com epoente frcionário ) Escrev em form de rdicl ) Dividindo o índice do rdicl e os epoentes de todos os ftores do rdicndo

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara Institut d Físic USP Físic Mdn I Aul 9 Pfss: Mzé Bch Aul 9 O átm d hidgêni n ti d Schding 1. A sluçã d átm d H n ti d Schding. Cmpçã cm s sultds d Bh.. Os stds dgnds m ngi: stds d msm ngi divss móduls

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tma II Introdução ao Cálculo Difrncial II Aula nº 4 do plano d trabalho nº 9 Rsolvr os rcícios 87, 88, 89, 90 9 os rcícios 9

Leia mais

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM Messinki Tuote LVI-numero Pikakoodi PUSERRUSLIITIN EM 1551002 XV87 PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM 2 PUSERRUSLIITIN EM 35 MM

Leia mais

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 Aplicações de Integrais subject Aplicações de Integrais

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 04: Variáveis Aleatórias Contínuas nuas Função densidade de probabilidade contínua nua f(x) a b f(x) 0 para

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

Apostila de Matrizes, Determinantes e Sistemas. Prof. Mauricio Carias

Apostila de Matrizes, Determinantes e Sistemas. Prof. Mauricio Carias posil d Mrizs, Drminns Sisms Prof. Muricio Cris Cpíulo - Mrizs. Dfinição s mrizs são ls d númros ris uilizds m qus odos os rmos d ciênci d ngnhri. Váris oprçõs rlizds por compudors são rvés d mrizs. Vjmos

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

Capítulo 5. Variáveis aleatórias. 5.1 Introdução

Capítulo 5. Variáveis aleatórias. 5.1 Introdução Capítulo 5 Variáveis aleatórias 5.1 Introdução Em experimentos aleatórios cujo espaço amostral contém alguns eventos de interesse é, em geral, mais fácil lidar como uma variável aleatória, isto é, é mais

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1

Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1 Tst Intmédio d Mtmátic A Vsão Tst Intmédio Mtmátic A Vsão Dução do Tst: 9 minutos.5..º Ano d Escolidd Dcto-Li n.º 7/ d d mço????????????? RESOLUÇÃO GRUPO I. Rspost (B) A função f é contínu logo é contínu

Leia mais

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Cálculo a uma Variável

Cálculo a uma Variável Cálculo um Vriável Sinésio Pesco CAP 9 - A Integrl (Integrção Numéric) Som de Riemnn Podemos usr som de Riemnn pr clculr um proximção pr integrl dx. Pr isso em cd suintervlo [x i,x i ] sustituimos integrl

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Lista de Matemática ITA 2012 Trigonometria

Lista de Matemática ITA 2012 Trigonometria List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão

Leia mais