Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo

Tamanho: px
Começar a partir da página:

Download "Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo"

Transcrição

1 MAT46 - Cálculo I - Teorems Fundmentis do Cálculo Alexndre Mirnd Alves Anderson Tigo d Silv Edson José Teixeir

2 Os Teorems Fundmentis do Cálculo Os próximos teorems fzem conexão entre os conceitos de ntiderivd e de integrl definid. Sej f um função contínu no intervlo fechdo [, b]. Então existe integrl b f (x)dx, que depende somente d função f e dos números e b e não do símbolo x (chmdo vriável mud). Se < x < b, então f tmbém é contínu no intervlo [, x], pois é contínu em [, b]. Isto implic que integrl x (, b). x f (t)dt existe pr cd

3 x Nesse sentido, cujo vlor funcionl é ddo por f (t)dt define um função F, definid no intervlo [, b], F (x) = x f (t)dt. Note que vriável mud n integrl cim é t. A função F depende d vriável x e não d vriável t.

4 Teorem ((8) - (Primeiro Teorem Fundmentl do Cálculo)) Sej f um função contínu no intervlo fechdo [, b] e sej x [, b]. Defin F (x) = Então F é derivável e lém disso, x f (x)dx. F (x) = f (x). () (Note que F () = f +() e F (b) = f (b).)

5 Observção O Teorem (8) estbelece que integrl definid x f (t)dt é um ntiderivd de f. A equção () do Teorem (8), pode ser escrit d seguinte form d x f (t)dt = f (x), dx onde F (x) foi substituido por d dx x f (t)dt.

6 Exemplo (9) Clcule dy dx, onde y(x) = Solução: dy dx = d dy 3 x ( 3 tcos(t)dt. x x = d ( dx 3 = xcos(x). ) tcos(t)dt ) tcos(t)dt

7 Exemplo () Clcule dy dx, onde x y(x) = cos(t)dt. Solução: Note que o limite superior de integrção não é x, ms x. Neste cso y é um função compost y = u Devemos então plicr regr d cdei cos(t)dt e u = x. dy dx = dy du du dx = ( d du u = cos(u) du dx = cos(x ).x. ) du cos tdt dx

8 Teorem ((9) - (Segundo Teorem Fundmentl do Cálculo)) Sej f um função contínu no intervlo fechdo [, b] e sej g um função tl que g (x) = f (x) pr todo x [, b]. Então b f (t)dt = g(b) g().

9 Exemplo ()(Revisitndo os exemplos (3) e (4)) Clcule 3 x dx. Solução: Pelo TFC temos que 3 x dx = x 3 3 ] 3 = 33 3 = 9.

10 Exemplo () Clcule 4 (x 3 + 3x 5)dx Solução: Usndo os teorems (8) e (9), temos 4 (x 3 + 3x 5)dx = 4 x 3 dx + 3 = x x 3 5x 4 ] 4 x dx 5 4 = ( ) ( 4 + 5) = 4 = dx

11 Exemplo (3) Clcule dx x + dx Solução: dx x + dx = rctg(x) ] = rctg() rctg() = π 4 = π 4

12 Exemplo (4) Clcule 3 x + xdx Solução: Antes de plicr os limites de integrção, precismos sber qul é integrl indefinid (ntiderivd) de x + xdx Fçmos u = + x, ssim u = + x e dx = udu. Substituindo, obtemos x + xdx = (u )u(udu) = (u 4 u )du

13 = 5 u5 3 u3 + c = 5 ( + x) 5 3 ( + x) 3 + c Portnto, integrl definid é 3 x + xdx = 5 ( + x) 5 ] 3 3 ( + x) 3 = 5 (4) 5 3 (4) 3 5 () () 3 = = 6 5

14 Regr d Substituição A seguinte fómul, que segue d Regr d Cdei pr ntidiferencição e do TFC, pode sr usd pr clculr integris como do Exemplo (4). b f (g(x))g (x)dx = g(b) g() f (u)du ()

15 Vejmos plicção d fórmul (4) no exemplo (4): Sej u = + x, ssim u = + x e dx = udu. Além disso, qundo x = temos que u = e qundo x = 3 temos u =. Então, 3 x + xdx = (u 4 u )du = 5 u5 3 u3] = = 6 5

16 Exemplo (5) Clcule π sen 3 (x)cos(x)dx Solução: Fçmos u = sen(x), ssim du = cos(x)dx. Qundo x = tem-se u = e qundo u = π então u =. Substituindo, obtemos π sen 3 (x)cos(x)dx = = u4 4 ] u 3 du = 4

17 Aplicção Definição Suponh que f sej um função integrável em [, b]. O vlor médio de f em [, b] é chmdo de Médi e é ddo por Medi(f ) = b b f (x)dx Exemplo (6) Sej f (x) = 4 x. Clcule médi de f em [, ]. Solução: Medi(f ) = b b f (x)dx = Medi(f ) = 4 x dx ( )

18 Fç x = sen(t), ssim dx = cos(t)dt. Pr x = tem-se t = π e pr x = tem-se t = π. 4 x dx = 4 4 Portnto, Vej figur bixo. = 4 = π π π π 4 x dx 4 4sen (t)cos(t)dt = 4 4 π + cos(t) dt = = (t + sen(t)) ] π Medi(f ) = π π ( π π π cos (t)dt dt + π π cos(t)dt = (π ( π ) ) = π )

19 y f (x) = 4 x y = π x Figur : Observe que áre do semicírculo cim é π, que é mesm áre do retângulo com bse no intervlo [, ] e ltur igul Medi(f ) = π.

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III Cálculo Diferencil e Integrl II Págin Universidde de Mogi ds Cruzes UMC Cmpos Vill Lobos Cálculo Diferencil e Integrl II Prte III Engenhri Civil Engenhri Mecânic mrili@umc.br º semestre de 05 Cálculo Diferencil

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi A forç não provém d cpcidde físic, e sim de um vontde indomável. Mhtm Gndhi Futuros militres, postos! É hor de meter o ggá! Este é o módulo 8 do curso de MATEMÁTICA d turm AFA-EN-EFOMM- EsPCE-EEAr. Nesse

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do

Leia mais

Integrais impróprias - continuação Aula 36

Integrais impróprias - continuação Aula 36 Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral Eercícios de Integrl Eercícios de Fição Cálculo I (5/) IM UFRJ List 5: Integrl Prof Milton Lopes e Prof Mrco Cbrl Versão 55 Fi : Determine se é Verddeiro (provndo rmtiv) ou Flso (dndo contreemplo): b ()

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

Aula 29 Aplicações de integrais Áreas e comprimentos

Aula 29 Aplicações de integrais Áreas e comprimentos Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento

Leia mais

MAT146 - Cálculo I - Integração de Funções Trigonométricas

MAT146 - Cálculo I - Integração de Funções Trigonométricas MAT146 - Cálculo I - Integração de Funções Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Até o momento, somos capazes de resolver algumas integrais trigonométricas

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

6.1 Derivação & Integração: regras básicas

6.1 Derivação & Integração: regras básicas 6. Derivção & Integrção: regrs básics REGRAS BÁSICAS DE DERIVAÇÃO. Regr d som:........................................ (u + k v) = u + k v ; k constnte. Regr do Produto:.....................................................

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

META: Introduzir o conceito de integração de funções de variáveis complexas.

META: Introduzir o conceito de integração de funções de variáveis complexas. Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Integrção Numéric Métodos Numéricos e Esttísticos Prte I-Métodos Numéricos Integrção numéric Luís Morgdo Lic. Eng. Biomédic e Bioengenhri-009/010 Luís Morgdo Integrção numéric Integrção Numéric Recorrendo

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

Primitivas e a integral de Riemann Aula 26

Primitivas e a integral de Riemann Aula 26 Primitivas e a integral de Riemann Aula 26 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Cálculo em Computadores 2006 Integrais e volumes 1. Cálculo em Computadores Integrais de funções de duas variáveis reais 4

Cálculo em Computadores 2006 Integrais e volumes 1. Cálculo em Computadores Integrais de funções de duas variáveis reais 4 Cálculo em Computdores 2006 Integris e volumes 1 Contents Cálculo em Computdores 2006 Integris de funções de dus vriáveis 1 Áres no plno 2 1.1 exercícios...............................................

Leia mais

Integral imprópria em R n (n = 1, 2, 3)

Integral imprópria em R n (n = 1, 2, 3) Universidde Federl do Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Integrl Imprópri Integrl imprópri em R n (n =,, 3) Autores: Angel Cássi Bizutti e Ivo Fernndez Lopez Introdução

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

FÓRMULA DE TAYLOR USP MAT

FÓRMULA DE TAYLOR USP MAT FÓRMULA DE TAYLOR USP MAT 5 SEVERINO TOSCANO DO REGO MELO. Polinômios de Tylor A ret tngente o gráfico de um função f derivável em um ponto define função de primeiro gru que melhor proxim função em pontos

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

NOTAS DE AULA CURVAS PARAMETRIZADAS. Cláudio Martins Mendes

NOTAS DE AULA CURVAS PARAMETRIZADAS. Cláudio Martins Mendes NOTAS DE AULA CURVAS PARAMETRIZADAS Cláudio Mrtins Mendes Segundo Semestre de 2005 Sumário 1 Funções com Vlores Vetoriis 2 1.1 Definições - Proprieddes.............................. 2 1.2 Movimentos no

Leia mais

Integração por partes

Integração por partes Universidade de Brasília Departamento de Matemática Cálculo 1 Integração por partes Vimos nos textos anteriores que a técnica de mudança de variáveis é muito útil no cálculo de algumas primitivas. Porém,

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

NOTAS DE AULAS DE CÁLCULO II

NOTAS DE AULAS DE CÁLCULO II UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE EDUCAÇÃO E SAÚDE UNIDADE ACADÊMICA DE EDUCAÇÃO PROFESSORA: CÉLIA MARIA RUFINO FRANCO Aluno (): NOTAS DE AULAS DE CÁLCULO II Cpítulo Teorem d Função Invers

Leia mais

G.W. Leibniz ( ) I. Newton ( )

G.W. Leibniz ( ) I. Newton ( ) MAT 26 Cálculo diferencil e integrl 2 2 semestre de 25 Bchreldo em Mtemátic e Mtemátic Aplicd Docente: Prof. Dr. Pierluigi Benevieri Resumo ds uls e exercícios sugeridos - Atulizdo 27..25. Segund-feir,

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

Matemática III - LEC202

Matemática III - LEC202 Mtemátic III - LEC202 Séries numérics e integrção Texto de poio às uls volume I Sofi Cstro Gothen Fculdde de Economi do Porto Setembro de 2004 ... we sy thnks to you students... You re the posterity we

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Analise Matemática I. Aula 10 Limite de Funções. Exercícios

Analise Matemática I. Aula 10 Limite de Funções. Exercícios Anlise Mtemátic I Aul Limite de Funções. Eercícios Ano cdémico 7 Tem. Cálculo Diferencil Limites infinitos e ites no infinito. Indeterminções. Limite Trigonométrico Fundmentl. Limite Eponencil Fundmentl.

Leia mais

Matemática Parte II: Análise Matemática

Matemática Parte II: Análise Matemática Mtemátic Prte II: Lic. em Enologi 009/010 Funções reis de vriável rel Um função f, definid num certo conjunto D e com vlores num conjunto E, é um regr que fz corresponder cd elemento x de D um único elemento

Leia mais

Aula 12 Regras de Substituição. Integração por partes.

Aula 12 Regras de Substituição. Integração por partes. Universidade Federal do ABC Aula 12 Regras de Substituição. Integração por partes. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site do prof. Annibal:

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Universidde Federl de Mins Geris Instituto de Ciêncis Exts Deprtmento de Mtemátic Aproximção Por Funções Polinomiis (Polinômios de Tylor) Wi Gerldo Moreir dos Sntos Belo Horizonte, Julho de 26 Em tudo

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

Análise numérica para solução de integrais não elementares

Análise numérica para solução de integrais não elementares UNIVERSIDADE ESTADUAL DA PARAIBA CAMPUS CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA ESPECIALIZACAO EM MATEMÁTICA PURA E APLICADA Análise numéric pr solução de integris não elementres por BALDOINO SONILDO

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. .5.- Derivd d função compost, derivd d função invers, derivd d função implícit e derivd de funções definids prmetricmente. Teorem.3 Derivd d Função Compost Suponh-se que g: A R é diferenciável no ponto

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Universidade de São Paulo. Apostila de Cálculo

Universidade de São Paulo. Apostila de Cálculo Universidde de São Pulo Escol Superior de Agricultur Luiz de Queiroz" Apostil de Cálculo Roseli Aprecid Lendro Cristin Villegs Everton Btist d Roch Pircicb Estdo de São Pulo 2012 Conteúdo 1 Revisão de

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

3.1 Integral Tripla em um bloco retangular e o Teorema de Fubini

3.1 Integral Tripla em um bloco retangular e o Teorema de Fubini Objetivos 3. Os objetivos dest Aul são: introduzir o conceito de integrl tril; enuncir o Teorem de Fubini que, nlogmente o cso d Integrl ul, ermite clculr integrl tril or meio d integrl reetid; utilizr

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Notas Teóricas de Análise Matemática

Notas Teóricas de Análise Matemática Nots Teórics de Análise Mtemátic Rui Rodrigues Deprtmento de Físic e Mtemátic Instituto Superior de Engenhri de Coimbr Índice Primitivção de funções reis de vriável rel. Primitivção...................................2

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais