Análises de sistemas no domínio da frequência

Tamanho: px
Começar a partir da página:

Download "Análises de sistemas no domínio da frequência"

Transcrição

1 prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico qu prmi obrvção d rpo d um im, pr um inl d nrd noidl, cu frquênci é vrid dnro d um fix pré-blcid. rpo m rgim prmnn d um im linr invrin no mpo uio um nrd noidl rá noidl n mm frquênci, com mpliud f difrn. Função d Trnfrênci Snoidl: MÓULO : w Y w X w X Y FSE : Y w w X w

2 omínio frquênci Cliqu pr dir o ilo do xo mr rprnção do domínio do mpo dá mpliud do inl no inn d mpo colhido. o domínio d frquênci, pr- conciulmn nóid qu formm o inl. omínio do mpo vru domínio d frquênci omínio do mpo omínio d frquênci 3 omínio frquênci Cliqu pr dir o ilo do xo mr como á vimo, rnformd d Lplc: Lx X Trnformd d Fourir: Fx X vrdd Trnformd d Lplc Trnformd d Fourir ão rprnçõ qu ão muio rlciond um com our. Em muio co, ubiuirmo por, io é, fzndo- r um númro complxo com pr rl nul pr imginári, 0 obmo Trnformd d Fourir prir d Trnformd d Lplc X X0 X, Y Y0 Y, c. 4

3 Sini inodi Cliqu pr dir o ilo do xo mr n π / T rd/mpo l frquênci: mudnç rápid Príodo T Frquênci π T mpliid d pico mpliid d pico pico Bix frquênci: mudnç ln : númro d ocilçõ m um gundo, no SI hrz; rd/ 0, Hz. 5 Enrd noidi Cliqu pr dir o ilo do xo mr Méodo d rpo m frquênci: Vri- frquênci do inl d nrd dnro d um cro inrvlo ud- rpo ruln. U Y Obivo: Eudr rpo d um im linl ávl n mudnç ipo noidl n nrd o cnrrmo no do cionário S: Y U : U 6

4 Cliqu pr dir o ilo do xo mr pr pr b b b U Y 7 logo: Rpo m frquênci Cliqu pr dir o ilo do xo mr rg lim... ] [ φ φ φ φ φ φ n ávl, no do cionário : é b L L L Y L 8 im, plicndo rnformd invr, mo: Rpo m frquênci

5 Rpo m frquênci Cliqu pr dir o ilo do xo mr Rpo m Frquênci: Rpo m rgim prmnn d um im um nrd noidl U Y u n n φ φ rg rpo ocil com mm frquênci, m nud por um for dfd um ângulo φ rg, qu dpndm d. 9 Rpo m frquênci Cliqu pr dir o ilo do xo mr o vlor d nução o df φ rg qu inroduz um im linl dpndm ó d podm rprnr- m função d frquênci m divro ipo d digrm, o ubiuir vriávl por m clculr o módulo rgumno do complxo ruln rg rcg rcg 0

6 Rpo m frquênci Cliqu pr dir o ilo do xo mr Form ráfic: igrm d Bod ou gráfico logrímico igrm d qui ou digrm polr igrm do Logrimo do módulo vru ângulo d f cr d ichol igrm d Bod Cliqu pr dir o ilo do xo mr O digrm d Bod d módulo d f ão um d form d crcrizr ini no domínio d frquênci. m db db 0log Hndrik Wd Bod , rg m gru função d rnfrênci noidl d um im rprnd grficmn: Módulo vru Frquênci Ângulo d F vru Frquênci.

7 Conrução do igrm d Bod Uo d Ecl Logrímic: implificm u conrução, mnipulção inrprção. Trçdo d Curv: corrpond plor curv pr w. Como é um curv d vriávl complx, dv- prnr conunmn du curv: pr rl imginári ou Módulo F form ud. bci ixo frquênci m rd/ cl logrímic Módulo db Ordnd ixo M módulo m db M 0 log F m gru F gru 3 rd/ Conrução do igrm d Bod décd vrição corrpondn 0 x, im: oiv vrição corrpondn x um oiv corrpond à: o dobro /ou md, dpndndo do nido pr diri ou pr qurd / umnndo- / ou diminuindo-. 4

8 Frqüênci rd/ Módulo M 0 log [dcibl db] F Φ [gru ] bw Conrução do igrm d Bod 0*log bw [db] w, [rdino] w, [gru] FSE Φ 0 log w Lmbrndo qu: rd/ ou Hz rd/ ou Hz 5 Rumindo: Conrução do igrm d Bod O digrm d Bod ão conruído pr funçõ d rnfrênci w ão doi: digrm d Bod d módulo digrm d Bod d f. O digrm d Bod d módulo ão gráfico d m db db x com cl logrímic O digrm d Bod d f ão gráfico d m gru x com cl logrímic Indic o gnho rlivo pcrl. Indic dfmno hrmônico do inl d íd m rlção o d nrd. 6

9 Mmicmn: Conrução do igrm d Bod finição: Função d rnfrênci K[ x w x [ x w x 4 3 w3...] w...] 4 Curv d Módulo ou mpliud: w db M 0log K 0log x w w... 0log x w w... Ob.: Zro m conribuição poiiv pólo m conribuição ngiv n curv d módulo. Curv d F: Φ w φ [w w / x ]...- rc g[w w / x ] -... rcg Ob.: Zro m conribuição poiiv o pólo m conribuição ngiv n curv d f. 7 Crcríic d Rpo d Frquênci d Proco d ª Ordm Cliqu pr dir o ilo do xo mr Pr qdo ond ˆ K nd φ n τ τ. O inl d íd é um noidl qu m mm frqüênci,, com o inl d nrd, x in.. mpliud do inl d íd, Â, é um função d frqüênci d um mpliud, : ˆ K 3- τ 3. íd m um mudnç d f, φ, m rlção à nrd. qunidd d dlocmno d f dpnd. 8

10 Crcríic d Rpo d Frquênci d Proco d ª Ordm Cliqu pr dir o ilo do xo mr coninução... ividindo mbo ldo d q pl mpliud do inl d nrd rul o rzão d mpliud, R mpliud rio qu podm, por u vz, r dividido plo gnho d proco pr produzir rzão d mpliud normlizd R R ˆ R τ K τ b 3 9 Crcríic d Rpo d Frquênci d Proco d ª Ordm Cliqu pr dir o ilo do xo mr coninução... Pr qdo ond ˆ K nd φ n τ τ. O inl d íd é um noidl qu m mm frqüênci,, com o inl d nrd, x in.. mpliud do inl d íd, Â, é um função d frqüênci d um mpliud, : ˆ K 3- τ 3. íd m um mudnç d f, φ, m rlção à nrd. qunidd d dlocmno d f dpnd. 0

11 Crcríic d Rpo d Frquênci d Proco d ª Ordm Cliqu pr dir o ilo do xo mr coninução... ividindo mbo ldo d q pl mpliud do inl d nrd rul o rzão d mpliud, R mpliud rio qu podm, por u vz, r dividido plo gnho d proco pr produzir rzão d mpliud normlizd R R ˆ R τ K τ b 3 Méodo Shorcu pr nconrr Rpo d Frquênci E méodo coni m: Ep. Subiuir m pr o obr.. Ep. Rcionlizr ; - xprr n form. R I ond R I ão funçõ d. Simplificndo muliplicndo o numrdor o dnomindor plo complxo conugdo do dnomindor. Ep 3. rzão d mpliud f d ão dd por : Lmbrr R R I ϕ n I/ R

12 Exmplo Enconrr rpo d frquênci d um im d primir ordm, com Solução Primiro, ubiui - τ n função d rnfrênci τ τ Em guid, mulipliqu o numrdor o dnomindor plo complxo conugdo do dnomindor,, ou, τ τ τ τ τ τ τ R I τ τ ond: p 3 do Méodo Shorcu: ou mbém, R τ I τ τ τ R R I τ τ τ τ R τ b 4b I φ n n τ n τ 3-0b 5b R

13 5 Exrcício: w w w w w w w w w w w w Coninum... 6 Frqüênci rd/min Módulo bw Módulo 0*log bw [db] w, [rd] R w, [gru] ,0 0, Exrcício: 0 5 E complr guin bl

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de.

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de. EEC rado Engnharia Elroénia d Copuador CDI odlação Conrolo d ia Dinâio Exríio d Função Driiva Conuno d xríio laborado plo don Joé Tnriro ahado JT, anul ano ilva, Víor Rodrigu da Cunha VRC Jorg Erla da

Leia mais

GRAVITAÇÃO UNIVERSAL

GRAVITAÇÃO UNIVERSAL GVIÇÃO UNIVESL z- u ci féric u fr chubo rio, l qu u uprfíci ngnci uprfíci xrn fr chubo p plo cnro priii fr chubo r D coro co Li Grição Unirl, qul rá forç co qu fr chubo rirá u pqun fr locliz à iânci, o

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e :

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : INSCRIÇÕES ABERTAS ATÉ 13 DE JULH DE 2015! Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : Caso vo cê nunca t e nh a pa

Leia mais

Sistemas e Sinais (LEIC) Resposta em Frequência

Sistemas e Sinais (LEIC) Resposta em Frequência Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric

Leia mais

A DERIVADA DE UM INTEGRAL

A DERIVADA DE UM INTEGRAL A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

1. A TRANSFORMADA DE LAPLACE

1. A TRANSFORMADA DE LAPLACE Equaçõ Difrciai - Traformada d Laplac A TRANSFORMADA DE LAPLACE Dfiição: Sja f() uma fução ral dfiida para > Eão a raformada d Laplac d f(), doada por L [ ( ) ] f é dfiida por: L [ f ( ) ] F( ) f( )d,

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

1 Introdução e Base Matemática

1 Introdução e Base Matemática J. A. M. Flipp Souz Iroução Bs Mmáic Iroução Bs Mmáic Iroução Bs Mmáic 3. O úmro imgiário 3. Númros complxos 4.3 Oprçõs com úmros complxos 9.4 O so o co-so.5 A qução Eulr 5.6 A g 7.7 As ivrss so, co-so

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica.

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica. // TÂN TTÓO T TÂN // // TÂN n. nrgia poncial lérica..trabalho lérico..oncial lérico..tnão lérica.. arga lérica..apaciância lérica.. Força lérica..náli mporal.. ampo lérico.. rmiividad lérica ar.. Fluxo

Leia mais

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial

Leia mais

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes:

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes: . Mamáica.. Sima Fíico Modlo E o raa do udo analíico d ima d conrol. Falando d forma gral, l coni d quaro par:. Modlagm. Dnvolvimno d quaçõ mamáica. Análi 4. Projo E capíulo dicu a dua primira par. A diinção

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

SISTEMAS DE CONTROLE I

SISTEMAS DE CONTROLE I UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE CENTRO DE TECNOLOGI DEPRTMENTO DE ENG. DE COMPUTÇÃO E UTOMÇÃO SISTEMS DE CONTROLE I Proor: Fáio Mghi Ugulio rújo Nl-RN, mrço ÍNDICE INTRODUÇÃO...4. DEFINIÇÕES...4.

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge 5.A. Traçado das Assíntotas Traçado

Leia mais

ESCOLA DE LÍDERES BRASIL

ESCOLA DE LÍDERES BRASIL ESCOLA DE LÍDERES BRASIL CURSO DE MARKETING MÓDULO I LEITURA COMPLEMENTAR (LC) [ D i g i o c o n ú d o d b r r l r l. T r - s d u m s u p l m n o O MERCADO 1. O Circuio Econômico Sgundo Armndo Krmr, produção

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS LRC MULTILINHAS C/ IHM

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS LRC MULTILINHAS C/ IHM 4 5 6 7 8 9 0 QUIPNOS ONROLOS 5 LINS RSRIOS OU LINS ONLOS LIN RSRIOS IR INRLIÇÃO UOÇÃO NSS LR ULILINS O I 8 0/0/5 URÇÃO LRÇÃO OS UNIUS, RPOSIIONNO O POLI LRÇÂO N LIS RIIS LOUV 7 7 0/0/5 LRO O LYOU, SUSIUIO

Leia mais

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável ELECRÓNCA DE POÊNCA CA Aplicções: versores Coversores CC-CA de frequêci vriável corolo de velocidde de moores de idução foes de limeção iierrupíveis (UPS) vridores de frequêci foes de limeção móveis quecimeo

Leia mais

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00%

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00% Anxo V 1) Srá purd rlção conform bixo: = Folh d Slários incluídos ncrgos (m 12 mss) Rcit Brut (m 12 mss) 2) Ns hipótss m qu corrspond os intrvlos cntsimis d Tbl V-A, ond < signific mnor qu, > signific

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

NPQV Variável Educação Prof. Responsáv el : Ra ph a el B i c u d o

NPQV Variável Educação Prof. Responsáv el : Ra ph a el B i c u d o NPQV Variável Educação Prof. Responsáv v el :: Ra ph aa el BB ii cc uu dd o ATIVIDADES DESENVOLVIDAS NA ÁREA DE EDUCAÇÃO 2º Semestre de 2003 ATIVIDADES DESENVOLVIDAS NA ÁREA DE EDUCAÇÃO As atividades realizadas

Leia mais

4.2. Veio Cilíndrico de Secção Circular

4.2. Veio Cilíndrico de Secção Circular Cpíulo IV Torção de Peçs Lineres 1 CPÍTULO IV TORÇÃO DE PEÇS LINERES.1. Inrodução. sorção ou rnsmissão de esforços de orção: o Veios ou árvores de rnsmissão o Brrs de orção; ols; Esruurs uulres (veículos

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que:

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que: . qação para o MHS Qano o oino corpo cr a rajória, a parir cro inan coça a rpir a rajória, izo q oino é prióico. O po q o corpo gaa para olar a prcorrr o o pono a rajória é chaao príoo. No noo coiiano

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005 MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),

Leia mais

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...). 9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

Resolução de Matemática da Prova Objetiva FGV Administração - 06-06-10

Resolução de Matemática da Prova Objetiva FGV Administração - 06-06-10 QUESTÃO 1 VESTIBULAR FGV 010 JUNHO/010 RESOLUÇÃO DAS 15 QUESTÕES DE MATEMÁTICA DA PROVA DA MANHÃ MÓDULO OBJETIVO PROVA TIPO A O mon i tor de um note book tem formato retangular com a di ag o nal medindo

Leia mais

"Kokumin Kenko Hoken" Seguro Nacional de Saúde

Kokumin Kenko Hoken Seguro Nacional de Saúde Numção 8-4-3 ClificçãoDonç Aunto Sguo Público p Aitênci Médic Tm "Kokumin Knko Hokn" Sguo Ncionl d Súd Nívl d conult 3 1 Pgunt Rpot Báic Não poo incv-m no guo d úd. Djo b ob o itm p pcv-m no 2 Pgunt Rpot

Leia mais

Quadro de conteúdos. Eu Gosto M@is Integrado 1 o ano. Lição 1 As crianças e os lugares onde vivem

Quadro de conteúdos. Eu Gosto M@is Integrado 1 o ano. Lição 1 As crianças e os lugares onde vivem Quadro de conteúdos Eu Gosto M@is Integrado 1 o ano Língua Portuguesa Matemática História Geografia Ciências Naturais Arte Inglês ABC da passarinhada O alfabeto Quantidade A ideia de quantidade Eu, criança

Leia mais

CONVERSÃO ELETROMECÂNICA DE ENERGIA

CONVERSÃO ELETROMECÂNICA DE ENERGIA CONVERSÃO EETROMECÂNICA DE ENERGIA Ivn Cmrgo Rvisão 1 (mio d 007) Pr nális d um convrsor, é fundmntl o conhcimnto d forç ltromgnétic dsnvolvid plo convrsor. Existm divrss forms d cálculo dst forç (ou conjugdo),

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL 3 4 7 8 9 0 QUIPMNTOS ONTROLOS XX SL (L44) - RJ4- /SNSORS - IM SOPOR 30.400.83.7 XX SL (L44) - RJ4- /SNSORS - IM MUTIR 30.400.84. IRM INTRLIÇÃO UTOMÇÃO XX -SL 3 0// INTIIÇÃO OS SNSORS UMI PRSSÃO /03/4

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Módulo I MOTORES DE BUSCA NA INTERNET

Módulo I MOTORES DE BUSCA NA INTERNET Módul MOTORES E BUSCA NA NTERNET duç Pqu d ç d gé Pqu d ç B d d Ulzç d d -l F d duç -l @2007 v 1 O qu é? A é d udl d d d ud qu uç l qulqu ud d ud, d lh u C u? Avé d u ju d l (g d uç TCP/P) qu ê gd vg d

Leia mais

PRODUTOS GERDAU PARA PAREDES DE CONCRETO

PRODUTOS GERDAU PARA PAREDES DE CONCRETO PRODUTOS GERDAU PARA PAREDES DE CONCRETO SISTEMA CONSTRUTIVO PAREDES DE CONCRETO NBR60 PAREDES DE CONCRETO Sistma construtivo m qu as lajs as pards são moldadas m conjunto, formando um lmnto monolítico.

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR UMCCE Eng. Elérca m - ab. Crco Elérco Prof. Wlon Yamag EXPEÊNC 7 MEDD DE NDUÂNC PO OND ENGU NODUÇÃO O objvo báco da xprênca é mdr a ndânca a rênca d ma bobna zando ma onda ranglar. O prncípo da mdção é

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

ircuit ennte de ª Ordem O md nturi, u pól, ã independente d frm de excitçã dede que incluã de excitçã nã ltere etrutur nturl d circuit. N ( X ( H ( Pól D( 0 > etrutur D( X i ( nturl crrepnde X i ( 0 Plinómi

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

Centro e Bacia do Itacorubi: A Rota da Educação SECRETARIA MUNICIPAL DE EDUCAÇÃO DE FLORIANÓPOLIS

Centro e Bacia do Itacorubi: A Rota da Educação SECRETARIA MUNICIPAL DE EDUCAÇÃO DE FLORIANÓPOLIS PREFEITURA MUNICIPAL DE FLORIANÓPOLIS Cntro Bacia do Itacorubi: A Rota da Educação SECRETARIA MUNICIPAL DE EDUCAÇÃO DE FLORIANÓPOLIS Crch Irmão Clso, no bairro Agronômica PREFEITURA MUNICIPAL DE FLORIANÓPOLIS

Leia mais

Resposta de Modelos Dinâmicos Variáveis de estado

Resposta de Modelos Dinâmicos Variáveis de estado epot de Modelo Dinâmio Vriávei de etdo Outro Proeo de Seprção Prof Ninok Bojorge Deprtmento de Engenri uími e de Petróleo UFF ontrole Feedbk... ontinução ontroldor G tudor G V POESSO G P G Senor Introdução

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Introdução AVALIAÇÃO DE DESEMPENHO. No domínio do tempo. No domínio da freqüência. Função de transferência. Módulo e fase da função de transferência

Introdução AVALIAÇÃO DE DESEMPENHO. No domínio do tempo. No domínio da freqüência. Função de transferência. Módulo e fase da função de transferência AVALIAÇÃO DE DESEMPENHO Introdução Introdução Análise no domínio do tempo Resposta ao degrau Resposta à rampa Aula anterior Resposta à parábola Análise no domínio da freqüência Diagramas de Bode Diagrama

Leia mais

Aula 13 Análise no domínio da frequência

Aula 13 Análise no domínio da frequência Aula 13 Análise no domínio da frequência A resposta em frequência é a resposta do sistema em estado estacionário (ou em regime permanente) quando a entrada do sistema é sinusoidal. Métodos de análise de

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univridad Salvador UNIFACS Curo d Engnharia Método Matmático Alicado / Cálculo Avançado / Cálculo IV Profa: Ilka Rbouça Frir A Tranformada d Lalac Txto 3: Dlocamnto obr o ixo t. A Função Dgrau Unitário.

Leia mais

Filtros em Telecomunicações

Filtros em Telecomunicações MINISTÉRIO DA EDUCAÇÃO - Campus São José Área de Telecomunicações Filtros em Telecomunicações Marcos Moecke São José - SC, 006 SUMÁRIO. FILTROS....1 RESPOSTA EM FREQUÊNCIA DE CIRCUITOS.1 R. LEVANTAMENTO

Leia mais

Licenciatura em Engenharia Electrónica

Licenciatura em Engenharia Electrónica Licencitur em Engenhri Electrónic Circuitos Electrónicos Básicos Lbortório Montgens mplificdors de fonte comum, port comum e dreno comum IST2012 Objectivos Com este trblho pretendese que os lunos observem

Leia mais

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011 Estratégico III Seminário de Planejamento Rio de Janeiro, 23 a 25 de fevereiro de 2011 G es tão Em pre sa rial O rie nta ção pa ra om erc ado Ino vaç ão et

Leia mais

SC101. Decibelímetro integrador classe 1 com protocolos de medição FOI TÃO FÁC. Aplicações Dispõe de protocolos de medição para:

SC101. Decibelímetro integrador classe 1 com protocolos de medição FOI TÃO FÁC. Aplicações Dispõe de protocolos de medição para: Dciblímtro intgrador cla 1 com protocolo d mdição Aplicaçõ Dipõ d protocolo d mdição para: Ruído grado por vículo a motor Nívi onoro mitido produzido por atividad vizinhança UÍDO NUNA MEDIR O R IL FOI

Leia mais

CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO. capítulo ver-se-á como obter um sistema digital controlado através de técnicas

CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO. capítulo ver-se-á como obter um sistema digital controlado através de técnicas 3 CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO A técnca uada para obtr um tma dgtal controlado nctam, bacamnt, da aplcação d algum método d dcrtação. Matmatcamnt falando, pod- obrvar qu o método d dcrtação

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

Conversor VGA + Áudio para HDMI

Conversor VGA + Áudio para HDMI 9218_conversor_vga+audio_para_hdmi_manual_rev04.pdf 1 20/11/14 10:29 onversor VGA + Áudio para HDI ATENDIENTO AO ONSUIDOR comtac@comtac.com.br onsulte as linhas VoIP de seu Estado e pague apenas o custo

Leia mais

Módulo II. Sistemas Internos de Informação. Redes e serviços de comunicação Sistema interno de informação da ESTV. Módulo II

Módulo II. Sistemas Internos de Informação. Redes e serviços de comunicação Sistema interno de informação da ESTV. Módulo II Módul S d ç Rd vç d uç S d ç d ESTV @2007 Módul v 1 Rd Svç d Cuç C d d l Cl d d d uç C b d u d Rd Eh W Tlg d à Svç @2007 Módul v 2 C d d l Tl =? U d d l é u d uç uíd vé d lgç d v ud u dv, ldd d ç lh u

Leia mais

TEMA 1 2º/3º ciclo. A LIndo de perguntas. Filipa, 12 anos

TEMA 1 2º/3º ciclo. A LIndo de perguntas. Filipa, 12 anos 2º/3º ciclo O Ã Ç A T N E M A LIndo d pgunt u u ni u i ct n u Exit co? d d dit, d á l tção, f n ão p t t N n nci li ê f p tnt o p i hábito i g ê t d indic udávl. o ã ç t n d li Filip, 12 no lid 1 EguNntTAÇÃO

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

ESTUDO DOS PRÉ-AMPLIFICADORES

ESTUDO DOS PRÉ-AMPLIFICADORES CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: ELETRÔNICA I PROFESSOR: LADEMIR DE J. S. OLIEIRA ESTUDO DOS PRÉ-AMPLIFICADORES 1. AMPLIFICADORES EM CASCATA Nos amplificadores em cascata o ganho sofre influência

Leia mais

COORDENAÇÃO DE SISTEMAS (CODES) MAIO/2013

COORDENAÇÃO DE SISTEMAS (CODES) MAIO/2013 PADRÕES UTILIZADOS NO DESENVOLVIMENTO DO SISTEMA DE INFORMAÇÕES DO IF BAIANO COORDENAÇÃO DE SISTEMAS (CODES) MAIO/2013 Rua do Rouxinol, N 115 / Salvador Bahia CEP: 41.720-052 Telefone: (71) 3186-0001.

Leia mais

MATERIAL DO ALUNO PARA RECORTAR

MATERIAL DO ALUNO PARA RECORTAR MATERIAL DO ALUNO PARA RECORTAR O Sonho de Renato O Sonho de Renato a e i o u A E I O U so nho de Re na to Eu sou Renato Valadares Batista. Tenho 14 anos. Sou filho de Pedro Batista e Luzia Valadares.

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

Anatolie Sochirca ACM DEETC ISEL. Integral definido. Exercícios resolvidos. a) Calcular os integrais definidos utilizando a fórmula de Barrow.

Anatolie Sochirca ACM DEETC ISEL. Integral definido. Exercícios resolvidos. a) Calcular os integrais definidos utilizando a fórmula de Barrow. Mamáica naoi Sochirca CM DEETC ISEL Ingra finio Ercício rovio a Cacuar o ingrai finio uiizano a fórmua Barrow Ercício Ercício Ercício Mamáica naoi Sochirca CM DEETC ISEL Ercício arcn arcn arcn arcn arcn

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 06-06-10

RESOLUÇÃO Matemática APLICADA FGV Administração - 06-06-10 QUESTÃO 1 VESTIBULAR FGV 2010 JUNHO/2010 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DISCURSIVO São curiosos os números. Às vezes é mis útil rredondá-los do que trblhr com seu vlor

Leia mais

Experimento 8 Circuitos RC e filtros de freqüência

Experimento 8 Circuitos RC e filtros de freqüência Experimento 8 Circuitos RC e filtros de freqüência 1. OBJETIVO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito RC. 2. MATERIAL

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

CIRCUITO ESTUDANTIL - INSTITUTO DE EDUCAÇÃO SANTO ANTÔNIO. BÁRBARA REIS; JÚLIO KALÉO; JULLIANY PAULA; RAISSA PINHEIRO; TOBIAS DA SILVA.

CIRCUITO ESTUDANTIL - INSTITUTO DE EDUCAÇÃO SANTO ANTÔNIO. BÁRBARA REIS; JÚLIO KALÉO; JULLIANY PAULA; RAISSA PINHEIRO; TOBIAS DA SILVA. CIRCUITO ESTUDANTIL - INSTITUTO DE EDUCAÇÃO SANTO ANTÔNIO. BÁRBARA REIS; JÚLIO KALÉO; JULLIANY PAULA; RAISSA PINHEIRO; TOBIAS DA SILVA. A LINGUAGEM DOS JOVENS E A CONSCIENTIZAÇÃO DO MEIO AMBIENTE ATRAVÉS

Leia mais

(Às Co missões de Re la ções Exteriores e Defesa Na ci o nal e Comissão Diretora.)

(Às Co missões de Re la ções Exteriores e Defesa Na ci o nal e Comissão Diretora.) 32988 Quarta-feira 22 DIÁRIO DO SENADO FEDERAL Ou tu bro de 2003 Art. 3º O Gru po Parlamentar reger-se-á pelo seu regulamento in ter no ou, na falta deste, pela decisão da ma i o ria absoluta de seus mem

Leia mais

Física e Tecnologia dos Plasmas Movimento de par.culas individuais

Física e Tecnologia dos Plasmas Movimento de par.culas individuais Física e Tecnologia dos Plasmas Movimento de par.culas individuais Mestrado em Engenharia Física Tecnológica Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra As perguntas fundamentais

Leia mais

REVIS TA CONTATO LEITOR GALERIA COLUNAS EDIÇÕES ANTIGAS ASSINATURA. 30/7/2014 Salão de Gramado encerra nesta quinta-feira.

REVIS TA CONTATO LEITOR GALERIA COLUNAS EDIÇÕES ANTIGAS ASSINATURA. 30/7/2014 Salão de Gramado encerra nesta quinta-feira. Q u a, 3 0 d e J u l h o d e 2 0 1 4 search... REVIS TA CONTATO LEITOR GALERIA COLUNAS EDIÇÕES Selecione a Edição ANTIGAS C l i q u e n o l i n k a b a i xo p a r a a c e s s a r a s e d i ç õ e s a n

Leia mais

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA SOLUÇÃO D EQUÇÃO DE LPLCE PR O POTENCIL DE LIGÇÃO IÔNIC Bathista,. L. B. S., Ramos, R. J., Noguia, J. S. Dpatamnto d Física - ICET - UFMT, MT, v. Fnando Coa S/N CEP 786-9 Basil, -mail: andlbbs@hotmail.com

Leia mais

Filtros de sinais. Conhecendo os filtros de sinais.

Filtros de sinais. Conhecendo os filtros de sinais. Filtros de sinais Nas aulas anteriores estudamos alguns conceitos importantes sobre a produção e propagação das ondas eletromagnéticas, além de analisarmos a constituição de um sistema básico de comunicações.

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

Princípios de Telecomunicações. PRT60806 Aula 10: Efeitos da FT / Diagrama de Bode Professor: Bruno Fontana da silva 2014

Princípios de Telecomunicações. PRT60806 Aula 10: Efeitos da FT / Diagrama de Bode Professor: Bruno Fontana da silva 2014 Princípios de Telecomunicações PRT686 Aula 1: Efeitos da FT / Diagrama de Bode Professor: Bruno Fontana da silva 214 1 Análise em frequência de sinais filtrados EFEITOS DE UM CANAL OU FILTRO SOBRE O SINAL

Leia mais

INDÍGENAS NO BRASIL PRECONCEITO CONTRA INDÍGENAS

INDÍGENAS NO BRASIL PRECONCEITO CONTRA INDÍGENAS Capítulo 3 PRECONCEITO CONTRA INDÍGENAS Concordância com afirmações sobre indígenas Os í nd io s vivem mais d e aco rd o co m a nat ureza d o q ue o s b ranco s 75 15 3 432 Os í nd io s p ro t eg em mais

Leia mais

Plugues e Tomadas Industriais

Plugues e Tomadas Industriais Plugues e Toms Inustriis Linh Inustril Instlções mis onfiáveis e segurs. CARACTERÍSTICAS GERAIS A Linh e Plugs e Toms Inustriis Soprno é ini pr onexão e iversos equipmentos, em mientes sujeitos pó, águ,

Leia mais

Peso máximo do utilizador: 150kg victory com fecho de somier. fabricamos modelos sob medidas especiais (consultar)

Peso máximo do utilizador: 150kg victory com fecho de somier. fabricamos modelos sob medidas especiais (consultar) VICTORY, linha recomendada para ambientes com risco bacteriológico médio/alto, como clinicas, lares, unidades de cuidados continuados. Estrutura em aço epoxy 60 x 30 x 1,5mm. Somier tripartido com 3 corpos

Leia mais

Decreto-Lei n.º 74/2004, de 26 de março. Decreto-Lei n.º 74/2004, de 26 de março

Decreto-Lei n.º 74/2004, de 26 de março. Decreto-Lei n.º 74/2004, de 26 de março EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de março Decreto-Lei n.º 74/2004, de 26 de março Prova Escrita de Física e Química A Prova Escrita

Leia mais

de derivada é, dada a derivada, vamos encontrar ou determinar uma

de derivada é, dada a derivada, vamos encontrar ou determinar uma Módulo Cálculo Inegrl Função primiiv - de derivd é, dd derivd, vmos enconrr ou deerminr um derivção e s derivds de váris funções, esudds no Cpíulo 5, pr deerminr s primiivs. O que cmos Nes unidde, pssremos

Leia mais

+12V. 0.1uF/ 100V RL4 :A ULN2003A C3 3 U1:D LIGA/ DESLIGA CARREGADOR. 10uF/ 16V C2 4 1N4148 D1 1 1N K GND 10K BC337 R2 5 CRISTAL DE 2 0 MHZ

+12V. 0.1uF/ 100V RL4 :A ULN2003A C3 3 U1:D LIGA/ DESLIGA CARREGADOR. 10uF/ 16V C2 4 1N4148 D1 1 1N K GND 10K BC337 R2 5 CRISTAL DE 2 0 MHZ ДХILUIR P/ LRR RL_ R To l. er a l es. Num. QU M PRVR IOO P O RROR MIOR V R LMJ U: UZZR R 0 ILUIR P M PRLLO OM ONTTO O RL 0.u/ 00V V R 0 0 R 0 verm elho U: ULN00 U: LMJ 0 ULN00 U: LI/ LI RROR V N R 0u/

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

MONITORAMENTO DE INFORMAÇÃO

MONITORAMENTO DE INFORMAÇÃO Consórcio muda d ndrço Corrio Lagano - 20/01/2016 5 - Colunista - Olivt Salmória Mídia Imprssa Co m d n 1 Içara prd vantagm comptitiva 9/01) Diário d Notícias/Criciúma - 20/01/2016 7 - Gral Mídia Imprssa

Leia mais